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Introduction: Efficiency in food production is crucial for sustainable agriculture 
in developing countries. This paper contributes to the existing literature by 
presenting an innovative approach to modeling productive efficiency in beef 
cattle production. Treating farm performance across regions as unobserved 
heterogeneity, we determine technical efficiency of beef cattle production in 
Botswana. We aim to shed light on the factors influencing efficiency in this sector.

Methods: The study utilized block-level data from various annual agricultural 
surveys (2006–2014) covering 26 agricultural districts and six agro-ecological 
regions in Botswana. We employed a latent class stochastic frontier model 
complemented with the stochastic meta-frontier analysis.

Results: Results show that the best performing farming systems in terms of 
efficiency are districts with well-developed infrastructure and better access to 
output and input markets. In contrast, the farming systems that perform poorly 
consist of agricultural districts without access to livestock advisory centers, with 
higher average temperatures and foot and mouth disease, limiting access to 
export markets. The mean technical efficiency scores for beef production for 
agricultural districts in class one and two were 62 and 59%, respectively, implying 
high potential to improve beef production using the same level of agricultural 
inputs through efficiency-enhancing investments.

Discussion: Based on our results, it is crucial for agricultural policies to prioritize 
regionally specific investments that address the needs of the under-performing 
districts. By targeting the lagging districts, policymakers can help beef producers 
improve their input efficiency and bridge the technological gaps to the meta-
frontier. This can be achieved through investments in infrastructure, access to 
livestock advisory services, and disease control measures. Such efforts will not 
only enhance the efficiency of beef production but also contribute to the overall 
sustainability of the agricultural sector in Botswana.
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1. Introduction

With the goal of improving the productive efficiency of beef cattle 
production in developing countries and advancing the way efficiency can 
be  modeled in empirical research, we  present a latent class (finite 
mixture) stochastic meta-frontier analysis of beef cattle production in 
Botswana. Our objective is to examine technological heterogeneity and 
technical efficiency differences amongst beef cattle producing districts 
over time in the context of a developing country. Botswana is one of the 
few sub-Saharan African (SSA) countries that export beef to high-value 
markets such as the European Union. Livestock production plays a vital 
role in the rural economy and development of the country as a source of 
food, income, employment, and investment opportunities for most rural 
dwellers (van Engelen et al., 2013; Statistics Botswana, 2015). In 2019, the 
livestock sector contributed about 45% of the value-added in the 
agricultural sector while agriculture contributed 2.1% of the economy’s 
value added (Statistics Botswana, 2022). In addition, beef is the only 
contributor to foreign exchange earnings from the livestock sector. 
Therefore, understanding Botswana’s technical efficiency of the beef 
cattle production systems and its drivers could be vital to the future 
orientation of Botswana’s and similar countries’ livestock industries, rural 
economies, and associated policy targeting.

Considering the above, this paper makes the following contribution 
to the literature. We exploit the observed heterogeneity of beef farms to 
identify technologies endogenously, measure their efficiency, and 
determine their sources and drivers. We  adopt a latent class model 
(LCM) that combines a stochastic frontier approach (SFA) with a latent 
class structure. Unlike the approach used by previous researchers on a 
similar subject (e.g., Bahta et al., 2015; Temoso et al., 2015b), whereby a 
precise prior classification of farms is not made, farms are clustered 
according to differences in production technology. In fact, previous 
studies used farm management data bases which may not capture well 
the observable characteristics of farm (Besstremyannaya, 2011). Thus, 
our motivation to using a latent class stochastic frontier analysis stems 
from the fact that a LCM simultaneously identifies potentially 
unobservable technological differences and measures technical efficiency 
thereby providing management aspects that distinguish the most 
efficient location from the least efficient location.

While the use of the latent class stochastic frontier model (LCSFM) 
has proven useful in studying selected agricultural sectors, e.g., dairy 
farms (Alvarez and del Corral, 2010; Alvarez et al., 2012; Orea et al., 
2015); and crops (Baráth and Fertő, 2015), its empirical application to the 
beef cattle sector is, to date, limited to a few studies (Martinez-Cillero 
et al., 2019; Dakpo et al., 2021). Martinez-Cillero et al. (2019) used the 
approach to evaluate the technical efficiency and technological 
heterogeneity of Irish beef farms, whilst Dakpo et al. (2021) measured 
the productivity of intensive and extensive grazing livestock farming 
systems in France. All these studies have concluded that if unobserved 
technology heterogeneity is not accounted for to model technical 
efficiency, results may be biased and the policy implications from those 
studies would be misleading. We build on this literature by applying the 
LCSFM methods to the beef sector in Botswana to provide an empirical 
evidence basis to inform policy design for Botswana and other 
developing countries whose beef sectors are their economic and social 
development mainstay.

The livestock sector in developing countries is an excellent example 
where efficiency of livestock production is under-researched despite 
being an important agricultural sector that contributes considerably to 
their economies. Apart from being under-researched, a few studies that 

estimate the technical efficiency of livestock production systems 
generally assume farms operate under a homogeneous technology. 
However, as shown by previous studies (e.g., Alvarez and del Corral, 
2010; Alvarez et al., 2012; Baráth and Fertő, 2015; Orea et al., 2015; 
Martinez-Cillero et al., 2019; Dakpo et al., 2021), assuming homogenous 
technology may lead to unreliable technical efficiency, productivity 
estimates, and policy recommendations.

