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Introduction: Small-scale farmers in developing countries can significantly contribute

to sustainable food production through market-oriented cooperation (MOC). MOC

allows farmers to access machinery services and specialized labor, but it also carries

economic costs that may impact food production performance in small-scale farms.

This study attempts to uncover the association between farmers’ MOC participation

and food production performance in small-scale farms in rural China, using a sample

of 650 rice farmers in Jiangsu province.

Methods: We applied the stochastic frontier analysis to calculate the technical

e�ciency that indicates the production performance of small-scale farms. The

treatment e�ectmodel is employed to detect the e�ect of farmers’ MOC participation

on technical e�ciency, and themultivalued treatment e�ectsmodel is used to explore

the relationship between farmers’ intensity of MOC and technical e�ciency.

Results: The results show that farmers’ MOC participation significantly increases

technical e�ciency of small-scale farms, with an inverted U-shaped correlation

between MOC participation intensity and technical e�ciency. A heterogeneity

analysis based on production phases reveals that farmers tend to adopt MOC in

machinery-driven phases with higher priority than in labor-driven phases. MOC in

labor-driven phases, such as seedling and spraying, presents negative e�ect on

technical e�ciency.

Discussion: These findings highlight the crucial role of MOC in food production

performance in small-scale farms, and provide insights for designing MOC strategies

in di�erent production phases in order to facilitate sustainable food production in

developing regions. This research addresses the need for solutions to improve food

production sustainability under agricultural transformation in developing countries.

It also touches on the challenges and opportunities that producers face in adopting

new practices and participating in the modern food supply chain.

KEYWORDS

sustainable food production, market-oriented cooperation, e�cient resource utilization,

small-scale farms, food production performance, treatment e�ect model

1. Introduction

Market transactions can boost the economic development of rural areas. However, many

developing countries have a long history of self-sufficient agricultural production based on

small-scale farms. In these countries, agricultural transformation has become increasingly

important for securing the sustainable supply of national food and economic growth. It is

believed that much potential still exists for the improvement of agricultural production efficiency

in developing regions (Henderson and Isaac, 2017). Hence, enhancing efficiency through

the market may contribute to the sustainability of food production. In the context of self-

sufficient production, small-scale farmers usually choose to increase the input of family labor

in agriculture as such labor-intensive cultivation can reduce the explicit labor cost and implicit

supervision cost (Ma et al., 2022). Also, existing constraints may hinder farmers’ integration
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with agricultural markets, such as agricultural credit (Li and Huo,

2021; Rashid, 2021; Chen Z. et al., 2022; Kassouri and Kacou, 2022),

production technology (Yang et al., 2020; Mao et al., 2021; Ruzzante

et al., 2021), and information communication (Yang et al., 2021;

Zheng et al., 2021; Zheng Y. et al., 2022). However, it has been

recognized that farmers’ participation in the agricultural market

can promote a profound transformation of agricultural production,

secure the sustainability of food production, and improve the

livelihoods of small-scale farmers (Barrett, 2008; Liu et al., 2021).

In this study, market-oriented cooperation (MOC) is defined as

the production mode in which farmers seek agricultural machinery

services or employ labor according to their needs at different

production phases. These are fundamental approaches to alleviate the

shortage of agricultural resources in farmer households in developing

countries. With about 0.5 billion small-scale farmers in rural areas,

China has launched a series of agricultural reform initiatives, such

as increasing subsidies for agricultural machinery and promoting

agricultural outsourcing services (Lopez et al., 2017; Zhang et al.,

2017; Mi et al., 2020). Conventionally, Chinese small-scale farmers

cooperate with their relatives or neighbors through social networks

in agricultural production. The cooperation is characterized by

reciprocity among farmer households, and no explicit exchange of

money is involved in the activity. With the enlightenment of market

awareness in rural China, the belief is gaining ground that market

forces make agricultural cooperation easier. Under the high seasonal

requirement for agricultural production, MOC is much more flexible

for farmers to seek labor force or other agricultural resources

through the market. It can be more effective for realizing agricultural

mechanization and reducing sunk costs than farmers’ self-purchased

machinery (Zhou et al., 2020; Zheng H. et al., 2022). Besides, MOC

among farmers is useful to overcome labor shortages caused by

migration and aging problems in rural areas. Farmers’ cooperation

based on the market system has become an essential approach to

achieving agricultural modernization in developing regions.

The effect of farmers’ MOC on the production performance of

farms remains ambiguous. Some argued that MOC exerted a positive

effect on agricultural production performance (Liu et al., 2021; Zhang

et al., 2021), while others insisted on a negative effect (Qiu and

Luo, 2021). Thus, this study attempts to clarify the role of MOC in

sustainable food production, using the case of rice production in rural

China. Different types of MOC were discussed in existing studies,

indicating that agricultural resources can be equipped with market

transactions to facilitate farmers (Zhang et al., 2021). For example,

agricultural machinery services are mainly considered the key to

improving production performance in rural areas (Yang et al., 2013;

Takeshima, 2018; Qing et al., 2019; Qian et al., 2022). However,MOCs

are not facilitated with complete mechanization in all production

phases. The role of labor employment in MOC has not received

enough attention. In China, labor employment has also been one

of the indispensable ways for small-scale farmers to participate in

MOC. Thus, it provides an opportunity to explore the role of MOC in

both labor employment and machinery services. In some production

phases, small-scale farmers can avoid the sunk costs of self-purchased

machinery through MOC (Sheng et al., 2017), but the high cost

of agricultural machinery services is likely to drive smallholders

out of agriculture (Qiu and Luo, 2021). When farmers can employ

laborers in particular production phases through MOC, the tendency

of employees to shirk has reinforced the necessity of supervision

in agricultural production (Eswaran and Kotwal, 1986). Despite the

fact that agricultural market-oriented services can increase return

to scale and agricultural productivity, the opportunism caused by

incomplete contracts can still increase the losses and supervision

costs of farmers’ participation in MOC. These costs caused by the

participating market are regarded as transaction costs (Coase, 1937).

