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Soil and water conservation technologies are critical in reducing drought and soil 
erosion risks and increasing crop yields and incomes. Yet, there is limited empirical 
evidence on the extent and impacts of adopting soil and water conservation 
technologies in Tanzania. The study’s objective is to evaluate the adoption (as 
well as the duration of adoption) and the impacts of soil and water conservation 
technologies on income and food security in Tanzania. The study employs a 
control function approach and the instrumental variable quantile treatment 
effects model to survey data from 575 households to estimate the average and 
distributional impacts of adoption. The results show that the adoption and duration 
of adopting soil and water conservation technologies had significant and positive 
effects on the total value of crop production and household income. Moreover, 
we find that the adoption and its duration had a significant and positive impact 
on the food security indicator—household dietary diversity. The results from the 
instrumental variable quantile treatment effects model also show that the impacts 
of adopting soil and water conservation technologies on the outcome variables 
are positive and significant, although they vary significantly across the income 
and food security distributions. The results indicate that even though adoption 
benefits households in both the lower and upper quantiles of the income and 
food security distributions, the marginal impacts of adoption are generally more 
significant for the households in the upper quantiles. The paper concludes by 
discussing the policy options for increasing and sustaining the adoption and 
impacts of soil and water conservation technologies in Tanzania.
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1. Introduction

Soil nutrient deficiency and moisture stress are major factors limiting crop productivity in 
many parts of sub Saharan Africa (SSA) (Mueller et  al., 2012). These problems are often 
exacerbated when agricultural production predominantly depends on seasonal rainfall and is 
characterized by limited use of fertilizer and soil and water conservation technologies (SWCT) 
that would reduce soil fertility loss through erosion. The dependence on rain-fed agriculture 
exposes farmers to climatic risks such as droughts, which can dramatically reduce crop yields 
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and livestock production (Schmidhuber and Tubiello, 2007), especially 
in semi-arid regions.

In the last four decades, Tanzania has experienced a series of 
severe droughts and floods, which have increased the uncertainty in 
seasonal rainfall prediction (FAO, 2014). This has negatively affected 
crop productivity, especially in the semi-arid region of central 
Tanzania. In addition, soil erosion resulting from inappropriate crop 
management practices, tillage, and livestock grazing systems have 
reduced crop productivity due to the loss of soil organic matter and 
nutrients. In response to these problems, research and development 
organizations have been testing and promoting sustainable 
intensification (SI) practices to increase crop productivity, incomes, 
and food security among smallholder farmers while mitigating the 
adverse effects on the environment. The adoption of SWCT offers a 
potential solution to arrest declining soil fertility. However, there is 
limited empirical evidence on the extent and impacts of adopting 
SWCT in Tanzania.

While there is a large body of literature on the productivity and 
farm income effects of the adoption of SWCT (e.g., Kassie et al., 
2008; Di Falco et al., 2011; Kassie et al., 2011; Di Falco and Veronesi, 
2013; Abdulai and Huffman, 2014), there are relatively few studies 
that have examined the relationship between SWCT and food/
nutrition security (Habtemariam et al., 2019; Issahaku and Abdulai, 
2019). Previous research has demonstrated a linkage between 
adopting improved crop varieties and dietary diversity/specific 
nutrient consumption (Smale et  al., 2015; Mumin and Abdulai, 
2021). However, empirical evidence on the impact of SWCT on 
food security outcomes among rural households is significantly 
lacking in the literature. Moreover, most of the previous studies 
have assumed that the effects of the adoption of SWCT are 
homogenous, ignoring the fact that the returns to the adoption of 
most agricultural innovations in sub-Saharan Africa are 
heterogeneous (e.g., Suri, 2011; Zeng et al., 2015; Wossen et al., 
2018; Manda et al., 2019). This study aims to fill this gap in the 
literature by examining the average and distributional impacts of 
the adoption and duration of adoption of SWCT on the total value 
of production (TVP), household income, and the indicators of food 
security, i.e., household dietary diversity (HDD), and household 
food insecurity access scale (HFIAS).

We contribute to the growing literature on SWCT in the following 
ways. First, unlike previous studies (e.g., Kassie et al., 2008, 2011; 
Abdulai and Huffman, 2014), we estimate the impact of adoption on 
HDD and HFIAS. These indicators measure the quantity and quality 
of food access at the household level and have an element of household 
nutrition. For example, HDD is associated with diet quality since it 
helps ensure adequate intake of essential nutrients and promotes good 
health (Leroy et al., 2015). The HFIAS is based on subjective responses 
to questions that capture universal aspects of the experience of food 
insecurity, information on food shortage, food quantity, and quality 
of diet to determine the status of a given household’s access to food 
(Carletto et al., 2013). In estimating adoption impacts, we control for 
observed and unobserved characteristics that would otherwise result 
in biased estimates.