Moreover, technical efficiency analysis of beef cattle production 
matters because agricultural policy in most countries like Botswana 
favors the livestock sector, especially beef, at the expense of crop 
production (Bahta and Malope, 2014; Temoso et al., 2015a). Botswana’s 
previous government initiatives include the Livestock Management and 
Infrastructure Development (LIMID) program, which promotes food 
security through improved productivity of cattle, small stock, and 
poultry [Ministry of Agriculture (MoA), 2010]; and the International 
Livestock Research Institute’s (ILRI) project.1 The ILRI project identified 
factors affecting the productivity of smallholder livestock farms and 
assessed their competitiveness and conditions for market participation 
and value addition (Bahta et  al., 2013). International support to 
Botswana’s livestock sector includes international development agencies 
(e.g., The World Bank, 2016) and international development researchers 
(e.g., ILRI, the Australian Centre for International Agricultural 
Research). However, despite receiving key public policy support, most of 
the funds and human resources allocated to the livestock sector are 
directed mainly to monitoring disease outbreaks, conducting vaccination 
campaigns, and implementing the traceability system (LITS)2 (Bahta and 
Malope, 2014; Bahta et al., 2015). The remaining funds are spent on 
management advances that might boost productivity, such as improving 
input quality and allocation, technology adoption, training, and 
enhancing production efficiency and market access (Sigwele and 
Orlowski, 2015; Temoso et al., 2018).

Notwithstanding these efforts, scientific evidence suggests that the 
productive performance of beef cattle farms in developing countries 
(e.g., Botswana, Ghana, Kenya, and Zambia) is declining, with 
negative consequences on income and gross domestic products 
(Temoso et al., 2015b, 2018; Manyeki, 2020; Ankrah and Jiang, 2021; 
Odubote, 2022). For example, in Botswana, over the previous years, 
both off-take and birth rates remained below 10% except in 2013 and 
2014, when the birth rate rose to 12.9 and 12.4%, respectively 
(Statistics Botswana, 2019). These findings suggest that there is 
potential to improve the performance of beef cattle in the traditional 
sector by scaling up both birth rates and off-take rates and reducing 
mortality rates. Beef productivity has been affected by various factors: 
recurring droughts; endemic animal diseases; biological inefficiencies 
(low birth rates and high mortality rates); inefficient operation of 
farms; slow adoption of improved breeding; and ineffective feeding 
approaches in the Botswana environment (van Engelen et al., 2013; 
Bahta and Baker, 2015; Temoso et al., 2015b; Statistics Botswana, 2019).

Scaling-up beef farmers’ performance may require identifying the 
unobserved technological differences between regions to fully effective 
policy targeting. Therefore, as part of our contribution to the literature, 
we build on the LCSFM framework by estimating a stochastic meta-
frontier (SMF) production function that encompasses all class frontiers 
(covering regions) to account for potential inter-class variation in 

1 Competitive smallholder livestock in Botswana-http://surl.li/ajclx.

2 The LITS and disease control programs are both for export markets ‘access, 

particularly the European Union (EU) (Bahta et al., 2015).
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technology gaps in beef production. Instead of applying the LCSFM in 
conjunction with a deterministic meta-frontier as in Mekonnen et al. 
(2015), we adopt Huang et al.’s (2014) approach in the second stage 
whereby technology gap ratios are specified as a function of exogenous 
variables to account for group-specific environmental heterogeneity. 
While Mekonnen et  al. (2015)’s study is close to ours, despite their 
novelty, Mekonnen et al.’s semi-parametric approach did not report any 
statistical properties of their meta-frontier estimates. A SMF approach 
mitigates this (Huang et al., 2014; Le et al., 2018). In particular, the SMF 
approach has an advantage over the deterministic meta-frontier 
approach in that its estimation uses a maximum likelihood function 
rather than mathematical programming and therefore is more suitable 
to separate potential random shocks from the technology gaps. 
Moreover, Mekonnen et al.’s (2015) study focuses on innovation systems 
in Africa while ours focuses on beef production systems in Botswana.

2. Literature review

Several researchers have proposed methods that deal with 
technological heterogeneity (Battese et  al., 2004; Greene, 2005; 
Kumbhakar et al., 2009). In the case of observed heterogeneity, the most 
commonly used approach has two stages. The first stage involves splitting 
the sample into groups based on prior information about farms and 
specific exogenous characteristics. In the second stage, different 
production functions are estimated for each group (e.g., see, Battese et al., 
2004; Newman and Matthews, 2006). One such approach is the 
SFA-based meta-frontier, which has been applied in the dairy industry 
(Moreira and Bravo-Ureta, 2010) and in a few cases to beef production 
(e.g., Otieno et al., 2014; Bahta et al., 2015; Temoso et al., 2015b, 2016). 
Otieno et  al. (2014) classified beef cattle farms in Kenya into three 
production systems (nomadic pastoralism, agro-pastoralism, and 
ranches). Bahta et al. (2015) delineated three farm types while Temoso 
et al. (2016) and De Ridder and Wagenaar (1984) considered two farm 
types of production systems. Further, Temoso et al. (2015b) defined 
different production technologies based on their location in agro-
ecological regions. A typology based on communal versus freehold 
livestock farms was used in Barnes et al. (2008) and Mahabile et al. (2002).