They may restrict access to markets for smallholders and accelerate

poverty (Picazo-Tadeo and Reig-Martínez, 2006). Higher intensity

of MOC based on small-scale farms is likely to result in economic

inefficiency (Shi et al., 2021). Farmers’ high inputs in MOC are not

necessarily translated into high outputs as expected. To sum up,

although MOC can help farmers with a labor shortage and a low

level of mechanization, it makes farmers bear high transaction costs.

Thus, the first objective of this study is to uncover the relationship

between farmers’ participation intensity of MOC and the production

performance of small-scale farms. We employed the multivalued

treatment effect model to evaluate the effect of farmers’ intensity in

MOC on the production performance of small-scale farms (Zhou

and Ma, 2022). IPWRA and AIPW estimators are used to test the

robustness of the estimation results.

To better understand cause and effect between MOC and

production performance, the second objective of this study is to

analyze the heterogeneous effects of MOC in different production

phases. From the perspective of the production phase, rare studies

examined the influence ofMOC in the entire production process (Sun

et al., 2018; Qu et al., 2021). Scholars may get contradictory results

from investigating the impact ofMOC in different production phases.

In certain production phases, farmers can observe the phase progress

and quality easily (e.g., plowing), while employees have rough rides

to implement opportunistic behavior. However, it is not always the

case in different production phases. Evidence suggests that rice yields

are not significantly increased with pest control through MOC (Sun

et al., 2018). In addition, the machinery harvesting service increases

rice farmers’ losses (Wu et al., 2017; Qu et al., 2020), showing a

negative impact of MOC on production performance. Technical

efficiency may be increased due to the high utilization efficiency of

inputs, while it may be reduced due to ineffective inputs, such as the

supervision costs caused by a moral hazard (Henderson and Isaac,

2017). Previous studies have rarely considered the heterogeneity of

MOC in different agricultural production phases. Whether farmers’

preferences for MOC are distinct in different production phases?

What are the effects of MOC in different production phases on

the production performance of small farms? This study attempts to

answer the questions based on the case of rice farmers in rural China.

This study may contribute to the existing literature in the

following aspects. First, different from prior studies, the MOC

covers agricultural mechanization services and labor services in rural

markets. It enables us to elaborate on the effects of distinct types of

market transactions on the food production performance of small-

scale farmers. Second, the possible negative side of MOC has been

rarely considered. The increase in costs in MOC may decrease the

food production performances of small-scale farms. Farmers’ higher

participation intensity in MOC requires higher input costs. It can

be a barrier to food production performance. This study employs a

multivalued treatment effect model (TEM) to analyze the impact of

participation intensity in MOC on the production performance of

small-scale farmers. Third, we conducted a heterogeneous analysis of

the effect of MOC in different production phases. It is conducive to
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TABLE 1 Descriptive statistics of input–output indicators of rice farmers.

Variable Mean Std. dev. Min Max Unit

Ln (yield) 8.724 1.411 5.485 13.567 Ln (catty)

Ln (land) 1.969 1.195 0.182 6.396 Ln (mu)

Ln (labor) 3.801 1.201 0.000 9.131 Ln (days)

Ln (capital) 7.994 1.706 4.808 13.894 Ln (yuan)

Ln (technology) 6.334 2.026 0.000 11.678 Ln (yuan)

1 catty= 0.5 kg, 1 mu=1/15 hectare.

understanding farmers’ preferences for MOC and its association with

food production performances.

The rest of the study is organized as follows. In Section 2, we

introduced the estimation strategies of the study. Section 3 presents

data and descriptive statistics. The empirical results and discussion

are reported in Section 4. We summarized the main conclusions and

put forward recommendations in Section 5.

2. Materials and methods

2.1. Data and descriptive statistics

2.1.1. Data source
The data used in this study were obtained from the China

Land Economic Survey (CLES) conducted by Nanjing Agricultural

University in 2020. The database focuses on the rural land market,

agricultural production, ecological environment, and other contents.

The sampling method was as follows. First, 26 counties were selected

within 13 municipalities in Jiangsu Province by the probability

proportionate to size (PPS) sampling method. Second, two sample

townships were selected from each county, and one administrative

village was selected from each township. Finally, 50 households were

sampled within each administrative village. The database contains

about 2,600 farmers. Among them, rice farmers were selected as the

case of this study because rice is the staple food in China and is grown

by almost all sample farmers. After excluding the missing data, the

valid sample consisted of 650 rice farmer households.

2.1.2. Variables and descriptive analysis
In the study, we used technical efficiency to represent the

production performances of rice farmers. Following the previous

studies (Zheng et al., 2021; DeLay et al., 2022; McFadden et al., 2022;

Tirkaso and Hailu, 2022), we considered the total rice yield of a farm

household as the output indicator and selected four input indicators,

including the following components: (1) Capital, (2) Labor, (3) Land,

and (4) Technology. Specifically, capital includes the cost of seeds,

fertilizers, pesticides, water, electricity, and other expenses. Labor

refers to the effort (days) spent by farmers in rice production. Land

refers to the land area of rice cultivation of each farmer household.

Technology refers to the cost of machinery, including direct use costs

and indirect costs of maintenance. The summary of statistics for

indicators is given in Table 1. It is important to note that farmers

with full MOC in the whole production cycle do not input family

labor or self-purchase machinery for rice production. The zero values

of input indicators, such as labor, cannot be directly logarithmic. All

zero values need to be replaced with one (Ma et al., 2018).

