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This study purposed to evaluate the impact of climate change on green gram yield, 
biomass and days to maturity under the baseline and future climate scenarios in 
Kitui County, Kenya. A field experiment was conducted during the March–April–
May (MAM) and October–November–December (OND) planting seasons of 2018 
and 2019 in the South Eastern Kenya University (SEKU) farm. Data on soil physical 
and chemical properties, daily climate data on rainfall, maximum and minimum 
temperature, and solar radiation, and green gram phenology dates were collected 
from the site and used in the calibration and validation of the APSIM model for 
four varieties of green gram, namely Biashara, Tosha, N26, and KS20 varieties. 
The calibrated green gram model captured the observed yield, biomass and days 
to maturity of the four varieties of green gram well. The calibrated green gram 
model was used to simulate the effects of climate change using daily climate data 
from an equal-weight ensemble of the nine CORDEX RCA4 models under the 
baseline scenario (1971 to 2000), and the future RCP 4.5 and 8.5 scenarios (2021 
to 2050). During the MAM and OND seasons, a statistically significant decline 
in yield, biomass, and days to maturity is expected under both the RCP 4.5 and 
RCP 8.5 scenarios. The high variability in rainfall amount under both the RCP 4.5 
and RCP 8.5 scenarios will translate to a lower yield and biomass. The increase 
in temperature under both the RCP 4.5 and RCP 8.5 scenarios will reduce the 
days to maturity for green grams in Kitui County. A decline in green gram yield 
is expected under future climate scenarios in one of the highly suitable zones 
for Kitui County, Kenya. Given that the government aims to revive farming in 
the ASALs by promoting climate-smart agriculture through planting drought-
resistance crops, there is a need to develop green gram varieties which are more 
tolerant to the expected change in climate.
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1. Introduction

Subsistence farming in the tropical region is expected to be susceptible to the changing 
climate, as smallholder farmers lack enough resources to acclimatize to the changing climate 
conditions (Eriksen et al., 2005; Tui et al., 2022). Increased frequency of droughts, which is 
anticipated with the changing climate will worsen the state of food insecurity and deepen 
poverty in the Arid and Semi-Arid Lands (ASALs) of Kenya (Omoyo et al., 2015; Bobadoye 
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et al., 2016; Kalele et al., 2021). Land classified as ASALs in Kenya is 
considered as most disposed to the effects of varying and changing 
climate (Opiyo, 2014; Kalele et al., 2021). The ASALs of Kenya are 
characterised by low rainfall that varies highly in time and space, and 
lengthy dry seasons with high evapotranspiration amounts (Opiyo, 
2014). Given that the temperature and rainfall in the ASALs have been 
postulated to change (Wg1, 2007), it is essential to recognize the 
degree to which these alterations in climate elements could affect crop 
production at a local level.

In Kenya, legumes such as green grams are the second most 
preferred grain crop after maize. Legumes are commonly planted 
together with cereals such as sorghum, maize, millet and cassava, 
where the cereals are the majority crops (Hauggaard-Nielsen et al., 
2008). Most farmers located in the ASALs prefer to intercrop maize 
with beans, with drought-resistant crops such as green gram, finger 
millet and sorghum not being as preferable (Yvonne et al., 2016). 
Green gram is a short-season crop that is well adapted to the warmer 
and drier conditions of the sub-tropics and tropics (Lambrides and 
Godwin, 2007; Masaku et al., 2018). Green gram grows in the range 
of temperatures of about 20 to 40°C (Lambrides and Godwin, 2007).

Green gram can improve nutrition, enhance soil fertility and 
benefit the economy. Green gram is not only an affordable source of 
plant protein but also of minerals, carbohydrates, and vitamins (Nasir 
and Sidhu, 2012; Nair et al., 2013; Hanumantharao et al., 2016). It 
plays an important role in easing undernourishment in resource-poor 
homes that cannot afford animal protein (Tharanathan and 
Mahadevamma, 2003; Pramanick et al., 2014; Hanumantharao et al., 
2016; Tui et al., 2022). Green gram can improve the soil structure and 
leave a residual of between 33 and 37 Kg N/ha for the subsequent crop 
after sustaining its own need; fulfilling nearly 25% of the nitrogen 
required by the succeeding crop (Damodaram et al., 2014; Kaur et al., 
2015; Hanumantharao et al., 2016). Adding nitrogen to the soil green 
gram can increase agricultural production in soils that are limited by 
a lack of supply of Nitrogen fertilizer (Raza et al., 2012). Kenya has the 
potential to produce 3MT/ha but only produces 0.46 MT/ha (Kilimo 
Trust, 2017).

The temporal and spatial variability of climate variables is one of 
the key aspects responsible for the agricultural production in an area 
(Raza et al., 2019; Vitali et al., 2019; Kephe et al., 2021). The impact of 
increased temperature, and changing rainfall intensity and pattern has 
led to reduced agricultural production globally (Cruz Benítez and 
Ramírez Amezcua, 2007; Adhikari et al., 2015; Raza et al., 2019). The 
spatial variability of climate variables, especially rainfall over various 
regions, has been observed to exhibit high variability in space and 
time (Indeje et al., 2001; Ongoma and Chen, 2017). Interest is growing 
in studies on rainfall over East Africa following observations that the 
main seasonal rainfall is decreasing (Ongoma and Chen, 2017), and 
that climate change by the end of the 21st century period shall 
adversely affect crop yields (Adhikari et al., 2015). Understanding the 
spatial variation of climate parameters and their relationship with 
important crops can help increase the welfare of smallholder farmers 
by cultivating their knowledge of the management of natural assets for 
improved agricultural production (Kisaka et al., 2015).