While it is essential that these studies have examined the 
performance of Botswana’s livestock given the growing policy support, 
using partial measures of productivity (Abel, 1997; Behnke, 1985) has 
the limitation that input–output relationships are not attributed to 
either technologies or management. Analyses using more complete 
estimates of productivity that assume homogeneous production 
systems amongst farms have the limitation that productivity changes 
are associated with technology (Mahabile et al., 2002; Barnes et al., 
2008). We are aware of only three studies (i.e., Bahta, 2014; Temoso 
et al., 2015b, 2016) that have measured the productivity of Botswana’s 
livestock production systems while accounting for technological 
differences amongst systems. Bahta et al. (2015) applied a deterministic 
meta-frontier approach to cross-sectional data from three major 
livestock producing districts (i.e., South East, Chobe, and Central). 
Three types of beef production systems were recognized, namely cattle 
only, cattle and crops, and mixed farms. Results featured a tendency for 
efficiency to be positively related to production system diversity. Farm 
system makeup is clearly associated with technology. Temoso et al. 
(2015b) adopted a similar approach to panel data from 26 agricultural 
districts representing all six agro-ecological regions in Botswana. 
Their study found that prevailing environmental conditions and 

economic development in a given region influence productivity and 
the production technologies employed. Temoso et al. (2016) measured 
the productivity gap between traditional and commercial beef 
production systems and found significantly different productivity and 
deployment of production technologies between the two systems.

Similarly, Melo-Becerra and Orozco-Gallo (2017) assessed the 
efficiency of crop and livestock production systems in Colombia. 
Considering the different production systems with regard to climate, 
geography, and soil types, Melo-Becerra and Orozco-Gallo (2017) built 
on previous research by using stochastic meta-frontier techniques. 
They found that farmers in some production systems were benefiting 
from better production conditions due to the available natural 
resources, climate, and more favorable socio-economic conditions.

The methods used by the papers discussed above have received 
some criticism. First, if the prior classification is not precise, the first 
stage is likely to generate errors, which will deliver biased and inefficient 
estimates of the technological parameters in the second stage 
(Kumbhakar et al., 2009). Another practical limitation of the two-stage 
approach is that researchers usually must consider a specific exogenous 
characteristic to divide the sample and estimate the separate frontiers. 
This is likely to lead to an incomplete division of the sample because 
firms included in separate groups may share some features (Alvarez 
and del Corral, 2010; Martinez-Cillero et al., 2019). Also, this essentially 
mirrors criticism of the use of technological indicators, as outlined 
above, as such groupings may be both arbitrary and incomplete.

A recommended approach to account for potential unobserved 
heterogeneity is one that searches for a finite number of structures (or 
“classes”) within the data (Alvarez et  al., 2012). The latent class 
stochastic frontier model (LCSFM), sometimes referred to as a 
mixture of models, offers these facilities. In LCSFM, each firm or 
geographic location (district, country, region, etc.) can be assigned to 
a group using the estimated probabilities of possessing certain 
characteristics (separating variables) that are proxies for different 
technologies or production systems (Sauer and Paul, 2013). The 
LCSFM is suited to our empirical setting because livestock production 
in Botswana operates within a complex system (Bahta and Malope, 
2014; Temoso et al., 2016), and the variation amongst farms may 
reflect a range of features such as breeds and genetics, soils and 
vegetation, land tenure systems, feeding systems, and disparities in the 
rate of uptake of new technologies.

Moreover, LCSFM is applicable where the researcher does not 
know ex-ante which farms belong to which particular production 
technology, nor the number of different technologies that exist in the 
sample (Mekonnen et al., 2015; Martinez-Cillero et al., 2019). Using 
panel data, this study extends the productivity analysis literature by 
combining the LCSFM with a stochastic meta-frontier analysis (in lieu 
of the deterministic meta-frontier). This is based on our conjecture 
that a stochastic meta-frontier envelops all the unobserved class 
frontiers thereby allowing us to account for potential inter-class 
variation in technology gaps, on an equally important sector for the 
global south – livestock production.

3. Materials and methods

3.1. Data and study area

We utilized block-level data from various annual agricultural 
surveys (2006–2014) covering 26 agricultural districts and six 
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agro-ecological regions. A block is a smallest geographical area unit 
defined by Statistics Botswana and form the building blocks for larger 
regions. The annual agricultural surveys are collected through a 
stratified sampling framework. According to Statistics Botswana 
(2018, p.  15), independent sample sizes were estimated for each 
individual block and added to give the total sample size at the 
agricultural district level, agricultural region level, and national level. 
In this study, 259 blocks within the traditional/communal beef cattle 
sector over a nine-year period (i.e., a total sample size of 2050) were 
used for analysis. This is a larger sample size than previous livestock 
studies in Botswana that have used aggregated data at district and 
regional levels (e.g., Temoso et al., 2016).

We focus on the traditional beef cattle production system because 
the majority (78%) of farmers and cattle population (78%) in 
Botswana fall under this system, and it contributes the largest share of 
output to the livestock sector (Statistics Botswana, 2018). In addition, 
the recent agricultural surveys (since 2012) focus on collecting data 
for the traditional sector while the commercial sector coverage has 
been low and as such the recent commercial farms data cannot 
be used to produce meaningful results to guide policy and decision 
making (Statistics Botswana, 2019).