Table 2 presents the definition and descriptive statistics of the

variables in this study. There are two independent variables under

question in this study. The first is farmers’ binary choices of

participation in MOC for rice production. If the household has

adoptedMOC in any agricultural phase, the value of the participation

decision is set to 1, otherwise it is set to 0. The second is farmers’

participation intensity, measured by the number of production

phases in which farmers used MOC. It is a multi-categorical variable

that ranges from 0 to 5 since five production phases (e.g., plowing,

seedling, planting, spraying, and harvest) are considered in this study.

To ensure that the treatment effect model is identifiable, the rural

industry is considered the instrumental variable. The rural industries

in the sample villages include agricultural businesses and other

industries, such as the processing industry and rural tourism. These

industries provide farmers with off-farm employment. This increases

the opportunity cost of rice production for farmer households

and may trigger farmers to quit farming (Qiu and Luo, 2021).

Consequently, it could influence farmers’ willingness to participate in

MOC during rice production. Meanwhile, rural industries generally

have no significant impact on the technical efficiency of rice farms.

The regression results show that rural industry significantly affects

farmers’ participation decisions in MOC at the 5% level (Coefficient

= −0.858∗∗, Prob > chi square = 0.002) but has no significant effect

on the technical efficiency of rice farmers (Coefficient=−0.003, Prob

> chi square = 0.000). It indicates that the selected instrumental

variable is valid in this study.

We also used the socioeconomic characteristics of farmer

households as the control variables. Specifically, we included

individual characteristics of household heads (e.g., gender, age,

education, health condition, training, off-farm work, and risk

preference) and household resources (e.g., family size, income level,

subsidies, land slope, land fertility, farm size, and machinery).

2.2. Estimation strategies

2.2.1. The stochastic frontier analysis
As a critical indicator of production performance, technical

efficiency and its determinants have been widely discussed. We

usually refer to the ratio of observable output to the maximum

realizable output given the actual inputs as technical efficiency

(Hong et al., 2019; Lawin and Tamini, 2019). Therefore, the

utilization efficiency of different MOCs can be reflected by technical

efficiency directly (Zheng et al., 2021). The technical efficiency

can appropriately reflect the extent to which each observation

achieves the feasible production frontier under the given mix of

inputs (Bonfiglio et al., 2020; DeLay et al., 2022). Previous studies

have shown that either the non-parametric method (data envelope

analysis, DEA) (Haq, 2017; Liu et al., 2021; Guth et al., 2022) or

the parametric method (stochastic frontier analysis, SFA) can be

used to measure technical efficiency (e.g., Sabasi et al., 2019; Zheng

et al., 2021; Zhu et al., 2021). In contrast, the SFA model can reduce

the deviation caused by random factors (e.g., natural disasters). It

is also less sensitive to outliers than the DEA model. Therefore,

we employed the SFA model to calculate the technical efficiency of

rice farmers.
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TABLE 2 Descriptive statistics of variables.

Variables Definition and measurement Mean (S.D.)

Dependent variable

TE Technical efficiency of rice production 0.855 (0.106)

Independent variables

Participation decision 1= if household has adopted MOC in any phase, 0= otherwise 0.926 (0.262)

Participation intensity Number of production phases where the household adopted MOC (0, 1, 2, 3, 4, 5) 2.223 (1.222)

Control variables

Gender 1=male, 0= otherwise 0.828 (0.378)

Age Age of household head in years 60.371 (9.906)

Education Number of years of schooling 6.802 (3.645)

Health condition Self-reported health condition (1= incapacity of work, 2= poor, 3=medium, 4= good, 5= excellent) 3.918 (1.063)

Training 1= if farmer has participated in any agricultural training, 0= otherwise 0.338 (0.474)

Off-farm work 1= if farmer participated in off-farm work, 0= otherwise 0.326 (0.469)

Risk preference Farmer’s attitude toward risk (1= prefer high-risk investment, 2= prefer medium-risk investment, 3= prefer less risk investment) 2.697 (0.568)

Family size Number of laborers (at least 6 months at home in a year) in the family 3.457 (1.705)

Income level 1= if farmer household has been registered as a low-income family by government, 0= otherwise 0.080 (0.272)

Subsidies 1= if household has received government subsidies, 0= otherwise 0.951 (0.217)

Land slope 1= Level land, 0= otherwise 0.923 (0.267)

Land fertility 1= poor, 2=medium, 3= good 2.389 (0.619)

Farm size Planting area of rice (mu) 22.975 (68.543)

Machinery 1= if household owns agricultural machinery, 0= otherwise 0.318 (0.466)

Instrument variable

Rural industry 1= if farmer’s village has a rural industry, 0= otherwise 0.169 (0.375)

There are two forms of functions widely used in the SFA model.

One is the Cobb-Douglas production function, which requires fewer

parameters. But this is subject to the assumption of a constant

elasticity of substitution and follows a restriction on constant returns

to scale consumption (Huan et al., 2022). Another is the Translog

production function which can overcome the constraint of the above

assumption. However, it may suffer from a potential multicollinearity

problem. In this regard, following Shahbaz et al. (2022), the two

production functions have been tested in this study, and the results of

the log-likelihood ratio (LR) test show that the Translog production

function is more appropriate.

Based on Ubabukoh and Imai (2022), the logarithm expression of

the Translog production function is as follows:

lnYi = β0 + β1 lnKi + β2 ln Li + β3 lnAi + β4 lnTi + β5(lnKi)
2

+β6(ln Li)
2
+ β7(lnAi)

2
+ β8(lnTi)

2
+ β9 ln(KiLi)+ β10 ln

(KiAi)+ β11 ln(KiTi)+ β12 ln(LiAi)+ β13 ln(LiTi)+ β14 ln

(AiTi)+ (vi − ui)

(1)

Where ln denotes the natural logarithm; the subscript i denotes

the i-th rice farmer; βi is the parameter to be estimated for the input

variables and their interaction terms; Y is the output indicator in this

study, and it represents the total rice yield of farmer i; K, L, A, and

T are all input indicators; K represents the farmer’s capital input; L

represents the farmer’s labor input; A represents the farmer’s land

input; T represents the machinery cost; vi is a random error; ui is

an inefficiency term; and ui ∼ ii dN+(µ, σ 2
u).