Crop growth models are important tools for evaluating weather 
threats, determining optimal planting dates, and calculating the 
performance of crops where they have not been cultivated before (Nain 
and Kersebaum, 2007; Asseng et al., 2014; Manschadi et al., 2021). 
Models are developed to help us understand how crops interact with 

climate in processes such as photosynthesis and water flow and to find 
gaps in knowledge (Jame and Cutforth, 1996; Chisanga et al., 2022; Tui 
et  al., 2022). Models can represent the relationships between crop 
development, genetic constraints and the environment and thus may 
be used to assist in plant breeding efforts (Yin et al., 2004; Kostková 
et al., 2021; Manschadi et al., 2021; Chisanga et al., 2022). Crop models 
have also been used to simulate the effects of climate change on crop 
production and have been found useful tools (Vitali et al., 2019; Kephe 
et al., 2021; Kostková et al., 2021; Chisanga et al., 2022). To improve the 
production of green grams, it is essential to understand the potential 
impact of climate variability and change on green gram production in 
a highly suitable region, which is important when developing policies 
regarding the future. The switch to legumes in farming systems has 
been observed to reduce vulnerability to climate change in very poor 
as well as more resourced farmers (Tui et al., 2022).

Crop models commonly require a large number of input data 
including daily weather parameters (such as temperature, precipitation 
and solar radiation), detailed soil properties and initial soil conditions, 
cultivar-specific genetic parameters, and information on crop 
management practices (Manschadi et al., 2021). The lack of high-
quality observed weather data is a challenge for the application of crop 
simulation models in many agricultural regions since this makes 
modelling difficult and increases the uncertainties of simulations 
(Srivastava et al., 2020; Kephe et al., 2021; Araghi et al., 2022). Gridded 
weather data have been found to provide valuable replacements for 
observed weather data for crop simulation purposes (Duarte and 
Sentelhas, 2020; Srivastava et al., 2020; Yaghoubi et al., 2020; Deines 
et al., 2021).

This study builds on the findings of Mugo et al. (2020) where the 
effects of climate change using an ensemble of nine CORDEX RCA4 
models on green gram production in terms of the area was presented. 
Kitui country was identified as a highly suitable region for the 
cultivation of green grams. This study aims to demonstrate the impact 
of climate change on actual green gram yield, biomass and days to 
maturity which is lacking in the previous studies. Often, existing 
studies look at climate change effects and adaptation in current 
systems, but information as to what their effects could be in future 
systems is missing (Tui et al., 2022). Crop simulation models such as 
APSIM can be used to quantify the likely potential impacts of climate 
change on crop growth and yield (Chisanga et al., 2022; Tui et al., 
2022). Although only one area was chosen for use in the APSIM 
model, the results would be applicable in other ASAL areas where the 
climate and soil patterns are similar.

2. Materials and methods

2.1. Study area

Kitui County is located in one of the regions highly suitable for 
green gram production in Kenya during both the March, April, and 
May (MAM) and October, November, and December (OND) seasons 
(Figure 1). As a semi-arid region, Kitui County is one of Kenya’s most 
drought-prone areas, with dry spells typically lasting from June to 
September and January to February. The rainfall pattern is bimodal, 
with an average annual rainfall of 750 mm but an annual range of 500 
to 1,050 mm and a reliability of 40%. The annual mean minimum 
(maximum) temperature ranges from 22 to 28 degrees Celsius.
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Kitui’s climate is ideal for green gram production which performs 
best in the ASAL areas since it has low moisture requirements and 
high heat tolerance (El lateff et al., 2018). A temperature of 28 to 30°C 
is ideal for seed germination and plant growth (Mogotsi, 2006; 
Lambrides and Godwin, 2007; Kaur et al., 2015) and the temperatures 
should always be  above 15°C (Mogotsi, 2006). Green gram has a 
rainfall requirement of between 350 and 700 mm per annum 
(Lambrides and Godwin, 2007; SASOL Foundation, 2014).

Acrisols, luvisols, and ferralsols are the most common soil types 
in Kitui County (SASOL Foundation, 2014). The soils are well-
drained, moderately to deeply rooted, and dark reddish (SASOL 
Foundation, 2014). Green gram does well in most soil textures but 
prefers fertile, deep, well-drained loams or sandy loams (Oplinger 
et  al., 1990; Morton et  al., 1992; SASOL Foundation, 2014). The 
legumes are most suitable for well-drained clayey soils (SASOL 
Foundation, 2014) but do not do well on heavy clay soils with poor 
drainage and are somewhat tolerant of saline soils (Oplinger et al., 
1990; Grealish et al., 2010). For green gram cultivation, sandy soils 
require good fertilizer and water supply and organic soils need 
drainage and raised beds since their water tables occur at or near the 
soil surface (Grealish et al., 2010).

2.2. Data description

The datasets utilised in this study were climate data, soil data, and 
green gram phenological data which were used to calibrate the green 
gram APSIM model.

2.2.1. Climate data
This study used daily gauge-based station data on rainfall, solar 

radiation, minimum temperature, and maximum temperature 
collected from the SEKU weather observatory station which is located 
at longitude 37.8 °E, and latitude 1.3 °S, in Kitui County, Kenya during 
the year, 2018 and 2019 in the seasons of MAM and OND when green 
gram experiments were conducted. Data on the number of rainy days 
in each month when green gram was planted was also collected to help 
understand the distribution of rainfall. A rainy day was described as a 
day when rainfall was more than or equal to 0.85 mm (Barron 
et al., 2003).

Daily model data on rainfall, maximum and minimum 
temperature and solar radiation were obtained from the best 
CORDEX RCA4 model under the baseline scenario (1971 to 
2000), and the future RCP 4.5 and 8.5 scenarios (2021 to 2050). 
The CORDEX RCA4 model is part of the CORDEX-Africa 
projected where a selection of nine CMIP5 GCMS have been 
downscaled to the regional level (Endris et  al., 2013; Mugo 
et al., 2020).

Monthly rainfall data spanning from 1971 to 2000 sourced from 
the Climate Research Unit (CRU) at 0.5° by 0.5° grid resolution 
(Harris et al., 2014) was also collected for use in the CORDEX RCA4 
model validation. The CRU dataset has been validated against 
observed data in Kenya and found useful (Ongoma and Chen, 2017).