3.2. Descriptive statistics

Table 1 provides the definition, units, and summary measures of 
the production function variables, at the primary sample unit (PSU) 
level, that are used to explain technical inefficiency. For estimation, the 
dependent variable is beef output expressed in monetary value. Due 
to measurement difficulties, this study follows the revenue approach 
recently applied in the literature (Hong et al., 2019; Nguyen et al., 
2021; Temoso et al., 2023) and defines output as:

 
Q

yp

ti j
T
R

( ) =
∑

 
(1)

where Qi j( ) is the annual value of beef cattle output of the ith 
farm in the jth production system (measured in Botswana Pula3); R 
denotes any of the three forms of cattle output considered, i.e., 
current stock, sales or uses for other purposes in the past 12-month 
period; y is the number of beef cattle equivalents; p is the current 
price of existing stock or average price for cattle sold/used during 
the past 12 months; and t is the average maturity period for beef 
cattle in Botswana which, based on expert consultation, is assumed 
to be  4 years. Similarly, to ensure that the study captures the 
approximate share of feeds from different sources, the quantities of 
purchased and non-purchased (on-farm) feeds were first adjusted in 
accordance with the average annual number of dry and wet months,4 
respectively, in the country.

3 One Botswana Pula is on average 0.083 USD (Yahoo Finance 2022).

4 Botswana is an arid country and according to expert information the length 

of the wet season when farmers mostly use on-farm or non-purchased feeds 

do not exceed 5 months. Consequently, the study uses 5 wet and 7 dry months, 

respectively.

Average feed prices were computed using the survey’s price 
information collected for purchased feed with further validation by 
animal nutrition experts in the Department of Agricultural Research 
(DAR). Both purchased and non-purchased (the value of the latter is 
zero since no own grown feed is recorded in the database) feeds were 
then converted to improved feed equivalents by multiplying the 
respective feed quantities by the ratio of their prices (or shadow 
prices) to the average per-unit price of improved fodder. Thus, 
following Otieno et al. (2011) and Bahta et al. (2015), the total annual 
improved feed equivalent was computed as:

 ϕ p d S n wf p∗( ) + ∗( ){ } (2)

where; ϕ and S denote, respectively, the ratio of prices of purchased 
and non-purchased feed to that of improved fodder; p f  and np represent 
the average quantities of purchased and non-purchased feeds, 
respectively, in kilograms per month; d is the approximate number of dry 
months (when purchased feeds are mainly used), while w is the length 
of the wet season (when farmers mostly use on-farm or non-purchased 
feeds) in a particular area. The other input variables included in the first 
stage of the model are land, labor, herd size, and average annual 
precipitation. Except for precipitation, the sample weight is used to 
obtain a weighted value for the other variables in the production function.

TABLE 1 Descriptive statistics of weighted production function variables 
and inefficiency effects at the block level.

Production function variable Mean
Standard 
deviation

Total value of beef cattle output (Pula) 177,960 308,996

Feed cost (Pula) 2,142 7,178

Veterinary costs (Pula) 10,226 15,200

Labor cost (Pula) 3,750 12,339

Arable land area (hectares) 1.6 1.65

Annual precipitation (mm) 427 221.79

Inefficiency variables

Average age of household head (Years) 53 7.85

Households with primary education (%) 56 21.92

Training (%) 7.0 10.4

Gender (% of men head of Households) 59.4 22.7

Artificial insemination (%) 1.34 4.25

Proportion of exotic breed (%) 22.0 4.92

Mortality rate (%) 7.04 5.17

Transport facility (% of households owning 

a truck)

6.0 9.21

Herd size 10,952 12,939

Households with crop income (%) 40.0 27.9

Gross off-take rate (%) 4.4 2.89

Industry-specific environmental variables

Access to livestock advisory centres (LACs) 

(%)

81.6 38.8

Average temperature (degrees Celsius) 21.93 0.72

*, **, ***, indicate statistically significant at 10%, 5%, and 1% significance level, respectively.
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As shown in Table 1, the average total value of beef cattle output 
is BWP 177,960. On the input side, the average land size – measured 
in terms of arable land in hectares – is 1.6 ha. Access to grazing land 
varies from communal lands where most smallholders graze their 
cattle freely to fenced lands, with an average land size per PSU of about 
25 ha. The average total cost of labor per PSU is BWP  3,750. 
Agricultural labor measures the total labor cost, including permanent 
and temporary labor costs. Another key input variable is herd size, 
which reflects the stock size and is measured in beef cattle equivalents 
(Otieno et al., 2012; Bahta et  al., 2015). We  also included farm 
household veterinary costs. The average veterinary cost per PSU is 
BWP 10,226. The variable annual rainfall or precipitation is included 
to account for geographic variation and averages 427 mm.

The proportion of exotic breeds5 may indicate adoption rates of 
advanced breeds and their impact on productivity (Temoso et al., 
2016). The effect on productivity of the exotic breeds (both the Zebu/
indicus and taurus) could especially be  on crossbreeding and 
improving the Tswana breed in terms of weight of an animal which is 
one of the most important criteria in beef production. Gross off-take 
rates6 refer to the ratio of livestock sold to the total number purchased 
and home slaughtered, whereby low off-take rates are associated with 
poor management and lack of marketing facilities (Temoso et al., 
2016). The mortality rate is the ratio of the total number of deaths to 
the total number of livestock during the survey year. It is expected that 
farms with lower mortality rates are using better technologies and 
managing their livestock farms well and are likely to attain better 
productivity (Temoso et al., 2016).