The households’ technical efficiency is measured following Lawin

and Tamini (2019), given as follows:

TE =
E(Yi|Ui,Qi)

E(Yi|Ui = 0,Qi)
= exp(−Ui) (2)

Where TE is the technical efficiency of farmer households, Qi

represents the total input of rice production, E ( Yi|Ui,Qi) represents

the expected value of actual output, and E ( Yi|Ui = 0,Qi) denotes

the expected value of the output on the frontier when the technical

inefficiency term ui equals zero.

2.2.2. The treatment e�ect model for estimating
the impact of farmers’ MOC on production
performance

Farmers’ participation decisions in MOC usually depend

on observable characteristics (e.g., age, gender, education level,

family size, farm size, and health condition) and unobservable

characteristics (e.g., farmers’ innate abilities). Their decisions usually

do not follow the principle of random assignment and may cause

self-selection bias among the sample farmers. It is not suitable

to use ordinary least squares (OLS) for empirical estimation.

Thus, some scholars have employed the propensity score matching
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(PSM) method to alleviate the issue (e.g., Yang et al., 2020; Zhang

et al., 2020). However, the PSM model can only address the self-

selection bias introduced by observable variables. Accounting for

both observed and unobserved variables (Cong and Drukker, 2000),

this study uses TEM to eliminate the potential endogeneity problem

and analyze the effect of MOC on the technical efficiency of farmers.

The estimation of TEM involves two stages. The first stage

is referred to as a selection equation. It describes the farmers’

participation decision in MOC in rice production. Following the

principle of randomutilitymaximization, a farmer adopts theMOC if

the random utility obtained through the MOC is greater than that of

the farmers’ non-participation in MOC. Thus, the discrete selection

model can be specified as follows (Ma and Abdulai, 2017):

M∗
i = γ zi + εi,Mi =

{

1, if M∗
i > 0

0, if M∗
i ≤ 0

(3)

Where M∗
i is the latent variable and Mi is its proxy. If M∗

i is

>zero, it means the farmer i participated in MOC, and the Mi value

is 1. Otherwise, Mi equals 0. zi denotes the vector of explanatory

variables, and it includes farmers’ socioeconomic characteristics that

may influence farmers’ participation decisions in MOC. γ is a

parameter to be estimated. εi is a random error term.

The second stage is referred to as an outcome equation. It can be

specified as follows:

Ti = αXi + δMi + ϕi (4)

Where the dependent variable Ti refers to the technical efficiency

of rice farmers, α and δ are parameters to be estimated, and ϕi is

a random error term. Xi is a vector of control variables that are

expected to influence technical efficiency.

Based on Equations (3) and (4), we can figure out the

association between MOC and technical efficiency. Further, the

average treatment effect (ATE) can be used to accurately calculate

the difference in technical efficiency between participants and non-

participants in MOC. The formula is given as follows:

ATE = E(Ti|Mi = 1)− E(Ti|Mi = 0) (5)

Where E(Ti) represents the expected technical efficiency of the

two groups.

2.2.3. The multivalued treatment e�ect model for
exploring the e�ect of farmers’ participation
intensity of MOC on production performance

We used the multivalued treatment effect (MTE) model

to estimate the average treatment effects of farmers’ different

participation intensities in MOC on the technical efficiency of their

rice farms. Following Ma et al. (2021), the random vector Zi =

(Yi,Ti,Xi) can be observed for each sample farmer household i (i =

1, 2, . . . , N). Yi denotes a vector of the outcome variable technical

efficiency, Ti represents a multivalued treatment variable of the

farmers’ participation intensity, and Xi is a vector of a farmer’s socio-

economic characteristics. Dit (Ti) denotes that farmer i received the

treatment t, and it can be defined (Ma and Abdulai, 2017) as follows:

Dit(Ti) =

{

1, if Ti = t

0, otherwise
(6)

In particular, the outcome variable Yit contains a set of potential

outcomes (Yi1, . . . , Yit , . . . , YiJ). But only one outcome Yi can

be realized by an individual farmer’s household in each period.

Following Issahaku and Abdulai (2020), Yi can be expressed

as follows:

Yi =

J
∑

t=0

Dit(Ti)Yit (7)

Given that the difference between two potential outcomes is

the treatment effect (τ ), the treatment effect between two distinct

treatment levels (m and k) can be expressed as follows:

τ = E [Yim − Yin] , ∀m, n ∈ J (8)

Given the fact that rice farmers can only choose the intensity

of participation in MOC during each complete rice production

cycle, only Yim or Yin can be observed for an individual farmer’s

household i. Thus, we cannot identify the treatment effect defined

in Equation (8) without further assumptions (Ma et al., 2018;

Issahaku and Abdulai, 2020). To eliminate the non-randomness of

participation intensity, the MTE model is established on the basis of

two assumptions, namely, the conditional independence assumption

(CIA) and the overlap assumption (Cattaneo, 2010; Ma et al., 2018).