2.2.2. Soil data
Soil samples were obtained using a soil auger at various depths 

(0–15 cm, 15–30 cm, and 30–45 cm) collected at different points 

FIGURE 1

Present lands suitable for green gram production during the MAM (left) and OND (right) seasons in Kitui County, highlighted in blue. The dark green 
colour shading (S1) represents the most suitable areas, light green shading (S2) represents the moderately suitable areas, and yellow shading (S3) 
represents the marginally suitable areas, for green gram production in Kenya based on these classifications (Source: Mugo et al., 2020).
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in the experimental site using a zigzag pattern. A sample of 1 kg 
from each depth category was assessed for its physical and 
chemical properties at the National Agricultural 
Research Laboratory.

2.2.3. Crop management data
The test crop in the field experiments was green gram. Four 

cultivars of green gram were sown KS20 a dull green seed, N26 a small 
seeded, shiny green seed, and Tosha and Biashara which are medium-
large shiny green seeds. The seeds are the varieties produced at the 
KARLO Katumani Research Center. Field experimental plots of 4 m 
by 4 m were established for three seasons (OND 2018, MAM 2019 and 
OND 2019). The experiments were laid out in a Randomized 
Complete Block Design (RCBD) with four replications and the 
different seeds as treatments.

The land at the SEKU farm was prepared at the beginning of the 
season and sowing was done when at least 10 mm of rainfall had been 
received to enable sufficient moisture in the soil for sustained 
germination of the green gram varieties. This threshold in some cases 
occurred in the middle of the season. The Green gram seeds were 
planted at a distribution of four to six kilograms per hectare, spacing 
of 15 cm and 45 cm between plants and rows, respectively, and a 
depth of three to five centimetres. Weeding was done 2 weeks after 
the emergence of seeds and before flowering. Bestox pesticide which 
contains the active ingredient alphacypermethrin molecule was 
applied twice during the growth of green grams; at the budding stage 
and the podding stage at a rate of 10 mL/ha mixed in 20 L of water to 
control pests. The fertiliser was applied at a rate of 50 kg/ha of NPK 
during sowing to increase soil fertility and yields (SASOL 
Foundation, 2014).

2.3. Methodology

2.3.1. Performance of RCA4 models in simulating 
observed rainfall

The best of the nine CORDEX RCA4 models and their ensemble 
as described in (Mugo et  al., 2020) was determined and used to 
simulate the impact of climate change on green gram production. The 
best model was determined based on how each model simulated the 
observed CRU datasets during the baseline period.

The Taylor diagram was used to present the performance of the 
CORDEX RCA4 models based on how they correlate with the 
reference data (CRU rainfall data) (Taylor, 2001) during the baseline 
period. Rainfall is the most important weather parameter in Africa 
and is hence commonly observed as compared to the rest (Ongoma 
et al., 2019). Other studies have also shown that RCA4 models can 
simulate temperature fairly well (Endris et al., 2013; Mukhala et al., 
2017; Warnatzsch and Reay, 2019), hence the choice of the best model 
was only based on rainfall.

The Taylor diagram summarises the model outputs in terms of the 
correlation coefficient (Eq. 1), bias (Eq. 2), and the root mean square 
error (RMSE) (Eq. 3) statistical measures. The closer the model is to 
the observation (reference data point), the better the model 
performance, and the opposite is true. A Taylor diagram can also 
be used to show the relative performance of models against each other 
demonstrating the existence/non-existence of consensus of the models 
toward the reference data (Taylor, 2001).
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Where O Oi , , P P Ni , and  are the values of observed, mean of 
observed, predicted, and mean of predicted and the total number of 
these pairs, respectively.

2.3.2. APSIM model calibration
The APSIM module .xml file contains nine cultivars of the green 

gram crop. When introducing a new variety, it is recommended that 
an existing cultivar in the .xml file be used. The green gram crop 
module in APSIM has descriptions of Satin, Celera, Berken and 
Emarald that resemble KS20, N26, Tosha and Biashara varieties, 
respectively, (Gentry and Gordon, 2010). The four new varieties 
(KS20, N26, Tosha and Biashara) were added by editing the .xml file 
using the field phenology data collected. Growing degree days from 
sowing to emergence, emergence to end of the juvenile phase, 
flowering to start of grain filling and start of grain filling to end of 
grain filling, were calculated and input appropriately to resemble the 
observed field data, all the other parameters were not changed.

The soil characteristics used in the study were those typical of soils 
in Kitui. Table 1 shows the physical and chemical soil parameters 
tested and used as input in the APSIM model. The maximum available 
water content of the soil at sowing was adjusted to 95% evenly 
distributed across the soil profile. The sowing rule was set so that 
sowing took place when there was an accumulation of 10 mm of 
rainfall from the sowing date. The sowing dates were set to 1st March 
and 1st October for the MAM and OND seasons, respectively. The 
seeds were planted at a depth of 10 mm. The sowing density was set at 
10 plants/m2 and the row spacing at 500 mm. Nitrate Nitrogen 
fertilizer was applied at a rate of 50 kg/ha at sowing. Soil organic 
matter, nitrogen, and soil water were reset on sowing to the original 
amounts. All the other parameters were not changed.

The APSIM weather module requires daily data on rainfall, solar 
radiation, minimum temperature, and maximum temperature. The 
APSIM model requires the data to be input as one file of daily weather 
parameters arranged in columns in chronological order. Four .met 
files were created: a file containing observed station data during the 
years 2018 and 2019 from the SEKU weather station which was used 
for model initialization and validation; and three files from the 
CORDEX RCA4 model ensemble data from the baseline scenario 
(1971 to 2000), and the future RCP 4.5 and 8.5 scenarios (2021 to 
2050) which were also used as inputs in the green gram weather 
module to study the effect of climate change on green gram yield. The 
data was saved as a .prn file under excel and this was converted to 
.met using the Tav_Amp program written in FORTRAN language. 
The .met files were then read into the APSIM weather module.

https://doi.org/10.3389/fsufs.2023.1144663
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org


Mugo et al. 10.3389/fsufs.2023.1144663

Frontiers in Sustainable Food Systems 05 frontiersin.org

Data from field experiments for the OND 2018 growing seasons 
on phenology dates, biomass and grain yield were used for the 
model calibration.