The last rows in Table  1 contain descriptive statistics for the 
industry-specific environmental variables considered in this study. As 
mentioned before, industry-specific environmental variables go into 
the inefficiency term of the SMF model. Here, we consider access to 
livestock advisory centers (LAC) and mean temperatures recorded in 
all blocks within agricultural districts in Botswana during the period 
of analysis. The LACs are centers that provide livestock services 
required to help control and prevent livestock diseases. Access to 
LACs is important in Botswana as it provides animal health services 
through the sale of drugs, vaccines, and animal equipment as well as 
offering advisory services to farmers about animal health (Malope 
et al., 2016). However, access to LACs in Botswana is heterogeneous 
as some districts have more than one LAC center while others do not 
and this affects the livestock industry. Temoso et al. (2023) found that 
LACs affect Botswana’s livestock’s total factor productivity and its 
growth suggesting that access to LACs is appropriate to be considered 
an industry-specific environmental variable. In this study, access to 
LACs has the value of zero for blocks whose farmers had zero access 
to LACs and equals 1 for blocks whose farmers had access to at least 
one LAC. As for mean temperatures, Neibergs et al. (2018) suggest 
that temperature affects the growth of forage and timing of forage 
availability for grazing, which ultimately impacts stocking rates, 
turn-out dates for beef cattle. Thus, temperature may have important 

5 The data from statistics Botswana aggregates all improved breeds as exotic 

breeds, hence not possible to evaluate the variation in terms of performance 

among different exotic breeds.

6 Gross off-take is calculated following Negassa and Jabbar (2008) as Gross 

Commercial offtake rate = Sales 0.5 (Opening stock+Ending stock)*100.

implications on the beef cattle production’s meta-frontier, especially 
that it may not be homogeneous across all blocks within districts in 
Botswana. Because of the broadness of access to LACs and mean 
yearly temperatures, we consider these variables as industry-specific 
environmental variables in stage two of our SMF estimations.

3.3. Latent class stochastic production 
frontier

Following Orea et  al. (2015) and Mekonnen et  al. (2015), 
we specify a production function from the LCSFM as follows:

 | | ,it it it j it jj jy x v uα β= + + −| |  (3)

where i represents blocks, t indicates time, and j = 1,…, J stands for 
class: we assume that the blocks within agricultural districts being 
analyzed operate an unknown finite number of different technologies 
which underlie the sample data. The dependent variable, yit is a 
measure of a block’s output, xit represent a vector of input variables, 

|it jv is a noise term that follows a normal distribution with zero mean 
and class-specific constant variance, and |it ju  is a class-specific 
one-sided error that captures the blocks’ inefficiency (geometrically, 
the distance between the observation and the production frontier) and 
is assumed to follow a one-sided distribution (half-normal in this 
study). The two error components are assumed to be independent of 
each other.

The associated likelihood function conditional on class j for a 
block i at time t is given by:
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and φ  and   represent the standard normal density and cumulative 
distribution functions (Greene, 2005). Then, the overall contribution 
of the block i to the conditional likelihood is:

 
LF LFij

t

T
itj=

=
∏
1

.

 
(5)

The unconditional likelihood for block i is obtained as a weighted 
sum of its likelihood function across j class, where the weights (Pij) are 
the probabilities of class membership, or:
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 (6)

Then, the logarithm of the overall likelihood function LFi θ δ,( ) 
can be obtained as the sum of the individual likelihood functions 
LFij jθ( ), where θ j represent the frontier specific parameters to 
be estimated:
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The prior class probabilities Pij jδ( ) are parameterized as a 
multinomial logit model, to ensure that 0 1 1
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where qi  represents the vector of block-specific but time-invariant 
variables that separate the blocks within the agricultural districts into 
different classes, and |iδ ′ s the vector associated with parameters to 
be estimated (Mekonnen et al., 2015).

Maximizing the overall likelihood function specified in Equation 
7 provides asymptotically efficient estimates of all parameters. It 
should be noted that unlike the two-stage procedures discussed above, 
LCSFM allows for all the observations in the sample to be used to 
estimate the underlying technology for each class (Martinez-Cillero 
et al., 2019). Each block within an agricultural district belongs to one 
and only one class, which implies that the probabilities of class 
membership in LCSFM merely reflect the uncertainty that researchers 
have about the true parameter (Orea et  al., 2015). The estimated 
parameters in Equation 7 can be  used to compute the posterior 
probabilities of class membership using the following expression:
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The probability in Equation 9 is then used to allocate each block 
to the class with its highest posterior probability. Alvarez et al. (2006) 
noted that Equation 9 is time-invariant, implying that each block 
within the agricultural district is modelled in the same group over 
time is the posterior probability for a given block i to belong to 
technology class J. It depends on prior parameters of class membership 
δ j and the estimated parameters of the production function (θ, λ, σ). 
Following Mekonnen et  al. (2015), we  apply Schwarz Bayesian 
Information Criterion (SBIC) and Akaike Information Criterion 
(AIC) to our data in order to determine the number of classes. BIC 
and AIC can be computed as follows:

 SBIC j logLF j N( ) = − ( ) + ( )2 Klog  (10)

 AIC j logLF j K( ) = − ( ) +2 2  (11)

where log LF(j) represents the log-likelihood function of the 
model with j classes, N is the number of observations, and K represents 
the number of parameters to be estimated. After the j production 
frontiers have been defined, the technical efficiency of a block i in the 
tth period for class-j production frontier can be estimated using the 
following equation:

 
TE u E u vit j it j it j it j= −( ) = − ( +( )exp exp

 
(12)

3.4. Stochastic meta-frontier estimation

One of the contributions of this study is, for the first time, to 
determine and compare the technical efficiency of beef cattle 
production across all the blocks and agricultural districts in 
Botswana. However, the efficiency score estimates across classes 
from Equation 12 are not directly comparable due to their either 
constituting different frontiers or different weights within frontiers. 
Following Mekonnen et  al. (2015), this can be  resolved by 
estimating a meta-frontier that incorporates all the class frontiers 
and facilitates efficiency comparison across all the blocks in all 
technology classes. A meta-frontier production function uses either 
panel or cross-sectional data to measure efficiency and production 
technological gaps (Battese and Rao, 2002; Battese et al., 2004), and 
the estimates of meta-frontiers are commonly used to compare 
relative efficiency scores of different classes or groups (Temoso 
et al., 2016).

Since its introduction by Ruttan (1971), several developments 
have led to two main ways in which a meta-frontier production 
function is estimated: a deterministic meta-frontier (O’Donnell 
et al., 2008) and a stochastic meta-frontier frontier (Huang et al., 
2014). O’Donnell et  al. (2008) deterministic meta-frontier is 
estimated by mathematical programming techniques which do not 
account for idiosyncratic shocks, and thus results are prone to 
random noise (Huang et al., 2014; Chang et al., 2015). To address 
this, Huang et al. (2014) proposed a stochastic meta-frontier (SMF) 
model that, rather than using mathematical programming 
techniques, uses econometrics to estimate meta-frontier parameters 
and account for random noise in the second stage. Because of this 
advantage, it is no surprise that several studies (e.g., Huang et al., 
2015; Li et  al., 2017; Melo-Becerra and Orozco-Gallo, 2017; 
Ng’ombe, 2017; Alem et  al., 2019; Obianefo et  al., 2021 among 
others) have used a SMF model. A SMF approach requires 
specifying technology gap ratios (TGRs) as a function of exogenous 
environmental variables and has desirable statistical properties for 
inference (Huang et al., 2014). Thus, in the second stage, this study 
builds on previous latent class frontier research (e.g., Mekonnen 
et al., 2015; Orea et al., 2015) by estimating a SMF to incorporate 
all the class frontiers to facilitate efficiency comparison of all the 
blocks within the agricultural districts in all technology classes 
in Botswana.

Following Huang et  al. (2014), a meta-frontier production 
function that would underlie all latent class frontiers in the tth period 
is f X j Jt

M
jit( ) = …, , , ,1 2 where j denotes classes. By definition, 

f Xt
M

jit( )  is the meta-frontier that envelopes individual class 
frontiers: f Xt

j
jit( ). Their relationship is

 f X f X e j i tt
t

jit t
M

jit
U jit

M

( ) = ( ) ∀− , , ,  (13)

where U jitM ≥ 0,which means f ft
M

t
j. .( ) ≥ ( ) and that the ratio of 

the jth class’s production frontier to the meta-frontier is the technology 
gap ratio (TGR) expressed in Equation 14:
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Based on Equation 14, a TGR value that equals one implies that 
the most advanced technology to produce outputs was employed. A 
TGR value of less than one implies that an economic unit of interest 
failed to adopt the most advanced technology, perhaps due to 
economic and/or environmental conditions (Huang et  al., 2014; 
Ng’ombe, 2017). Therefore, Huang et  al. (2014) consider that the 
technology gap component of U jitM  is group-, block-, and time-specific 
and that it would depend on the adoption of the meta-frontier 
production technology available. Given any input level X jit , a meta-
frontier f Xt

M
jit( )  and a block’s observed output y jit  can 

be decomposed into three components as
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The three components are, respectively, the ith block’s TGRit
j , 

technical efficiency, and random noise eVjit . While it is well known that 
TGRit

j and TEit
j lie between 0 and 1, the meta-frontier does not 

necessarily envelope all economic agents’ observed outputs due to 
random noise. It is the unrestricted fraction in Equation 15 that 
differentiates modeling a meta-frontier by stochastic frontier analysis 
(SFA) from using data envelopment analysis (DEA). To account for 
random noise, Equation 15 can be rewritten as
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where MTE jit is a block’s technical efficiency with respect to the 
meta-frontier production technology, f Xt

M
jit( ) instead of jth latent 

class’s production technology. In terms of estimation, mathematical 
programming techniques would minimize the sum of squared 
deviations between ftM .( )  and ( )M

jittf X  and the standard errors 
associated with meta-frontier parameter estimates would be obtained 
by bootstrapping and or simulation methods (Ng’ombe, 2017). But 
under Huang et  al.’s (2014) approach, for estimation purposes, 
Equation 13 is re-specified as

 ln lnf X f X Ut
j

jit t
M

jit jit
M( ) = ( ) −  (17)