We controlled for observable pretreatment characteristics as

much as possible to meet the CIA assumption. It implies that the

farmer’s choice of participation intensity can be regarded as a random

assignment (Issahaku and Abdulai, 2020). The overlap assumption

can be tested by the density plots of the generalized propensity scores

(GPS) estimated from the multinomial Logit model (Cattaneo et al.,

2013). It ensures that each covariate Xi has a positive probability and

satisfies the following conditions:

0 < Pr [Ti = t|Xi = x] (9)

Based on the above assumptions, we can guarantee the

independence of each farmer at t level from other individuals

and calculate the conditional expected potential outcome for each

participation intensity. Thus, the conditional expectations under the

participation intensities m and n can be specified (Ma et al., 2021)

as follows:

E [Yim|Xi] = E [Yi|Ti = m,Xi] = β0m + X′
mβ1m (10)

E [Yin|Xi] = E [Yi|Ti = n,Xi] = β0n + X′
nβ1n (11)
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Then, the augmented inverse probability weighting (AIPW)

estimator is used to calculate the average treatment effects, and

an inverse probability weighted regression adjustment (IPWRA)

estimator is used to check the robustness of the results. The two

estimators are doubly robust (Linden et al., 2016), and the average

treatment effect can be estimated as follows:

ATEmn = 1
U (E [Yim|Xi]− E [Yin|Xi]) =

1
U

[

U
∑

i=1
(β0m − β0n)+

U
∑

i=1
X′
i(β1m − β1n)

]

= (β0m − β0n)+
1
U

U
∑

i=1
X′
i(β1m − β1n)

(12)

Where U refers to the number of samples with the treatment

Ti = m and Ti = n. β0i and β1i are vectors of parameters.

3. Results and discussion

3.1. The production performance of rice
farmers

In this study, the technical efficiency of rice farmers is estimated

only for one period, so the production function contains no time

variable t. In this regard, an LR test statistic is required, and it consists

of two steps. The first step is to test the applicability of the SFA model

(Liu et al., 2020), and the null hypothesis is H0 : γ = 0. If the null

hypothesis is rejected by the test results, it indicates that the SFA

model is more applicable than the DEA model. The second step is to

verify which production function form is better suited to the model.

The null hypothesis of the Cobb–Douglas function (H0) is that the

coefficients of the input variables and their interaction terms are zero.

The alternative hypothesis (H1) represents the Translog function.

The more appropriate model can also be identified by comparing the

results of the LR tests.

Based on the above hypothesis of the SFA model, the results

contribute to revealing the applicability of themodels and production

function forms. In particular, the coefficient γ in Translog form is

equal to 0.947 and is significant at the 1% level. Meanwhile, the result

of the LR test is 149.175, which is greater than the critical value of

the mixed chi-square distribution at the 1% level, x21−0.01 (2) = 8.273.

These findings show that the first hypothesis H0 : γ = 0 is rejected,

indicating that the SFA model is more suitable than the DEA model.

In terms of the second LR test that cannot be directly observed,

we calculated the result by log-likelihood. The log-likelihood in the

Translog function is 168.447, and for the Cobb–Douglas function, it

is 59.126. The result also rejects the second hypothesis, suggesting

that the Translog function is more appropriate than the Cobb–

Douglas function (LR = −2 ×
[

ln L (H0) − ln L (H1)
]

= −2 ×

[59.126− 168.447] = 218.642 > χ2
1−0.01 (2) = 8.273).

Table 3 shows the estimated technical efficiency of rice farmers

based on the Translog function. The technical efficiency of overall

samples ranges from 0.273 to 0.979. The average technical efficiency

of MOC participants and non-participants is 0.855 and 0.846,

respectively, indicating that MOC may play a positive role in

improving technical efficiency. The minimum score of technical

efficiency among MOC participants (0.273) is not as high as that of

non-participants (0.437). It may be attributed to the negative effect

of the overuse of MOC in agricultural production by small-scale

TABLE 3 Description of rice farmer’s technical e�ciency.

Mean Std. dev. Min Max Observations

Participants 0.855 0.105 0.273 0.979 602

Non-

participants

0.846 0.121 0.437 0.955 48

All 0.855 0.106 0.273 0.979 650

TABLE 4 Estimation results of the treatment e�ect model.

Variable Selection
equation

Outcome
equation

Gender −0.325 (0.227) 0.032∗∗∗ (0.012)

Age −0.010 (0.009) 0.000 (0.000)

Education −0.003 (0.022) 0.002∗ (0.001)

Health condition −0.168∗∗ (0.075) 0.002 (0.004)

Training −0.056 (0.154) 0.011 (0.010)

Off-farm work 0.365∗∗ (0.181) −0.014 (0.010)

Risk preference 0.037 (0.123) −0.006 (0.008)

Family size 0.048 (0.044) −0.007∗∗∗ (0.003)

Low-income households 0.011 (0.273) −0.023 (0.016)

Subsidies −0.630 (0.492) −0.003 (0.020)

Land slope −0.251 (0.300) 0.022 (0.016)

Land fertility −0.050 (0.117) 0.021∗∗∗ (0.007)

Farm size −0.002∗ (0.001) 0.000∗ (0.000)

Farm machinery −0.259 (0.159) 0.022∗∗ (0.010)

Rural industry −0.435∗∗∗ (0.147) –

MOC – 0.182∗∗∗ (0.017)

Constant 3.724∗∗∗ (0.991) 0.586∗∗∗ (0.055)

ath (ρ) – −1.041∗∗∗ (0.110)

ln (σ) – −2.209∗∗∗ (0.031)

Wald chi2 – 157.210∗∗∗

Log-likelihood – 418.992

LR test of indep. eqns. – 24.55∗∗∗

Observations 650 650

The standard deviation is given in parentheses.
∗∗∗Indicates p < 0.01; ∗∗indicates p < 0.05; ∗indicates p < 0.10.

farmers. Technical efficiencymay be decreased by the excessive inputs

of MOC in small farms in developing regions. However, the potential

heterogeneous effect of MOC on technical efficiency needs to be

explored in later sections.