2.3.3. Statistical evaluation of the APSIM model
The ability of the APSIM green gram model to simulate the 

observed yield of green gram, biomass, and days to maturity during 
the MAM and OND 2019 growing seasons was evaluated using the 
statistical measures of coefficient of determination which is Eq. 1 
squared, bias (Eq. 2), percentage error (Eq. 4) and the normalised root 
mean square error (NRMSE) (Eq.  5) (Luhunga et  al., 2016). The 
validated varieties were then used to simulate the effect of changing 
climate on the yield, biomass and days to physiological maturity of 
green gram under the baseline scenario (1971 to 2000), and the future 
RCP 4.5 and 8.5 scenarios (2021 to 2050).
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The Normalised Root Mean Square Error (NRMSE) (Eq.  4) 
measures the absolute error of the APSIM model in simulating 
observed values. Smaller values of NRMSE indicate a small error 
between the observed and simulated values.

2.3.4. Trends in climate and green gram 
parameters

The effect that climate change may have on green gram yield, 
biomass, and days to maturity under baseline, RCP 4.5 and RCP 8.5 
scenarios during the MAM and OND seasons was investigated using 
the validated green gram module for the years between 1971 to 2000, 
and 2021 to 2050.

The trends in the climate parameters (rainfall and temperature), 
and green gram production parameters (yield, biomass and days to 
maturity) during the MAM and OND seasons were assessed using the 
Mann-Kendall test (Mann, 1945) test and the magnitude of the trend 
using the Sen’s slope estimator (Sen, 1968). Positive values of the 
Mann-Kendall test and Sen’s slope estimator indicate an increasing 
trend while negative values indicate a decreasing trend in the time 
series. To determine whether a trend was statistically significant a 
p-value of 0.05 was used. Several recent studies have used the Mann-
Kendall test to identify trends in time series (Porto de Carvalho et al., 
2014; Taxak et  al., 2014; Mallya et  al., 2015). The Mann-Kendall 
method is often preferred for trend analysis because it can work with 

missing data, non-normality, seasonality and outliers in a time series 
(Oloruntade et al., 2016).

3. Results and discussions

3.1. Performance of the CORDEX RCA4 
models in simulating the observed rainfall

Figure 2 presents the total mean annual rainfall cycle over Kitui 
County from the RCA4 models and CRU datasets; all the models 
reproduce the annual cycle of rainfall fairly well. The general cycle 
shows the bimodal rainfall pattern, much of the rainfall occurs during 
the MAM and OND seasons. The OND season is the main season in 
the lower eastern and central regions where Kitui County is located, 
and the models capture this pattern fairly well. These results agree with 
that of Ayugi et al. (2016).

Figure 3 presents the performance of the RCA4 CORDEX models 
in simulating observed annual rainfall totals in Kitui using Taylor 
diagrams. The best-performing model was chosen based on the 
smallest standard deviation, the highest positive correlation and the 
least unbiased RMSE to the CRU datasets. Generally, the RCA4 
models clustered around a correlation coefficient of 0.4 to 0.6, 
justifying the use of an ensemble of equal weight.

The ensemble which is a normal average of the nine CORDEX 
models (Endris et  al., 2013) was a better representation than the 
individual models since it displayed the smallest standard deviation, 
highest correlation coefficient and the least unbiased RMSE to the 
CRU datasets. The better representation by the ensemble can 
be  attributed to its ability to cancel opposite signed biases across 
individual models (Nikulin et  al., 2012; Mukhala et  al., 2017). 
Individual models can sometimes be unreliable since they give good 
results in one region and poor results in another region over the same 
period (Nikulin et al., 2012; Akhter et al., 2017; Dosio, 2017; Stanzel 
et al., 2018).

The ensemble, although potentially biased, simulated rainfall 
better compared to individual models; model ensembles have 
previously been used for future climate studies (Buontempo et al., 
2015; Ogega et  al., 2016; Mukhala et  al., 2017; Mutayoba and 
Kashaigili, 2017; Stanzel et al., 2018; Gibba et al., 2019; Kisembe et al., 
2019; Musie et  al., 2020). Utmost importance should be  given to 
choosing the data source, which otherwise could lead to incorrect 
estimations that lead to incorrect policy recommendations (Srivastava 
et al., 2020; Yaghoubi et al., 2020). Since the ensemble performed 
better than individual models it was used for further analysis to 
simulate the effects of climate change on green gram production in 
Kitui County Kenya.

TABLE 1 Chemical and physical properties of the soil at the experimental site in SEKU farm, Kitui County, Kenya.

Physical characteristics

Depth 
(cm)

% OC % N 
Total

pH BD 
(g/cc)

LL15  
(mm/mm)

DUL 
(mm/mm)

SAT (mm/
mm)

% Sand % Silt % Clay Class

0–15 0.64 0.04 5.2 1.52 0.17 0.288 0.358 78 74 74 SL

15–30 0.53 0.06 4.6 1.43 0.18 0.279 0.368 6 2 0 SCL

30–45 0.47 0.06 4.6 1.36 0.19 0.274 0.374 16 24 26 SL

OC, Organic Carbon; N, Nitrogen; BD, Bulk density; LL15, 15Bar lower limit of soil water content; DUL, Field Capacity; SW, Soil water parameter; SAT, Saturated water content.
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3.2. Performance of the APSIM green gram 
model in simulating the observed yield, 
biomass and days to maturity

This section presents the results of the weather conditions 
observed during the experiment period, and the performance of the 
APSIM model in simulating the observed yield, biomass, and days 
to maturity.

3.2.1. Weather conditions during the growing 
period

Table  2 shows the pattern of rainfall, solar radiation, and 
minimum and maximum temperature during the growing seasons of 
MAM and OND when the experiments were conducted.

A rainfall of 250 to 350 mm per season is considered optimal 
for green gram production (Gaiser and Graef, 2001; SASOL 
Foundation, 2014). The OND season of 2018 received a rainfall 
amount of 302.5 mm, which favoured good yield during the season. 
The MAM season of 2019 received rainfall amount of 132.9 mm 
which resulted in reduced yields. The OND season of 2019 received 
higher than the optimal amount required of 464.7 mm which 
resulted in increased biomass and less yield compared to the 2018 
OND season. Rainfall amounts above the optimum could lead to 
increased biomass production and decreased pod setting which 
affects the yield of green grams. The number of rainy days (NRD) 
was well distributed with most days occurring during the start of 
the planting season and thus ideal for green gram growth. Green 
grams are especially vulnerable to drought stress during flowering 

FIGURE 2

Mean annual cycle of rainfall using the CRU and CORDEX RCA4 model datasets.