The class-specific frontier f Xt
j

jit( )is not observable, but its 
estimates are from the first step. In this study, it is from LCSFM. Since 

the fitted values of f Xt
j

jit( ) (i.e., f Xt

j

jit


( ) and true frontier values 
f Xt
j

jit( ) are different, Equation 17 becomes

 ( ) ( )ln ln
j M M M

jit t jit jit jittf X f X U V= − +
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where VjitM  is the statistical noise to characterize the deviation 

of ( )j
jittf X

 from ln f Xt
j

jit( ). This can be shown as

 ( ) ( )ln ln
j M M

jit t jit jittf X f X V= +

 (19)

Equation 18 looks like the common stochastic frontier regression 
model and is therefore referred to as the SMF model. Following Huang 
et  al. (2014), since ln f Xt

j

jit


( )  can be  obtained by maximum 
likelihood estimation, its estimates are consistent and asymptotically 
normally distributed. The errorVjitM  is assumed to be  distributed 
as N v

M
0

2
,σ( )  while U jitM ≥ 0 is assumed to be  distributed as 

U N Zjit
j

jit
j

~
+ ( )( )µ σ, 2 , where Z jit are now group-specific 

environmental variables. Huang et al.’s (2014) method allow for the 
estimated latent-specific frontier to be greater than or equal to the 
meta-frontier due to the error VjitM  in Equation 18. But by 
construction, the meta-frontier is always higher than the true latent 
class-specific frontier, i.e., f X f Xt

M
jit t

t
jit( ) ≥ ( ) (Huang et al., 2014). 

The estimated TGR becomes
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where ( ) ( )ln ln
j MM

jit jit jitt tf X f Xε = − 

 which is the estimated 
residual of Equation 16. In sum, we use the LCM frontier analysis in 
the first step and SMF approach in the second step because the latter 
allows the presence of VjitM  leading to the estimated TGR in Equation 
20 not being influenced by random shocks, unlike the deterministic 
programming method (Huang et al., 2014).

3.5. Empirical model

In the efficiency literature, there are generally two functional 
forms used to specify the production function: the Cobb Douglas 
function and translog function. In this study, the translog function 
is assumed for the production function, which has sufficient 
parameters to provide a second-order approximation (Coelli et al., 
2005). Unlike the Cobb Douglas production function, the translog 
production function does not impose prior restrictions on the 
production technology and can handle a large number of inputs 
and treat them interactively. However, the flexibility of translog 
function comes at a cost – there are more parameters to estimate, 
and this may give rise to econometric difficulties such as 
multicollinearity (Coelli et al., 2005) as well as failure to satisfy its 
basic theoretical restrictions (i.e., positivity, linear homogeneity, 
curvature, and monotonicity). However, the translog functional 
form remains the most widely used form in literature (Serletis and 
Feng, 2015). Our specification of the translog production 
function is:
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where the β’s and δ’s are parameters to be estimated and k is the 
kth group or block. Whilst subscript i denotes the blocks within the 
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agricultural district, t is the linear trend that accounts for neutral 
technical change, j denotes the different classes to be estimated, and 
whilst y and x are the logarithms of beef output and a vector of inputs, 
respectively. For consistency, we also assumed the translog functional 
form for the SMF model. As with the distribution of the inefficiency 
term, for consistency, a half-normal distribution is also assumed in the 
second step.

Estimation proceeded as follows. In the first stage, we estimated 
the LCSFM from which class j’s fitted value of output for the ith 
block in period t were pooled. Here technical efficiency scores 
associated with each class were estimated. In the second stage, 
we used the pooled fitted values from stage one for each class to 
estimate Equation 16. As mentioned before, we used access to LACs 
and the mean temperature per year in degrees Celsius that Botswana 
recorded during the period of analysis. Notice that following Wang 
and Schmidt (2002), Ng’ombe and Kalinda (2015), and Yu and 
Jaenicke (2020), the frontier and inefficiency part of the model in 
both first and second stage were estimated simultaneously to detour 
from inconsistency that comes with the two-stage approach 
whereby the frontier and inefficiency functions are 
estimated separately.

4. Results and discussion

4.1. Latent class stochastic production 
frontier estimates

In this study, we determine the number of classes into which the 
blocks within the agricultural districts could be classified, using the 
Akaike Information Criteria (AIC) and Bayesian Information Criteria 
(BIC) (Orea and Kumbhakar, 2004; Alvarez and del Corral, 2010). The 
AIC was relatively the lowest for LCSFM with two classes, thus 
implying that it is the preferred model over the LCSFM with three 
classes. Table 2 presents the maximum likelihood estimates for the 
parameters in the stochastic production frontier. All estimated first-
order parameters in the LCSFM fall between zero and one in both 
classes and the pooled frontier, thus satisfying a monotonicity 
condition that all marginal products are positive and diminishing at 
the mean inputs (with the exception of veterinary expenditure in 
Class 2).