Furthermore, since the benefits of adopting ISFM technologies 
may take time to be realized (Kassie et al., 2013; Jayne et al., 2019), 
we also consider the impact of the duration of the adoption of SWCT 

on the outcomes mentioned above. To the best of our knowledge, the 
study by Maggio et al. (2021) is one of the few studies that have 
considered the impact of sustained adoption of ISFM practices on 
smallholder welfare outcomes. Second, we examine the distributional 
effects of the adoption of SWCT using the instrumental variable 
unconditional quantile treatment effects (IVQTEs) model. Most of 
the previous studies have either used conditional quantile treatment 
effects (QTEs) (e.g., Issahaku and Abdulai, 2019; Ogutu et al., 2019) 
or unconditional treatment effects without controlling for 
unobservable characteristics (e.g., Mishra et al., 2015; Ainembabazi 
et al., 2018; Khanal et al., 2018). According to Frölich and Melly 
(2010, 2013), unlike the conditional QTEs, which change with the 
set of conditioning covariates, the unconditional QTEs do not 
depend on other covariates to be consistently estimated. The second 
advantage of unconditional effects is that they can be  estimated 
consistently without any parametric restrictions, which is impossible 
for conditional effects. Finally, to attach a causal interpretation to 
our QTEs, we use instrumental variable (IV) techniques to correct 
the adoption decision’s endogeneity. We  also complement the 
IVQTEs results with the smoothing-differencing (SD) method of 
estimating the distributional effects of adoption to examine how 
treatment effects vary with the propensity to adopt SWCT.

The rest of the article is organized as follows: The next section 
describes the sampling strategy, data, conceptual, and empirical 
approaches. Section 3 presents the results and discussion, and the last 
section draws conclusions and policy recommendations.

2. Methods

2.1. Sampling strategy and data

The data used in this paper come from a survey of 575 sample 
households conducted between September and October 2020 in the 
semi-arid districts of Kiteto and Kongwa in central Tanzania. A survey 
questionnaire was prepared and designed in Surveybe, a computer-
assisted personal interviewing (CAPI) software and administered by 
trained enumerators who collected data from households through 
personal interviews.

A multistage random sampling procedure was used to select 
sample households. In the first stage, five wards (Oluboloti, Njoro, 
Mlali, Nghumbi, and Sagara) were purposively selected from the two 
districts where there has been actively testing and promotion of 
SWCT. In the second stage, five villages from the five wards were 
selected using probability proportional to size sampling (PPS). With 
the help of the ward extension agents, and the Tanzania Agricultural 
Research Institute (TARI), a sampling frame was developed by listing 
all households (including adopters and non-adopters of SWCT). In 
the final stage, 120 households were randomly selected from each 
village resulting in 240 households from Kiteto district and 360 
households from Kongwa district. However, 340 households were 
interviewed in Kongwa district because the remaining 25 could not 
be traced.

Detailed information was collected on demographic and socio-
economic characteristics (e.g., household head’s age, sex, and 
education, livestock ownership, farm size, and crop production).

https://doi.org/10.3389/fsufs.2023.1146678
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org


Manda et al. 10.3389/fsufs.2023.1146678

Frontiers in Sustainable Food Systems 03 frontiersin.org

2.2. Conceptual and empirical frameworks

Droughts and floods affect crop production, lives, health, 
livelihoods, assets, and infrastructure, contributing to food insecurity 
and poverty among smallholder farmers in SSA (Shiferaw et al., 2014). 
The adoption of SWCT offers a potential solution to these problems 
by reducing water runoff and soil erosion and increasing soil fertility, 
thereby enhancing crop productivity and farm incomes of smallholder 
farmers. The productivity gains through the adoption of SWCT are 
expected to increase household income and ultimately result in 
increased expenditure on diverse, high-calorie, protein, and 
micronutrient-rich foods, finally improving household food security. 
As mentioned earlier, the impact of SWCT on crop productivity is well 
established in the literature, both from on-farm trials and plot-level 
surveys (e.g., Tsubo et al., 2005; Kassie et al., 2008; Kato et al., 2011). 
In this study, we envisage that the adoption and duration of SWCT 
will mainly increase TVP, household incomes, and food security 
through the crop productivity impact pathway.

Estimating the causal effect of the adoption (including its duration) 
of SWCT on income and food security is not trivial, especially with 
non-experimental data. This is so because farmers actively self-select 
into the adoption category based on their potential gains, which may 
lead to endogeneity problems (Alene and Manyong, 2007; Abadie and 
Cattaneo, 2018). This implies that regressing the adoption variables on 
the income and food security indicators with added control variables 
may lead to biased estimates. To properly account for self-selection and 
endogeneity, we  use the control function (CF) approach and IV 
techniques (Terza et  al., 2008; Navarro, 2010; Wooldridge, 2014; 
Wooldridge, 2015). In the CF approach, the adoption decision is 
modeled using a probit model, while two separate linear outcome 
equations for adopters and non-adopters are specified. In the duration 
of the adoption model, we  specify a linear IV regression model 
estimated using the two-stage least squares (2SLS) method.