FIGURE 3

Taylor diagram showing the validation of annual rainfall for the CORDEX RCA4 models against observed CRU data. The alphabetical letters represent 
a-CCCma, b-CNRM, c-CSIRO, d-IPSL, e-MIROC, f-MOHC, g-MPI, h-NCC, i-NOAA and, j-Ensemble.
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and pod filling, which occurs about 6 weeks after planting (Raza 
et  al., 2012). Water stress affects crop phenology, leaf area 
development, and number of leaves per plant and finally, results in 
low yield (Robertson et al., 2002; Ranawake et al., 2012; Raza et al., 
2012; Chauhan and Rachaputi, 2014).

The temperature during all the growing seasons remained 
optimal as shown in Table  2. A temperature of 21 to 30°C is 
considered ideal for seed germination and plant growth (Morton 
et  al., 1992; Mogotsi, 2006). The temperature should always 
be above 15°C during crop growth (Mogotsi, 2006). Green gram 
bear 10 to 20 flowers. Under normal conditions, the green gram 
plant will shed a large number of flowers. Shedding is worsened 
under high temperatures leading to substantial loss of potential 
pods (Kaur et  al., 2015). Temperatures higher than 27°C at the 
reproductive stages of green grams decrease its photosynthetic rates 
by inducing chlorophyll loss and reducing carbon assimilation and 
fixation thereby reducing pod weights and final yield (Luo, 2011; 
Hatfield and Prueger, 2015; Islam, 2015; El lateff et al., 2018). A 
change in temperature by 8–10°C from the optimum level required 
for green gram growth resulted in shorter phenological periods, 
especially during the vegetative phase leading to earlier maturity 
(Luo, 2011; Hatfield and Prueger, 2015). Low temperatures delay 
and reduce the germination of green gram and lead to very slow 
plant growth (Hanumantharao et al., 2016).

3.2.2. Calibration and assessment of the 
performance of APSIM in simulating the observed 
yield, biomass and days to maturity

Table 3 shows the calculated number of growing degree days it 
takes for each green gram variety to develop through seven 
phenological phases. The APSIM green gram model uses 7.5°C base 

temperature, 30°C optimal temperature and 40°C extreme 
temperature for green gram suitability as the key values in the 
calculation of degree days (Robertson et  al., 2002; Chauhan 
et al., 2010).

Table 4 shows the observed versus simulated yield, biomass and 
days to maturity for each green gram variety. The APSIM model 
generally underestimates the observed yield, biomass and days to 
maturity during the three growing seasons for all the varieties. Since 
the APSIM green gram module does not model production from 
subsequent flushes of flowers and pods, the recorded yield and 
biomass may be underestimated (Robertson et al., 2002). Canopy 
development is a key process that underpins radiation interception 
and water use by the crop and thus drives yield formation (Chauhan 
and Williams, 2018; Geetika et al., 2022). Canopy development has 
not been quantified for the current varieties of green gram in APSIM 
(Chauhan and Williams, 2018). Chauhan and Williams (2018) 
identified genetic variation in canopy development as a potential area 
to investigate for yield advance.

The yield during the OND season of 2018 was better compared to 
the MAM 2019 and OND 2019 season. The differences in yield, 
biomass and days to maturity were attributed to changes in rainfall 
(Table  2) since temperature remained optimal for production as 
discussed in the preceding section. Table 5 presents the strength of the 
relationship between the observed and modelled varieties of green 
gram. The calibrated green gram model captured the observed yield, 
biomass and days to maturity of the four varieties of green gram 
shown by a coefficient of determination which ranged between 87.0 
and 99.0%; bias values which ranged between 1.3 and 25.3 and levels 
of NRMSE which ranged between 4.7 and 45.5%. The level of 
agreement between the observed and simulated values was good and 
the model was approved for future climate studies.

TABLE 2 Distribution of monthly total rainfall (mm), mean maximum and minimum temperature, and mean solar radiation during the growing season 
when the green gram experiments were conducted at the SEKU farm.

Months Total rainfall 
(mm)

NRD Maximum 
temperature (°C)

Minimum 
temperature (°C)

Radiation MJ m−2 
day−1

Experiment 1 OND 2018

Nov 127.2 11 28.7 18.3 18.2

Dec 171.6 14 27.2 17.7 17.6

Jan 3.5 1 29.0 16.5 19.2

Total/Mean 302.5 26 28.3 17.5 18.3

Experiment 2 MAM 2019

Apr 98.8 10 31.5 20.1 17.5

May 33.8 5 27.5 18.3 15.6

Jun 0.1 0 26.5 17.1 12.1

Jul 0.2 0 27.1 15.7 13.6

Total /Mean 132.9 15 28.2 17.8 14.7

Experiment 3 OND 2019

Oct 381.2 20 27.1 18.2 17.1

Nov 4.4 1 26.6 18.1 17.0

Dec 79.1 8 26.6 18.4 14.6

Total/Mean 464.7 29 26.8 18.2 16.2

NRD denotes the number of rainy days with at Least 0.85 mm of Rainfall.
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3.3. Simulation of the impact of changing 
climate on green gram production

This section presents the results of the effect of changing climate 
on the yield of four green gram varieties (Biashara, Tosha, KS20 
and N26).

3.3.1. Trend analysis of climate parameters
Table 6 presents the results of the trend of climate and simulated 

green gram production parameters during the MAM and OND 
season baseline scenario (1971 to 2000), and the future RCP 4.5 and 
8.5 scenarios (2021 to 2050) climate scenarios. The mean rainfall 
during MAM and OND seasons has been increasing; however, 
statistical significance is only noted under the MAM RCP 4.5 scenario 
and not under the baseline and RCP 8.5 scenarios, which illustrates 
the variable nature of rainfall, meaning we cannot decisively state 
whether rainfall is increasing or decreasing. Rainfall is highly variable 
in the lower eastern region of Kenya and this has had an impact on 

crop production (Shisanya et al., 2011; Omoyo et al., 2015; Ongoma 
et al., 2015).