3.2. Determinants of farmers’ participation in
MOC

The results in Table 4 show that the coefficient of residual

correlation ath (ρ) is significant with a negative sign, suggesting that

the selection bias caused by observable and unobservable factors
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exists in the sample (Manda et al., 2016; Ma and Abdulai, 2017). The

effect of MOC on technical efficiency would be underestimated if the

selection bias was not considered. The result of the Wald test also

significantly rejects the null hypothesis that the MOC is exogenous

(Ma et al., 2018). Therefore, TEM is appropriate to present a more

solid estimation of the effect of MOC on the technical efficiency of

rice farmers.

The determinants of MOC estimated by the selection equation

are listed in the second column of Table 4. The coefficient of farmers’

health condition is significant with a negative sign, suggesting that

farmers with better health conditions have less participation in

MOC. Farmer’s poor health conditions would worsen farm labor

shortage for agricultural production, and MOC can be adopted as

an alternative solution. Similarly, off-farm work also has a significant

positive effect on farmers’ MOC, indicating that families with off-

farm employment are more likely to participate inMOC. This finding

is consistent with that of Zheng H. et al. (2022). The income obtained

from off-farm work can enable farmers to purchase more services in

agriculture. Farm size shows a significant negative impact on farmers

adoptingMOC. Farmers with larger farms have a lower probability of

participating in MOC. The possible explanation is that these farmers

are more likely to purchase agricultural machinery and hire long-

term laborers rather than adopt MOC (Qiu and Luo, 2021). The

coefficient of the rural industry is significant and negative at the 1%

level, and the instrument variable is valid.

3.3. The impact of MOC on production
performance

The third column of Table 4 presents the influence of factors

on the technical efficiency of rice farmers. The results show

that MOC has a statistically significant and positive impact on

farmers’ technical efficiency. It indicates that the adoption of MOC

can enable farmers to achieve higher technical efficiency in rice

production. The development of agricultural markets can realize the

effective allocation of economic resources (e.g., labor and agricultural

machinery), especially for small-scale farmers with a shortage of

agricultural resources in developing countries.

Regarding the farmers’ individual characteristics, gender and

education exert a statistically significant and positive influence

on technical efficiency. The coefficient of the gender variable

implies that male-headed farmers are better at improving technical

efficiency than female-headed farmers. Danso-Abbeam et al. (2020)

also revealed the impact of gender on technical efficiency in

Ghanaian cocoa farms. They attributed these efficiency variances

to differences in farmers’ resource endowments. The coefficient of

the education variable suggests that higher education levels have

a positive impact on farmers’ technical efficiency. Existing studies

have shown that better education can help farmers learn new

technologies and exchange information (Ruzzante et al., 2021; Zhu

et al., 2021).

With respect to household characteristics, the variable of family

size exerts a negative and statistically significant impact on technical

efficiency. This finding is in line with Zheng et al. (2021), who

attributed this correlation to family composition. The quantity of the

labor force is not equal to the size of the family, which may include

many non-workers such as the elderly or children.

TABLE 5 Average treatment e�ects of MOC on technical e�ciency.

Participant Non-
participant

ATE Percentage

Technical

efficiency

0.852 (0.001) 0.846 (0.001) 0.006∗∗∗

(0.001)

0.709%

The standard deviation is given in parentheses.
∗∗∗Indicates p < 0.01.

Land fertility, farm size, and farm machinery are statistically

significant with a positive sign. First, land fertility can improve

technical efficiency by increasing output per unit (Al-Amin et al.,

2016). Second, a potential pathway for the impact of the land area

could be the reduction of inputs and losses per unit area through

large-scale production (Liu et al., 2019). Finally, the finding of

the land machinery variable is consistent with Shi et al. (2021),

who verified that purchasing agricultural machinery is good for the

technical efficiency of agricultural production.

3.4. Average treatment e�ect of MOC

We calculated the average treatment effect (ATE) of MOC based

on the estimated results of the selection equation and outcome

equation. The ATE represents the difference in technical efficiency

between farmers with and without MOC in rice production. The

results of ATE are presented in Table 5. The statistically positive and

significant coefficient of ATE indicates that farmers’ participation

in MOC can increase the technical efficiency of their farms. Thus,

purchasing production services through the agricultural market is

effective to improve the food production performances of small-scale

farmers in developing countries (Qiu and Luo, 2021; Chen T. et al.,

2022).

Table 6 presents the results of the treatment effects of

participation intensity on technical efficiency estimated by the

AIPW estimator. For a straightforward interpretation of the

coefficient estimates, we also calculated the percentage of change in

ATE (Ma et al., 2021).

The results indicate that the adoption of MOC with intensities

ranging from 1 to 5 can significantly increase farmers’ technical

efficiency compared with non-participants. Interestingly, the effect

of MOC on technical efficiency does not increase continuously as

farmers’ participation intensity increases but shows a downward

trend after rising initially. In other words, farmers’ participation

intensity in MOC on technical efficiency presents an inverted U-

shaped effect. Technical efficiency peaks when the participation

intensity in MOC is 3, indicating farmers who adopt MOC in three

production phases have optimal technical efficiency on their farms.

However, the declining trend in the effect of MOC on technical

efficiency after the peak is much weaker than the upward trend

before it. In other words, although the technical efficiency of farmers

whose participation intensity is greater than three production phases

decreases, it is still higher than that of farmers who adopt MOC only

in one or two phases.

The possible insights can be explored with respect to this finding.

First, farmers need to adhere to participation in MOC because

the results confirm the substantial benefits of technical efficiency

associated with MOC. Second, it is necessary for farmers to consider
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TABLE 6 ATE results (AIPW estimator).