2.3. Control function approach and IV 
regression model

2.3.1. Control function approach
To set the stage for our estimation strategy, let D = 1 denote 

adopters and let D = 0 denote non-adopters of SWCT. Given whether 
farmers choose to adopt SWCT or not, we can only observe any of 
these two states at a time, such that the observed outcome (i.e., income 
and food security) for a given farmer is Yi1 if they are adopters and by 
Yi0 if non-adopters. That is, the observed outcome Y can be written as:

 Y DY D Yi i i i i= + −( )1 01  (1)

A farmer will adopt SWCT if the outcome from adoption is higher 
than the case of non-adoption. More formally this can be written as:

 D Y Yi i i= − >[ ]1 01 0  (2)

where 1[.] is an indicator function that takes the value of 1 if the 
statement inside the brackets is true and 0 if it is false. We can define 
Di appropriately as:

 D Vi i i= +α µ  (3)

where Vi is a set of household and farm characteristics determining 
adoption, and the error term ∝i . The potential outcome for adopters 
and non-adopters can also be defined as:

 Y X e if Di i i i1 1 1 1= + =β  (4a)

 Y X e if Di i i i0 0 0 0= + =β  (4b)

Where X are vectors of weakly exogenous covariates, while β1 
and β0 are parameters to be  estimated for the adopter and 
non-adopter regimes, respectively, and; ei is an unobserved random 
component. The unobserved components in the potential outcome 
equations should be  independent of Vi such that the correlation 
between Di and the unobserved components (∝i  and ei) is equal to 
zero. Endogeneity arises if the error term in the adoption equation 
(equation 3) contains the same random variables as those in the 
outcome equations (equations 4a, 4b), such that the correlation 
between the error terms in the adoption and outcome equations is 
not equal to zero.

Endogeneity arises due to selection bias, simultaneity between 
adoption and the outcome variables and omitted variable bias (Terza 
et al., 2008; Maggio et al., 2021). We use the CF with an IV to break 
the correlation between the potential endogenous adoption variable 
and unobservable factors affecting the outcome variables. To achieve 
this, the V variables in the adoption model need to contain an IV that 
significantly affects the adoption of SWCT conditional on covariates 
(relevance condition) and affects income and food security only 
through D, but not directly (exclusion restriction). We use group 
membership (Abdulai and Huffman, 2014) as an identifying 
instrument. We checked whether the IV was correlated with the 
adoption status (relevance condition), and the reported results in 
section 3.2 show that the IV is relevant. Several previous studies have 
used this instrument (e.g., Kabunga et al., 2012; Abdulai and Huffman, 
2014). Nonetheless, one might argue that the exclusion restriction can 
be violated if farmers learn about income and food security-enhancing 
practices beyond SWCT, such as livestock assets and information 
regarding climate adaptation strategies. We have tried to control for 
several social-economic characteristics in our specification, including 
livestock ownership and information variables.

To estimate the impact of adopting SWCT on the outcome 
variables, i.e., the average treatment effect on the treated (ATT), 
we first estimate the adoption equation together with the instruments 
using a probit model and obtain generalized residuals ω



. In the second 
stage, we estimate equations 4a, 4b with ω



 as an additional regressor. 
In this case, the generalized residuals save as a CF, and by adding 
appropriate CFs, the adoption variable becomes aptly exogenous in 
estimating the outcome equations (Wooldridge, 2015). The ATT can 
be defined simply as:

 ATT E Y Y X Di i= − =( )1 0 1| ,  (5)

To recover the ATTs and to obtain correct standard errors, 
equation 5 is estimated using generalized methods of 
moments (GMM).
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To estimate the impact of the duration of adoption on the outcome 
variables, we specify the following linear regression model:

 Y X Xi i i i= + +β δ π1  (6)

where Yi, and X are defined as above; and ≠ i is the error term. δi  
is the duration of the adoption of SWCT.

2.3.2. The instrumental variable unconditional 
quantile treatment effects model

The violin plots presented above suggest that the effects of 
adoption are likely to be conditional on adopters observed and 
unobserved characteristics. To estimate the distributional or 
heterogeneous effects of adopting SWCT on the income and 
food security indicators, we use the IVQTE following Frölich 
and Melly (2010, 2013). Estimating QTEs is essential to evaluate 
the effect of a variable on different points of the outcome 
distribution and therefore allows for the identification of effects 
even in situations where the mean of the outcome variable 
remains unchanged. Let Y1i (D = 1) and Y0i (D = 0) be  the 
potential outcomes of household i (as defined above). Following 
Frölich and Melly (2010, 2013), the unconditional QTE (for 
quantile τ) can generally be given by:

 
∆ = −τ τ τQ QY Y1 0  (7)

where QY1

τ  is the quantile for Y1i and QY0

τ  is the τ th quantile of Y0i.
As mentioned above, the decision to adopt is endogenous; hence 

identification can only be achieved through an IV, Z. The treatment 
effects can be arbitrarily heterogeneous, such that the effects can only 
be identified for the population that responds to a change in the value 
of the instrument, i.e., compliers (Frölich and Melly, 2013). Therefore, 
we focus on the QTEs for the compliers given as:

 
∆ = −τ τ τQ QY c Y c1 0| |  

(8)

The unconditional IVQTE for compliers proposed by Frölich and 
Melly (2013) can be defined as a bivariate quantile regression estimator 
with weights:

 
( )α ρ α

τ

ϕ
τ

IV IV i
FM

i iW Y D, argmin∆ = ∑ − − ∆( )
∆  

(9)

where WiFM denote the weights proposed by Frölich and Melly 
(2010, 2013). ρ µ τ µτ = − <( ){ }1 0 , where ∝ is the asymmetric 
absolute loss function or check function (Wooldridge, 2010). The 
weights are defined as:

 
W

Z Z X
Z X Z Xi

FM i i

i i
=

− −( )
=( ) − =( ){ }

Pr

Pr Pr

1

1 1 1

|

| |  
(10)

where Zi  is a binary instrumental variable and Pr Z Xi=( )1|  are 
the propensity scores.

2.4. Smoothing-differencing 
heterogeneous treatment effects

As a key robustness check for the distributional impacts of 
adoption, we also estimate treatment heterogeneity by conditioning 
on a full set of covariates but without controlling for unobserved 
heterogeneity. Following Brand and Xie (2010) and Xie et al. (2012), 
we use the SD method to analyze how treatment effects vary with the 
propensity to adopt SWCT. The method follows three steps: First, 
we estimate equation 3 using a logit model to obtain the conditional 
probability of adopting SWCT (propensity score). Second, we  fit 
separate, non-parametric regressions (local polynomial regression) of 
the income and food security variables on the propensity score for the 
adopters and non-adopters. Third, we estimate the difference in the 
non-parametric regression line between the adopters and 
non-adopters at different levels of the propensity score. This enables 
one to obtain a pattern of treatment effect heterogeneity as a function 
of the propensity score.

3. Results and discussion

3.1. Descriptive statistics

Table  1 shows the definition and summary statistics of the 
variables used in this study. The results show that, on average, 22% 
adopted SWCT in the 2019/2020 growing season. In this paper, 
we define SWCT as either tied ridging or fanya-juu terraces.1 Similarly, 
we define the duration of adoption as the average number of seasons 
(including the 2019/2020 season) that a farmer has used either tied 
ridging or fanya-juu terraces. Tied ridging is an in-situ rainwater 
harvesting technique that collects rainwater in the field to facilitate 
water infiltration, subsequently increasing crop productivity 
(Habtemariam et al., 2019). It involves blocking ridge furrows with 
earth ties spaced at a fixed distance apart to form a series of micro-
catchment basins in the field (Wiyo et al., 2000). The use of fanya-juu 
terracing system also can reduce water runoff, soil erosion, and 
siltation of rivers, lakes, and dams and thus improve soil infiltration, 
fertility, and crop yields (Kassie et al., 2011; Saiz et al., 2016). Fanya-juu 
terracing system consists of constructing embankments along a slope 
by digging out trenches following contour lines and depositing the soil 
uphill of the trench to form a mound.

We use four outcome variables: TVP, household income (hereafter, 
income), HDD, and HFIAS (hereafter, food security). TVP is the total 
value of all the crops grown by the household and is a proxy for crop 
productivity and income. Household income is an indicator of 
household welfare among smallholder farmers. It includes all income 
from crops, livestock products, salaries, remittances, farm labor wage 
income, pension, and businesses.

The HDD is a proxy for the quantity and quality of food access 
at the household level (Leroy et  al., 2015). Apart from being a 
measure of household access to various foods, it is also a proxy for 
diet quality. In this study, we  used HDD scores (HDDS) as an 

1 A farmer is considered to have adopted if they used SWCT in the 2019/2020 

growing season.

https://doi.org/10.3389/fsufs.2023.1146678
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org


Manda et al. 10.3389/fsufs.2023.1146678

Frontiers in Sustainable Food Systems 05 frontiersin.org

indicator of HDD (Kennedy et  al., 2010). During the survey, 
households were asked to mention the food items they consumed in 
the last 24 h. These included Cereals, white roots and tubers, vitamin 
A-rich vegetables and tubers, dark green rich vegetables, other 
vegetables, vitamin A-rich fruits, other fruits, organ meat, flesh 
meats, eggs, fish and seafood, legumes, nuts and seeds, milk and 
milk products, oil and fats, sweets, and spices. Following Kennedy 
et al. (2010), we combined the vegetables, meats, and fruits with 12 
food groups, each with a score of 1 if they consumed a food item. 
The HDDS were then constructed by summing these food groups 
such that the scores ranged from 0 to 12. The HFIAS uses a set of 
questions that represents universal domains and subdomains of 
experiencing household food insecurity and lack of access to food 
(Leroy et al., 2015). The scale was developed through the Food and 
Nutrition Technical Assistance Project (FANTA), and details on how 
it is constructed are outlined in Coates et al. (2007). The HFIAS 
ranges from 0 to 27, so the higher the score, the more food insecurity 
the household experiences, and the lower the score, the less food 
insecurity a household experiences.