Maximum temperatures will increase significantly under the 
baseline, RCP 4.5 and RCP 8.5 scenarios during the MAM season, but 
not the OND season which shows a non-significant decreasing trend. 
The minimum temperature will however increase significantly under 
both the RCP 4.5 and RCP 8.5 scenarios for the MAM and OND.

3.3.2. Trend analysis of green gram production 
parameters

This section presents the results on the trend of green gram yield, 
biomass, and days to maturity under future climatic conditions.

3.3.2.1. Trend analysis of green gram yield
Figure 4 presents a boxplot on the effects of climate change on 

green gram yield during the MAM and OND season. The figure shows 
that the OND season is more favourable for green gram production 
compared to the MAM season, and there will be a decline in yield in 

TABLE 3 The genetic coefficients used to model the four varieties of green gram Biashara, Tosha, KS20 and N26.

Green gram Variety

Phenology Source Units Biashara Tosha KS20 N26

Emergence C °C days 95.2 95.2 95.2 95.2

Emergence to end of juvenile phase C °C days 430 430 400 508

Juvenile to floral initiation D Hours 5 5 5 5

Floral initiation to flowering D Hours 25 25 25 25

Flowering to start of grain filling C °C days 206 206 178 205

Start of grain filling to maturity C °C days 313 320 313 304

Start of grain filling to end of grain filling D °C days 30 27.5 25 25.5

C, Calibrated; D, Default.

TABLE 4 Observed (Obs) and simulated (Sim) yield, biomass and number of days to maturity for each green gram variety for the growing season when 
the green gram experiments were conducted.

Variety Yield (kg/ha) Biomass (kg/ha) Days to maturity

Obs Sim % error Obs Sim % error Obs Sim % error

OND 2018

Biashara 1071.2 654 −38.9 1954.3 1738 −11.1 71 65 −8.5

N26 995.8 771.2 −22.6 2773.6 2416.3 −12.9 75 69 −8.0

KS20 798.1 403.6 −49.4 1859.3 1334.7 −28.2 62 60 −3.2

Tosha 854.2 601.6 −29.6 2631.9 1887.7 −28.3 69 65 −5.8

MAM 2019

Biashara 510.5 380.6 −25.4 1405.9 1169.1 −16.8 66 60 −9.1

N26 570.2 409.9 −28.1 1748.6 1491.3 −14.7 70 64 −8.6

KS20 405.4 288.2 −28.9 1615.1 1005.9 −37.7 60 57 −5.0

Tosha 614.6 379.3 −38.3 1558.1 1252.8 −19.6 59 61 +3.4

OND 2019

Biashara 850.4 616.9 −27.5 2080.6 1614.7 −22.4 73 68 −6.8

N26 894.3 611.3 −31.6 2463.5 1911.4 −22.4 77 72 −6.5

KS20 760.2 449.7 −40.8 1994.2 1357.6 −31.9 64 64 0

Tosha 721.8 549.1 −23.9 2503.2 1632.4 −34.8 71 68 −4.2
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the future under the RCP 4.5 and RCP 8.5 climate scenarios during 
both the MAM and OND seasons. Table 7 presents the results of the 
trend of simulated green gram yield during the MAM and OND 
season under the baseline, RCP 4.5 and RCP 8.5 climate scenarios. The 
table shows a decline in yield in the future under the RCP 4.5 and 
RCP 8.5 scenarios. The decreasing trend was statistically significant.

The decline in yield will be larger during the RCP 8.5 scenario in 
comparison to the RCP 4.5 scenario in both MAM and OND seasons. 
This is because the RCP 8.5 scenario represents higher concentrations 
of greenhouse gas emissions leading to higher temperatures when 
compared to the RCP 4.5 scenario. Additionally, the yield is greater 
during the OND season compared to the MAM season since it 
receives more rainfall hence more water for green gram growth and 
development. Shisanya et  al. (2011) correlation analysis between 
rainfall and NDVI showed that the March–May (MAM) season was 
not as dependable as the October–December (OND) season in the 
lower eastern region of Kenya.

High temperatures expected in the future can reduce yield by 
accelerating the shedding of green gram flowers which can lead to the 
loss of potential pods (Hatfield and Prueger, 2015; Kaur et al., 2015). 
High temperatures can also decrease photosynthetic rates, by inducing 
chlorophyll loss and reduced carbon assimilation and fixation (Islam, 
2015; El lateff et al., 2018), thus reducing pod weights and subsequently 
the final yield. Largely, the increased levels of greenhouse emissions 
will favour higher temperatures which could enhance moisture 
evaporation and if conditions are favourable, yield small precipitation 
gains. However, the amount of precipitation received will be highly 
variable and not sufficient to increase green gram production.

3.3.2.2. Trend analysis of green gram biomass
Figure 5 presents a boxplot on the effects of climate change on 

green gram biomass during the MAM and OND season. The figure 
shows that the OND season is more favourable for green gram 
biomass compared to the MAM season, and there will be a decline in 
biomass in the future under the RCP 4.5 and RCP 8.5 climate scenarios 
during both the MAM and OND seasons. Table 8 presents the results 
of the trend of simulated green gram yield during the MAM and OND 
season under the baseline, RCP 4.5 and RCP 8.5 climate scenarios. The 
table shows that the observed decline in biomass in the future under 
the RCP 4.5 and RCP 8.5 scenarios will be statistically significant, the 
decline in biomass is slightly larger during the RCP 8.5 scenario in 
comparison to the RCP 4.5 scenario in both MAM and OND seasons.

The reduction in biomass can be attributed to the increase in 
maximum and minimum temperatures. High temperatures enhance 
the rate of evapotranspiration which may cause a plant to decrease 
its crop growth cycle or wilt and in consequence reduce 
biomass production.