ATE estimates Percentage change in ATE

From 0 to n Coe�cients z-value Coe�cients z-value

From 0 to 1 0.035∗∗ (0.017) 2.14 0.044∗∗ (0.021) 2.09

From 0 to 2 0.042∗∗∗ (0.014) 3.10 0.052∗∗∗ (0.017) 2.98

From 0 to 3 0.056∗∗∗ (0.013) 4.18 0.069∗∗∗ (0.017) 3.97

From 0 to 4 0.051∗∗∗ (0.015) 3.40 0.063∗∗∗ (0.019) 3.27

From 0 to 5 0.047∗∗∗ (0.015) 3.11 0.058∗∗∗ (0.019) 3.01

The standard deviation is given in parentheses.
∗∗∗Indicates p < 0.01; ∗∗indicates p < 0.05.

TABLE 7 ATE results (IPWRA estimator).

ATE estimates Percentage
change in ATE

From
0 to n

Coe�cients z-value Coe�cients z-
value

From 0 to

1

0.036∗∗ (0.016) 2.27 0.044∗∗ (0.020) 2.23

From 0 to

2

0.044∗∗∗ (0.013) 3.46 0.054∗∗∗ (0.016) 3.33

From 0 to

3

0.057∗∗∗ (0.012) 4.66 0.071∗∗∗ (0.016) 4.42

From 0 to

4

0.055∗∗∗ (0.014) 3.91 0.067∗∗∗ (0.018) 3.75

From 0 to

5

0.049∗∗∗ (0.013) 3.86 0.061∗∗∗ (0.016) 3.70

The standard deviation is given in parentheses. ∗∗∗Indicates p < 0.01; ∗∗indicates p < 0.05.

the appropriate participation intensity of MOC in their practices.

Excessive costs invested in a small-scale farm may result in allocative

inefficiency and diseconomies of scale (Shi et al., 2021), particularly

in developing regions.

3.5. Robustness check of the impact of MOC
intensity on production performance

Table 7 presents the results of the IPWRA estimator. It shows

that farmers who move from 0 to n participation intensity in MOC

have positive associations with ATE. The ATE peaked at degree 3

and presents an inverted U-shaped effect. The percentage of change

in ATE is similar to the results presented in Table 5. Hence, the

estimated results of the previous model are robust. There are no

biased estimates caused by the misspecified model (Linden et al.,

2016; Ma and Abdulai, 2017).

4. Heterogeneous e�ects in production
phases

To better understand the inverted U-shaped effect of

participation intensity in MOC on technical efficiency, this

study attempts to explain it from two perspectives: the attributes

FIGURE 1

The classification of production phases.

FIGURE 2

Percentage of farmers with di�erent participation intensities of MOC.

of different production phases and the resource endowment of

farmer households.

It has been noted that farmers’ decisions about purchasing

services are deeply influenced by the type of each production

phase. As highlighted in previous studies (Qiu and Luo, 2021; Qian

et al., 2022) the production phases can be divided into “labor-

intensive,” “capital-intensive,” and “technology-intensive” according

to their attributes. For simplification, we classified the production

phases into “machinery-driven” and “labor-driven” phases based

on the difference in demand for labor or machinery in each

phase. Figure 1 shows the categories of the five production phases.
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FIGURE 3

The percentage of MOC of each phase at di�erent degrees.

Specifically, plowing and harvesting are classified as machinery-

driven phases, while seedling, planting, and spraying can be seen as

labor-driven phases.

We presented two figures for analyzing the heterogeneous effects.

Figure 2 shows the percentages of farmers with different participation

intensities in MOC. The percentages of MOC in each phase at

different participation intensities are given in Figure 3.

As presented in Tables 6, 7, the value of ATE continued to

increase in participation intensity from 0 to 1 and then to 2. This

process of changing the intensity of MOC covered nearly 56% of the

sample farmers in Figure 2. Meanwhile, corresponding to intensity

2 in Figure 3, 97.9% of farmers in this period adopted MOC for

harvesting, and 88.1% of farmers purchased plowing services through

themarket. The descriptive statistics imply that rice farmers preferred

MOC in machinery-driven phases.

The possible explanations can be put forward in this study.

First, in terms of production phases, the harvesting and plowing

services of the market are characterized by higher mechanization

and lower supervision costs (Qing et al., 2019; Qian et al., 2022).

Purchasing machinery services can contribute to improving technical

efficiency by reducing labor input (Wang et al., 2020). Second,

from the perspective of resource endowment of farmer households,

MOC is much less expensive than purchasing agricultural machinery

and learning how to use it for farmers. Table 8 presents that the

proportion of self-owned machinery ranges from 3.846 to 28.462%.

The low percentage implies that the majority of farmers have to

rely on alternative solutions (e.g., purchasing machinery services or

investing more labor effort) in the production phases. The estimation

of mean difference analysis also shows that farmers who have

purchased agricultural machinery are farmers with larger farms (Qian

et al., 2022). Hence, the adoption of MOC in machinery-driven

phases can be an economic choice, especially for small-scale farmers

who usually cannot afford the machinery.

As shown in Figure 3, the proportion of MOC in the planting

phase has increased from 6.780% with intensity 2 to 80.303% with

intensity 3. According to the prior results, the technical efficiency is

highest when farmers adopt MOC in three production phases. Thus,

the MOC in planting plays a crucial role in farmers’ improvement of

technical efficiency.

Rice farmers prefer MOC in the harvesting and plowing stages

than in the planting stage, which is usually labor-driven in rural

China. Labor shortage appears in the planting phase of rice

production. The increasing labor costs in rural China and the

difficulty in the supervision of pure labor efforts may account for this

(Wang et al., 2016). In the same sense, the MOC was introduced later

by farmers in labor-driven phases than in machinery-driven phases.