Table  1 also shows several demographic and socio-economic 
variables that are hypothesized to affect the adoption of 
SWCT. Household characteristics such as age, sex, and education of 
the household head; and socio-economic characteristics such as access 
to credit, livestock ownership, and access to off-farm employment are 
important determinants of agricultural innovations (Feder et al., 1985; 

Feder and Umali, 1993; Kassie et al., 2013). Farmers who have access 
to information related to adaptation to climate change are expected to 
adopt SWCT because these technologies are vital in addressing 
problems related to adverse climatic conditions such as droughts and 
floods. The number of years a household head has lived in the village, 
kinship, and membership in farmer organizations are meant to 
capture social capital and networking (Kassie et al., 2013; Abdulai and 
Huffman, 2014). The variables related to the distance to the district 
capital, extension agent’s office, and district market are proxies for 
transaction costs associated with the adoption of SWCT. On average, 
it takes a farmer only 25 min to walk to the extension agent’s office and 
over 4 h to the district market.

Figure 1 shows the distribution of the outcome variables by the 
adoption status. Violin plots combine the basic summary statistics of 
a box plot with the visual information provided by a local density 
estimator to reveal the distributional structure in a variable. Like a box 
plot, the violin plot displays the median as a short horizontal line with 
a dot, the interquartile range (first-to-third) as a narrow-shaded box, 
and the lower-to-upper adjacent value range as a vertical line.

Figure  1 shows significant heterogeneity with groups of 
households clustering in the upper and lower tails of the distributions, 
suggesting that the adoption of SWCT might unduly affect less 
productive and underprivileged households. This justifies the use of 
IVQTE to explore further the distributional impacts of the adoption 
of SWCT in section 4.

TABLE 1 Variable names, definitions, and descriptive statistics for the sample.

Variable Definition Mean Std.dev.

Treatment variable

Adoption 1 = If a household adopted SWCT, 0 otherwise 0.218 0.413

Duration of adoption Number of seasons a household has used SWCT 0.487 1.406

Outcome variables

TVP The total value of crop production per capita (Tsh) 167755.70 279098.40

Household income Household income per capita (Tsh) 224,000 227,000

HDDS Household Dietary Diversity Scores (number) 6.289 2.203

HFIAS Household Food Insecurity Access Scale (number) 3.759 5.26

Independent variables

Age Age of the household head (years) 49.147 13.422

Sex 1 = Household head is male, 0 otherwise 0.752 0.432

Education Education of the household head (years) 1.321 2.788

Farm size Total land owned by the household (ha) 2.889 4.805

Household size Total household size (number) 1.821 0.369

Livestock Livestock ownership in Tropical Livestock Units (TLU) 1.085 2.664

Traders Number of traders in and outside the village trusted by the household (number) 9.802 21.768

Years Years the household head has lived in the village (number) 36.842 17.105

Climate 1 = Household had information on adaptation to climate change, 0 otherwise 0.149 0.356

Distance capital Distance in walking minutes to the district capital (mins) 241.395 245.946

Distance extension Distance in walking minutes to the extension office (mins) 25.111 35.95

Distance market Distance in walking minutes to the district market (mins) 259.414 218.991

Instrumental variable

Membership 1 = Member of a formal or informal farmer group 0.282 0.451
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3.2. Determinants and impacts of the 
adoption of SWCT

The CF estimates of the determinants of the adoption of SWCT 
are shown in Table 2. These are the results emanating from estimating 
equation 3 using a probit model. The outcome equations (equations 
4a, 4b) for all the outcome variables are presented in Appendix Table 1 
for the adopter and non-adopter categories.2

The first stage results from the four equations are interpreted 
together because the coefficient estimates differ slightly.3 Consistent 
with Issahaku and Abdulai (2019), results show that female-headed 
households are more likely to adopt SWCT than male-headed 
households. The results also indicate that educated farmers are more 
likely to adopt SWCT as they might acquire new knowledge and 
process information more quickly (Adegbola and Gardebroek, 2007; 
Abdulai and Huffman, 2014). We find that household size increases 
the probability of the adoption of SWCT by smallholder farmers in 
Tanzania. The common finding in studies investigating the adoption 
of labor-intensive technologies is that household size is associated 
with an increase in the adoption rate of such technologies (Kassie 
et al., 2008; Di Falco and Veronesi, 2013; Ojo and Baiyegunhi, 2020). 

2 As our primary interest is examining the determinants and impacts of 

adopting SWCT, we are not going to interpret these results.

3 The results are not the same owing to somewhat different specification 

and number of observations across the models.

One explanation advanced for this finding is that household size is a 
proxy for household labor endowments, especially in developing  
countries.