3.3.2.3. Trend analysis of green gram days to maturity
Figure 6 presents a boxplot on the effects of climate change on 

green gram days to maturity during the MAM and OND season. The 
figure shows that the number of days to maturity will be longer during 
the OND season when compared to the MAM season, there will also 
be  a decline in the number of days to maturity of green grams 
scenarios under the RCP 4.5 and RCP 8.5 climate scenarios during 
both the MAM and OND seasons. Table 8 presents the results of the 
trend of simulated green gram days to maturity during the MAM and 

TABLE 5 Results of the strength of the relationship between the observed and modelled green gram varieties based on the coefficient of determination 
(R2) NRMSE, and Bias Tests of skill during the entire experiment season.

Variety R2 NRMSE (%) BIAS

Yield  
(kg/ha)

Biomass 
(kg/ha)

Days to 
maturity

Yield  
(kg/ha)

Biomass 
(kg/ha)

Days to 
maturity

Yield 
 (kg/ha)

Biomass 
(kg/ha)

Days to 
maturity

Biashara 92.6 85.9 99.0 35.3 18.0 8.1 16.1 17.5 2.4

N26 94.9 92.5 99.0 27.8 17.5 7.7 14.9 19.7 2.4

KS20 87.0 91.2 99.3 45.5 32.5 3.4 16.6 24.3 1.3

Tosha 87.8 91.2 92.1 30.5 30.7 4.7 14.8 25.3 1.3

TABLE 6 Time series analysis of climate parameters (total rainfall (mm), maximum and minimum temperature) for the baseline, RCP 4.5 and RCP 8.5 
scenarios during the MAM season.

Baseline RCP 4.5 RCP 8.5

Z Sig Q % Δ M Z Sig Q % Δ M Z Sig Q % Δ M

MAM

Rainfall 1.4 1.6 14.2 298.9 2.5 * 5.7 46.4 318.9 −0.7 −0.8 −5.9 328.5

Maximum Temperature 2.0 * 0.0 1.8 27.1 4.4 *** 0.0 2.1 28.2 4.6 *** 0.0 4.1 28.4

Minimum Temperature 3.5 *** 0.0 3.4 16.2 5.4 *** 0.0 5.3 17.4 5.7 *** 0.0 7.3 17.6

OND

Rainfall 1.0 0.8 6.0 345.3 1.6 2.2 13.7 394.2 1.1 1.7 10.0 400.1

Maximum Temperature −1.6 0.0 −1.3 25.6 −1.6 0.0 −1.0 26.8 1.2 0.0 0.6 27.0

Minimum Temperature 3.5 *** 0.0 4.3 15.9 4.5 *** 0.0 5.9 17.4 6.2 *** 0.1 7.8 17.6

Z denotes the Mann Kendall Statistic, Sig denotes the Level of Significance, Q denotes the Sen’s Slope, and % Δ the percentage of the Sen’s Slope over mean quantity per unit time. 
*** represents significance in trend at α = 0.001, ** represent significance in trend at α = 0.01, * represents significance in trend at α = 0.05, + represents significance in trend at α = 0.1, a blank 
cell means the significance level greater than 10%.
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OND season under the baseline, RCP  4.5 and RCP  8.5 climate 
scenarios. The table shows that the observed decline in the number of 
days to maturity in the future under the RCP  4.5 and RCP  8.5 

scenarios will be statistically significant. Other studies have found that 
an increase in temperature, as expected in the future, can lead to a 
reduction in the number of days required for green grams to mature 

FIGURE 4

The effect of changing climate on the yield (kg/ha) of four green gram varieties (A) Biashara, (B) Tosha, (C) KS20, and (D) N26 during the MAM season in 
red and OND season in blue during the baseline period (1971–2000), RCP 4.5 scenario (2021–2050) and the RCP 8.5 scenario (2021–2050) over the 
study area.

TABLE 7 Time series analysis of green gram yield for the baseline, RCP 4.5 and RCP 8.5 scenarios during the MAM and OND season.

Baseline RCP 4.5 RCP 8.5

Z Sig Q % Δ M Z Sig Q % Δ M Z Sig Q % Δ M

MAM

Biashara −3.3 *** −3.0 −9.2 984.5 −2.0 * −2.2 −8.8 858.1 −5.2 *** −6.0 −25.0 835.6

Tosha −2.4 * −3.0 −9.4 967.0 −2.1 * −2.5 −10.4 785.4 −4.8 *** −5.5 −24.7 759

KS0 −1.9 + −2.9 −11.7 743.5 −2.5 * −1.7 −9.7 683.2 −4.8 *** −4.5 −27.3 668.2

N26 −1.9 + −2.8 −7.2 1154.0 −1.5 −1.9 −6.5 858.1 −4.9 *** −6.3 −22.7 815.9

OND

Biashara −3.0 ** −6.7 −6.9 2923.9 −4.3 *** −9.2 −11.4 2,416 −6.0 *** −14.3 −18.2 2358.8

Tosha −3.1 ** −6.4 −6.2 3,085 −4.3 *** −8.3 −9.8 2532.4 −5.7 *** −15.3 −18.5 2476.9

KS0 −2.9 ** −5.7 −6.9 2484.8 −3.6 *** −7.7 −11.6 1991.5 −5.6 *** −14.3 −22.2 1935.3

N26 −2.4 * −6.2 −4.9 3788.5 −4.5 *** −8.3 −7.9 3153.3 −5.8 *** −16.9 −16.4 3092.9

Z denotes the Mann Kendall Statistic, Sig denotes the level of significance denotes the Sen’s Slope, % Δ the percentage of the Sen’s Slope over mean quantity per unit time, and NA denotes data 
that was not available. 
*** represents significance in trend at α = 0.001, ** represent significance in trend at α = 0.01, * represents significance in trend at α = 0.05, + represents significance in trend at α = 0.1, a blank 
cell means the significance level greater than 10%.
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(Oplinger et al., 1990; Mogotsi, 2006; El lateff et al., 2018). A change 
in temperature by 8–10°C from the optimum can result in a shorter 
phenology period, especially during the vegetative phase leading to 
earlier maturity (Luo, 2011; Hatfield and Prueger, 2015).