However, the role ofMOC in increasing technical efficiency cannot be

ignored. The increase in technical efficiency in the process of planting

can be attributed to three aspects. First, this finding suggests that

the marginal effect of labor costs on technical efficiency has not yet

exceeded that of the output created by purchased services. Second, the

planting service can compensate for the constraint of a labor crunch

on agricultural production. Under the high seasonal requirements of

the planting phase, the planting service can help farmers complete the

work in a short period and mitigate the impact of extreme weather

on agriculture (Javed et al., 2020; Ogunleye et al., 2021). Third, the

specialized planting team in rural areas enables farmers to avoid

frequent searches for individual employees and save transaction costs

(e.g., information costs), thus improving the technical efficiency of

food production.

Figure 3 also displays the trend of adoption of MOC in the

seedling and spraying phases. As labor-driven phases, they present an

obviously low rate of MOC until the participation intensity reaches

4. According to the prior results, when farmers used MOC in these

phases, the technical efficiency showed a declining trend. The possible

reasons are as follows: First, the seedling and spraying services lead

to higher supervision costs. The coefficient of the spraying phase

in Table 9 is negative, suggesting that the adoption of MOC in

the spraying phase would decrease the technical efficiency of rice

farmers. Second, among households with 4 or 5 intensities, the input

of family labor in agriculture is relatively small. In these farmer

households, agriculture may not be the primary source of income.

Family members can be engaged in off-farm work when they have

adopted MOC in full production phases. The management of their

farms becomes more extensive, thus reducing technical efficiency (Xu

et al., 2019).

5. Conclusions and policy implications

The MOC is beneficial for small-scale farmers to overcome

resource constraints and promote sustainable food production in

developing countries. The shortage of agricultural resources in

these areas may encourage farmers to develop market transactions.

We attempted to assess the impact of MOC on the production

performance of rice farmers in China, using the treatment effect

model and multivalued treatment effect model based on the 2020

CLES database.

There are three main findings that can be drawn from this

study: First, the MOC imposes a positive effect on the technical

efficiency of small-scale farms in developing countries such as China.

Farmers’ participation in MOC can increase the technical efficiency

of small-scale farms by 0.709%. Second, the relationship between the

intensity of MOC and technical efficiency resembles an inverted U-

shaped effect rather than a simple linear relationship. Specifically,

when farmers’ participation intensity does not exceed critical point

3, technical efficiency increases as the intensity does. Otherwise,

technical efficiency decreases if the intensity increases after the critical

point. The downward trend in technical efficiency after the peak is

considerably weaker than the upward trend before it. Third, theMOC
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TABLE 8 Use of agricultural machinery.

Harvester Cultivator Transplanter Tractor Truck

Percentage 5.692% 12.769% 5.692% 28.462% 3.846%

Mean (Yes) 140.946 101.456 166.676 55.092 211.888

Mean (No) 17.145 10.349 14.444 8.756 15.679

Difference 123.801∗∗∗ 91.107∗∗∗ 152.231∗∗∗ 46.335∗∗∗ 196.209∗∗∗

The farm size of small-scale farmers is <50 mu (1 mu= 1/15 ha).
∗∗∗Indicates p < 0.01.

TABLE 9 Impacts of MOC on technical e�ciency (each production phase).

TE (tobit model)

Coe�cient Std. err. Prob > chi2 Log-likelihood Control variables

Harvest 0.025∗ 0.013 0.000 560.460 Added

Plowing 0.005 0.010 0.000 558.777 Added

Planting 0.018∗∗ 0.009 0.000 560.957 Added

Seedling 0.012 0.010 0.000 559.342 Added

Spraying −0.001 0.013 0.000 558.667 Added

∗∗Indicates p < 0.05; ∗indicates p < 0.10.

among farmers has a heterogeneous effect in different production

phases. Most farmers preferMOC inmachinery-driven phases, which

are easier to supervise, than labor-driven phases such as planting.

There are distinct impacts of MOC in different production phases on

the technical efficiency of small-scale farms. Specifically, the adoption

of MOC in harvesting, plowing, or planting has a positive effect on

the technical efficiency of their farms, while the adoption of MOC

in seedling and spraying presents a negative effect on the technical

efficiency of their farms.

Several implications can be considered based on the findings

of this study. First, policymakers are suggested to employ various

channels to enhance the organization of smallholders, in order to

stimulate farmers’ willingness to participate in MOC. The high cost

may decrease farmers’ adoption of MOC. Through rural cooperatives

or farmers’ social networks, the government can organize farmers

to participate intensively in MOC. It can help to reduce production

cooperation costs, attract participants to provide production services

and achieve the sustainable development of food production. Second,

policymakers and stakeholders may take care of the negative effect of

MOC on the production performance of small-scale farms. Excessive

participation in theMOC of small-scale farmersmay reduce technical

efficiency in agricultural production. Thus, it affects the sustainability

of food production. However, the government can promote land

transfer among these farmers, achieve large-scale operation of land

resources, and improve the effect of MOC through economies

of scale. Third, policymakers can enhance machinery subsidies to

promote MOC in machinery-driven production phases, since the

use of machinery reduces supervision costs in agriculture. It can

guarantee the sustainability of farmers’ consumption by reducing

their production inputs. In the same sense, the investment in

R&D of machinery that is applicable for small-scale farms can be

supported, in order to transform the existing labor-based MOCs with

advanced machinery.

This study detected the impact of farmers’ MOC on their food

production performance. However, there are still limitations. First,

this study examined the case of rice farmers in China’s Jiangsu

Province. The findings should be prudently extended to other crops

and other regions with different resource endowments. Second,

the cross-sectional data employed in this study only focus on the

short-term effects of MOC on agricultural production performance.

Further studies should be conducted with a panel dataset and

investigate the impact of farmers’ MOC in multiple factor markets

on sustainable agricultural production.
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