Results further suggest that the adoption of SWCT increases with 
the number of traders trusted by the farmers. A recent study in Kenya 
by Mulwa et al. (2021) shows that large grain traders are essential in 
increasing the adoption of SI technologies due to their considerable 
financial and operational capacities, which enable them to provide 
reliable output markets, credit, inputs, and agricultural extension to 
smallholders farmers. The number of years the household has lived in 
the village capture the social capital and networks at the village level. 
Contrary to our a priori expectations, the probability of adoption of 
SWCT reduces with the number of years the household head has lived 
in the village. We also find that farm households with information on 
adaptation to climate change have a higher propensity to adopt SWCT, 
and this is partly due to the reasons explained above. Most SWCT 
activities are concentrated in Kongwa district, implying that farmers 
receive relatively more support services such as extension, group 
membership and other farmers who have adopted these technologies. 
The significant coefficient evidences this on the Kongwa dummy, 
showing that farmers in Kongwa are more likely to adopt SWCT than 
those in Kiteto district. Membership in a farmer’s organization 
increases the probability of adopting SWCT, and this also shows that 
it is a relevant instrument in identifying IV-based models specified 
above. Membership in farmer groups reflects the intensity of contact 
with other farmers (Adegbola and Gardebroek, 2007) and may also 
indicate exposure to information on the SWCT.

FIGURE 1

Violin plots of the value of production, household income, HDDS, and HFIAS.
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3.3. Impacts on household welfare

The estimates for the average treatment effects on the treated 
(ATT) from the CF model, which show the effects of SWCT adoption 
on income and food security, are presented in Table 3. The results 
show that adopters’ TVP and household income that can be attributed 
solely to the adoption of SWCT was 11% and 7% higher than 
non-adopters. The results also show that adopting SWCT significantly 
increased HDDS by 43%. The impact estimates are broadly consistent 
with studies on climate-smart agricultural practices and SWCT 
(Kassie et al., 2008; Di Falco et al., 2011; Abdulai and Huffman, 2014; 
Issahaku and Abdulai, 2019).

Table 4 shows the second stage 2SLS results from the estimation of 
equation 6, while the first stage results are presented in 
Appendix Table 2. The coefficient on the variable “duration of adoption” 
indicates the impact of the duration on the outcome variables, i.e., 
average treatment effect (ATE). The results show that an additional year 
or season of sustained adoption of SWCT leads to a 36% and a 54% 
increase in TVP and household income, respectively4. Similarly, 

4 This was transformed to percent using the following formula:  

[e(Impact estimate) – 1]*100.

holding other variables constant, HDDS, on average, increase by 82% 
for every additional year of adoption. The results in Table 4 point to the 
importance of considering both the adoption and duration when 
assessing the effect of improved agricultural technologies.

3.4. Distributional impacts of the adoption 
of SWCT

Table 5 reports the estimated IVQTEs of the adoption of SWCT on 
the outcome variables for the 0.1–0.9 quantiles. The 0.1 quantile 
includes the households with the lowest income and food security, 
while the 0.9 quantile includes the sample households with the highest 
income and food security. Unlike previous studies which report 
conditional or unconditional quantile treatment effects based on 
observed characteristics, results in Table 5 also account for unobserved 
characteristics to ascribe a causal interpretation to the results. The 
results show that the impacts of adopting SWCT on all the outcome 
variables are significant in some of the quantiles. However, they are not 
homogenous as they vary significantly across income and food security 
distributions. Contrary to the results found by Issahaku and Abdulai 
(2019), our results generally show that even though adoption benefits 
households in the lower and upper quantiles alike, the marginal 

TABLE 3 Impact of the adoption of SWCT on income and food security (control function estimates).

Outcome variables Mean of outcome variables ATT Change (%)

Adopters Non-adopters

TVP 11.206 10.118 1.088*** (0.405) 11

Household income 11.676 10.930 0.746** (0.348) 7

HDDS 7.066 4.934 2.132** (0.806) 43

HFIAS 5.039 3.568 1.471 (4.087) 41

***p < 0.01, **p < 0.05, *p < 0.1. Robust standard errors appear in parentheses. All the dependent variables are in natural logarithms.

TABLE 2 Control function results for the adoption of SWCT (first stage results).