4. Conclusions and recommendations

The calibrated green gram model captured the observed yield, 
biomass, and days to maturity of the four varieties of green gram 

FIGURE 5

The effect of changing climate on the biomass (kg/ha) of four green gram varieties (A) Biashara, (B) Tosha, (C) KS20, and (D) N26 during the MAM 
season in red and OND season in blue during the baseline period (1971–2000), RCP 4.5 scenario (2021–2050) and the RCP 8.5 scenario (2021–2050) 
over the study area.

TABLE 8 Time series analysis of green gram biomass for the baseline, RCP 4.5 and RCP 8.5 Scenarios during the MAM and OND season.

Baseline RCP 4.5 RCP 8.5

Z Sig Q % Δ M Z Sig Q % Δ M Z Sig Q % Δ M

MAM

Biashara −3.4 *** −7.6 −8.9 2534.6 −1.8 + −3.2 −4.7 2293.4 −4.9 *** −10.2 −15.6 2260.2

Tosha −3.0 ** −5.6 −9.4 2658.0 −2.1 * −4.1 −5.7 2334.7 −4.8 *** −10.5 −15.3 2303.2

KS0 −2.3 * −5.0 −11.7 2121.2 −2.5 * −4.1 −7.4 2108.3 −4.9 *** −9.8 −18.5 2085.2

N26 −2.3 * −6.4 −7.2 3285.5 −1.5 −4.4 −4.8 2585.6 −4.7 *** −11.2 −12.6 2576.5

OND

Biashara −3.0 ** −6.7 −6.9 2923.9 −4.3 *** −9.2 −11.4 2,416 −6.0 *** −14.3 −18.2 2358.8

Tosha −3.1 ** −6.4 −6.2 3,085 −4.3 *** −8.3 −9.8 2532.4 −5.7 *** −15.3 −18.5 2476.9

KS0 −2.9 ** −5.7 −6.9 2484.8 −3.6 *** −7.7 −11.6 1991.5 −5.6 *** −14.3 −22.2 1935.3

N26 −2.4 * −6.2 −4.9 3788.5 −4.5 *** −8.3 −7.9 3153.3 −5.8 *** −16.9 −16.4 3092.9

Z denotes the Mann Kendall Statistic, Sig denotes the level of significance denotes the Sen’s Slope, % Δ the percentage of the Sen’s Slope over mean quantity per unit time, and NA denotes data 
that was not available. 
*** represents significance in trend at α = 0.001, ** represent significance in trend at α = 0.01, * represents significance in trend at α = 0.05, + represents significance in trend at α = 0.1, a blank 
cell means the significance level greater than 10%.
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TABLE 9 Time series analysis of green gram days to maturity for the baseline, RCP 4.5 and RCP 8.5 scenarios during the MAM and OND season.

Baseline RCP 4.5 RCP 8.5

Z Sig Q % Δ M Z Sig Q % Δ M Z Sig Q % Δ M

MAM

Biashara −3.4 *** −7.6 −8.9 2534.6 −1.8 + −3.2 −4.7 2293.4 −4.9 *** −10.2 −15.6 2260.2

Tosha −3.0 ** −5.6 −9.4 2658.0 −2.1 * −4.1 −5.7 2334.7 −4.8 *** −10.5 −15.3 2303.2

KS0 −2.3 * −5.0 −11.7 2121.2 −2.5 * −4.1 −7.4 2108.3 −4.9 *** −9.8 −18.5 2085.2

N26 −2.3 * −6.4 −7.2 3285.5 −1.5 −4.4 −4.8 2585.6 −4.7 *** −11.2 −12.6 2576.5

OND

Biashara −3.0 ** −6.7 −6.9 2923.9 −4.3 *** −9.2 −11.4 2,416 −6.0 *** −14.3 −18.2 2358.8

Tosha −3.1 ** −6.4 −6.2 3,085 −4.3 *** −8.3 −9.8 2532.4 −5.7 *** −15.3 −18.5 2476.9

KS0 −2.9 ** −5.7 −6.9 2484.8 −3.6 *** −7.7 −11.6 1991.5 −5.6 *** −14.3 −22.2 1935.3

N26 −2.4 * −6.2 −4.9 3788.5 −4.5 *** −8.3 −7.9 3153.3 −5.8 *** −16.9 −16.4 3092.9

Z denotes the Mann Kendall Statistic, Sig denotes the level of significance denotes the Sen’s Slope, % Δ the percentage of the Sen’s Slope over mean quantity per unit time, and NA denotes data 
that was not available. 
*** represents significance in trend at α = 0.001, ** represent significance in trend at α = 0.01, * represents significance in trend at α = 0.05, + represents significance in trend at α = 0.1, a blank 
cell means the significance level greater than 10%.

shown by a coefficient of determination ranging between 87.0 and 
99.0%; bias values between 1.3 and 25.3 and levels of normalized root 
mean square error ranging between 4.7 and 45.5%. The CORDEX 

RCA4 equal weight ensemble model performed best in replicating the 
observed rainfall over Kitui and was used to simulate the effects of 
climate change on green gram production (Table 9).

FIGURE 6

The effect of changing climate on the days to maturity of four green gram varieties (A) Biashara, (B) Tosha, (C) KS20, and (D) N26 during the MAM 
season in red and OND season in blue during the baseline period (1971–2000), RCP 4.5 scenario (2021–2050) and the RCP 8.5 scenario (2021–2050) 
over the study area.
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In the future, during both the RCP  4.5 and RCP  8.5 scenarios, 
rainfall in Kitui is expected to vary appreciably with time while 
temperatures are projected to increase due to the projected rise in 
greenhouse gas emissions. The increase in temperature in the future will 
result in a reduction in days to maturity for green gram production. In 
addition to this, the expected variability in rainfall in the future for Kitui 
will be unfavourable for green gram production possibly leading to 
reduced pod setting and increased biomass production. The increase in 
temperature is more during the RCP 8.5 scenario in comparison to the 
RCP 4.5 scenario. This is because the RCP 8.5 scenario represents higher 
concentrations of greenhouse gas emissions than the RCP 4.5 scenario.

Given that the government aims to revive farming in the ASALs 
by promoting climate-smart agriculture through planting drought-
resistance crops, there is a need to develop green gram varieties which 
are more tolerant to the expected increase in rainfall and temperature 
to increase yield and in turn benefit farmers, the society and the 
country at large.
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