Variable TVP Household income HDDS HFIAS

Age 0.002 (0.006) 0.004 (0.006) 0.003 (0.006) 0.003 (0.006)

Sex −0.310** (0.153) −0.349** (0.155) −0.324** (0.151) −0.324** (0.151)

Education 0.045* (0.024) 0.047* (0.024) 0.051** (0.024) 0.051** (0.024)

Farm size −0.003 (0.017) −0.025 (0.022) −0.006 (0.017) −0.006 (0.017)

Ln Household size 0.493** (0.208) 0.551*** (0.203) 0.559*** (0.199) 0.559*** (0.199)

Livestock 0.020 (0.023) 0.028 (0.023) 0.019 (0.023) 0.019 (0.023)

Traders 0.004* (0.002) 0.005* (0.003) 0.004* (0.002) 0.004* (0.002)

Years −0.009* (0.005) −0.009** (0.005) −0.008* (0.005) −0.008* (0.005)

Climate 0.690*** (0.169) 0.683*** (0.168) 0.676*** (0.165) 0.676*** (0.165)

Distance capital −0.000 (0.000) −0.000 (0.000) −0.000 (0.000) −0.000 (0.000)

Distance extension 0.001 (0.002) −0.000 (0.002) 0.001 (0.002) 0.001 (0.002)

Distance market 0.000 (0.000) −0.000 (0.000) −0.000 (0.000) −0.000 (0.000)

Kongwa 0.835*** (0.166) 0.709*** (0.161) 0.768*** (0.161) 0.768*** (0.161)

Membership 1.003*** (0.141) 0.928*** (0.141) 0.940*** (0.138) 0.940*** (0.138)

Constant −2.443*** (0.494) −2.359*** (0.492) −2.479*** (0.484) −2.479*** (0.484)

***p < 0.01, **p < 0.05, *p < 0.1. Robust standard errors appear in parentheses.
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impacts of adoption are more prominent for the households in the 
upper quantiles and smaller for those in the lower quantiles. However, 
the results agree with those of Manda et al. (2017) and Wossen et al. 
(2018) for improved crop varieties in Zambia and Nigeria.

Considering income (TVP and household income), the 
adoption effects are positive and significantly different from zero 
across most of the distribution. We can infer from these results that 
the increase in income associated with adopting SWCT tends to 
grow as income increases. The distributional impacts of SWCT on 
HDDS are slightly different as the effects are only significant in the 
lower half quantiles of the HDDS distribution, even though the 
impact also increases as we move from lower to upper quantiles. 
This attests that even households with comparatively lower HDDS 
can benefit from adopting SWCT. The results also reveal that the 
food insecurity-reducing effects of the adoption of SWCT are only 
significant in the upper half of the HFIAS distribution. Taken 
together, the results suggest that the adoption of SWCT mainly 

benefits the households in the upper quantiles of the income and 
food security distributions.

As mentioned earlier, we also estimated the distributional effects 
of SWCT using the SD method based on the household’s propensity 
to adopt the SWCT. This is important because IVQTEs results may 
be sensitive to the assumptions that come with the identification of 
the model. Following the approach described in section 2.4, the 
difference in the non-parametric regression line between the adopters 
and non-adopters at different levels of the propensity score is depicted 
in Figure 2. The x-axes indicate the estimated propensity for adopting 
SWCT, and the y-axes show the matched differences between 
adopters and non-adopters. The results generally show a steady and 
increasing TVP, household income, and HDDS response to different 
levels of the estimated propensity scores. This suggests that farmers 
with a higher propensity to adopt benefit the most from adopting 
SWCT. We observe a similar trend with the HFIAS curve, which 
show a negative slope, indicating a reduction in food insecurity as the 

TABLE 4 Impact of the duration of adoption of SWCT on income and food security (IV regression estimates).

Variable TVC Income HDDS HFIAS

Duration of adoption 0.308** (0.131) 0.427** (0.138) 0.603** (0.258) 0.970 (0.760)

Age −0.011** (0.004) −0.020*** (0.004) −0.005 (0.008) 0.025 (0.024)

Sex 0.210* (0.110) 0.158 (0.107) 0.038 (0.216) −0.150 (0.591)

Education −0.004 (0.017) 0.002 (0.017) −0.004 (0.033) −0.181** (0.076)

Farm size 0.076*** (0.015) 0.049*** (0.010) 0.053** (0.025) −0.077** (0.030)

Household size −0.964*** (0.142) −1.093*** (0.138) −0.349 (0.296) −0.168 (0.724)

Livestock 0.078*** (0.018) 0.066*** (0.019) 0.148*** (0.035) −0.272*** (0.082)

Traders −0.002 (0.003) −0.008** (0.003) −0.011 (0.007) −0.045** (0.017)

Years 0.003 (0.003) 0.007** (0.003) −0.009 (0.007) −0.005 (0.018)

Climate −0.094 (0.156) −0.121 (0.174) −0.075 (0.299) −1.206 (0.905)

Distance capital −0.000** (0.000) 0.000 (0.000) 0.000 (0.001) −0.001 (0.001)

Distance extension −0.002 (0.001) −0.004** (0.001) −0.013*** (0.003) −0.006* (0.004)

Distance market 0.000 (0.000) 0.000* (0.000) 0.000 (0.000) −0.001** (0.001)

Kongwa −0.930*** (0.120) −0.739*** (0.116) −0.625** (0.234) 2.157*** (0.567)

Constant 13.515*** (0.321) 14.455*** (0.323) 8.579*** (0.670) 4.432** (1.647)

Observations 562 555 575 575

***p < 0.01, **p < 0.05, *p < 0.1. Robust standard errors appear in parentheses. All the dependent variables are in natural logarithms.

TABLE 5 Unconditional quantile treatment effects of the adoption of SWCT on income and food security.

Quantile TVP Household income LnHDDS LnHFIAS

0.1 22190.288 (20976.436) 60416.664 (56235.610) 1.000 (0.966) −4.000 (11.402)

0.2 27154.212 (21943.895) 106904.764* (55192.730) 2.000** (0.929) −6.000 (13.684)

0.3 46654.920** (21440.012) 103850.000* (55198.729) 2.000** (0.864) −7.000 (13.148)

0.4 57597.250** (22611.794) 112111.109** (56584.209) 2.000** (0.937) −10.000* (5.211)

0.5 84736.086*** (27349.863) 156825.395** (62398.671) 3.000*** (1.008) −9.000* (4.660)

0.6 99756.320*** (32517.789) 286000.000** (115190.080) 2.000 (1.310) −9.000** (3.905)

0.7 124044.785*** (46387.917) 411875.000*** (130739.265) 2.000 (1.491) −9.000*** (3.017)

0.8 116241.180 (150506.415) 533333.313*** (117853.808) 2.000 (3.029) −7.000 (4.340)

0.9 147446.266 (510193.017) 649833.328*** (182307.736) 1.000 (2.059) −2.000 (3.478)

***p < 0.01, **p < 0.05, *p < 0.1. Standard errors appear in parentheses.
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propensity to adopt increases. Results in Figure 2 suggest that farmers 
self-select into adoption based on their comparative advantage 
(positive selection), consistent with Suri (2011). The smoothing-
differencing results are consistent and lend credence to the IVQTEs 
results presented above.

4. Summary and conclusions

The central region of Tanzania is predisposed to frequent 
droughts and significant topsoil erosion, which has negatively 
affected the productivity of many crops in the country. Previous 
studies show that adopting SWCT is a potential solution to some of 
these problems by reducing drought and soil erosion risks and 
increasing crop yields and incomes. Nevertheless, in most of these 
studies, much attention has been given to assessing the impact of the 
adoption of SWCT on crop yields and net farm returns, with a few 
analyzing the effect on household income and food security. 
Moreover, empirical evidence on the distributional impacts of 
adopting SWC technologies is still thin. This paper contributes to the 
empirical literature in this area by examining the average and 
distributional effects of the adoption and the duration of adoption of 
SWCT on incomes and food security in central Tanzania. We use 
several robust econometric approaches that account for observed and 
unobserved factors, coupled with recent household survey data from 
a sample of over 500 households, to achieve our objective.

Consistent with previous adoption studies, our results indicate that 
the main factors influencing the adoption of SWCT are the sex and 
education of the household head, household size, information on the 
adaptation strategies to climate change, and farmers’ group membership,. 
The results further show that the adoption and sustained adoption of 
SWCT significantly increases household income and food security. This 
underscores the importance of adopting SWCT in mitigating the adverse 
effects of climate change, such as frequent droughts and soil erosion, 
which are common in the semi-arid regions of central Tanzania.

The IVQTEs, complimented with the SD heterogeneous results, 
offer a more nuanced description of the relative effects of adopting 
SWCT over the entire income and food security distributions. Unlike 
the average treatment effects from the CF and 2SLS models, the 
quantile treatment effects mainly show that the marginal impacts of 
adoption are more significant for the households in the upper 
quantiles and smaller for the households in the lower quantiles of the 
income and food security distributions, indicating that the effects are 
not uniform but heterogeneous.

Overall, two main policy recommendations can be drawn from 
this study. First, the significance of information on adaptation to 
climate change and social networks (membership in a farmers’ 
organization) implies that exposure to SWCT is essential to increase 
the adoption of these technologies. Therefore, the results suggest 
the need for policies and strategies that promote farmer 
organizations and effective extension services for greater adoption 
of soil enhancing and water harvesting technologies. Similarly, 

FIGURE 2

Smoothing-differencing heterogenous SWCT adoption effects on TVP, household income, HDDS, and HFIAS.
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policies that center on farmer-to-farmer extension can go a long 
way in increasing the adoption and diffusion of SWCT. Activities 
that focus on promoting the exchange of information among 
farmers, such as farmer field days, can increase the efficiency of 
social networks in promoting the adoption of agricultural 
technologies (Mumin and Abdulai, 2021).

Second, the IVQTEs provide a basis for effective targeting of 
SWCT aimed at improving the well-being of smallholder farmers. As 
mentioned earlier, SWCT are labor intensive, and farm households 
require substantial investments to adopt the technologies. This 
implies that farmers who are likely to be adopters and benefit from 
SWCT are also expected to incur high fixed and variable costs. Easing 
these barriers would therefore increase the benefits of adoption. 
Policies targeting the poor non-adopters, such as improved access to 
credit facilities and enhanced information on SWCT, are vital for 
poor farmers to adopt and benefit from these technologies.
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