The elasticity of output with respect to labor and arable land are 
both positive and statistically significant for both classes and larger 
than for any other input. A possible explanation for this could be that 
farmers who have more arable land are more likely to have more crop 
residues that they can use to supplement their animals and thus reduce 
feed costs (Bahta and Baker, 2015). Veterinary expenditure was 
significant for Class 2 and the pooled model but not for Class 1. Across 
classes (and the pooled model), the livestock feed variable was not 
significant. In general, our analysis shows that variables related to 
labor and inputs show more significance in the Class 2 model. Arable 
land and labor are more significant in the Class 1 model. This suggests 
a more intensive oriented production system in Class 1 than Class 2. 
The pooled model demonstrates a broader pattern of significance, but 
the two class models depart from it substantially, which suggests that 
the underlying technologies are different both from the pooled model 
and from each other.

4.2. Determinants of productivity among 
smallholder beef producers in Botswana

Determinants of technical inefficiency are presented in Table 3: a 
negative coefficient indicates that the variable has a positive effect on 
TE. The table shows that all candidate determinants of technical 
efficiency are negative and statistically significant for the pooled 
model (except artificial insemination and mortality rate variables). In 
Class 1, all variables (except transport facility and crop income 
variables) were significant. However, in Class 2, a smaller set of 
variables [gender, exotic breed, cattle population (herd size), crop 
income, and gross off-take rates] were significant.

The coefficients for education and training are negative and 
significant for the pooled model and Class 1, from which we infer that 
blocks/agricultural districts with relatively more farmers with some 
formal schooling or having received agricultural training tend to 
be  technically efficient. This may be  due to farmers with more 
education responding more readily by adopting new technologies 
(Temoso et al., 2023). These results are consistent with Bahta and 
Malope (2014), who found a positive relationship between education 
and productive efficiency amongst the smallholder beef farmers in 
Botswana but contradicts Otieno et  al. (2014), who found that 
smallholder farmers with formal education and higher income in 
Kenya, were relatively less efficient. The coefficient of gender is 
negative and statistically significant. Male farmers may generally 
be more efficient than female farmers in beef production possibly due 
to more access to resources, greater exposure to, and experience of 
livestock management in Botswana.

In both classes, we found a negative and significant coefficient of 
the use of exotic breeds, which indicates that the higher the proportion 
of exotic breeds, the more efficient the agricultural district. These 
results show that having fewer indigenous cattle breeds and more 
crossbreeds are likely to lead to higher beef production efficiency. 
Crossbreeds between exotic and indigenous cattle have the potential 
to improve productivity and their suitability to the adverse production 
environments compared to the indigenous breeds. Wollny (2003) 
points out that controlled cattle breeding could increase efficiency 
through the improvement of genetic quality, enhancing the adaptation 
of cattle to environmental conditions, and ensuring an optimum 
stocking rate to feed supply within and between years.

Herd size (cattle population) has a negative and significant effect, 
which implies farmers owning larger herds are more technically 
efficient than those owning small herds. The direction of the effects is 
consistent with a priori expectations. The results suggest that there is 
scope to increase productive efficiency by increasing herd size. 
However, such a strategy would need to be done with consideration 
of other factors such as the availability of suitable grazing and water, 
and local environmental conditions, the management in place in 
communal grazing areas.

The coefficient of crop income is negative and statistically 
significant for the pooled sample and Class 1, which implies earning 
income from crop production improves the technical efficiency of 
farmers. As observed by Bahta and Malope (2014, p. 415), “the results 
suggest that income from crop farming is being reinvested into 
livestock farming, and/or that there are other synergies between the 
two farm activities including the use of crop residues as 
feed resources.”
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TABLE 2 Production models for beef production in Botswana, 2006–2014.

Pooled Class 1 Class 2

(n = 2050) (n = 985) (n = 1,065)

Independent variables Coefficient Standard error Coefficient Standard error Coefficient Standard error

Constant| 11.15*** 0.155 11.61*** 0.242 10.01*** 0.211

LN_LABOR 0.644*** 0.099 0.428** 0.194 0.560*** 0.189

LN_VETERINARY 0.760*** 0.138 0.220 0.211 1.160*** 0.235

LN_ARABLE LAND 0.430*** 0.112 0.511*** 0.147 0.434** 0.187

LN_FEED 0.080** 0.037 0.018 0.050 0.074 0.060

LN_PRECIPITATION 0.095 0.284 −0.041 0.437 0.125 0.478

LAB_VET −0.003 0.034 0.061 0.047 −0.054 0.068

LAB_LND −0.067* 0.039 −0.084 0.055 −0.039 0.083

LAB_FEE 0.016 0.010 0.003 0.020 0.035 0.022

LAB_PRECIP −0.021 0.095 0.031 0.192 −0.046 0.187

1/2LAB_SQ −0.204*** 0.040 −0.114* 0.064 −0.139 0.089

VET_LAND 0.049 0.051 −0.025 0.067 0.155 0.107

VET_FEED −0.042*** 0.014 0.004 0.022 −0.073*** 0.028

VET_PRECIP 0.128 0.111 0.227 0.172 −0.158 0.227

1/2VET_SQ −0.217** 0.095 −0.079 0.121 −0.295* 0.173

LND_FEE 0.012 0.013 −0.014 0.020 0.022 0.027

LND_PRECIP −0.053 0.078 −0.036 0.124 0.115 0.134

1/2LND_SQ −0.153** 0.064 −0.110 0.096 −0.290** 0.127

FEE_PRECIP 0.003 0.030 −0.043 0.043 0.044 0.056

1/2FEE_SQ2 0.006 0.011 0.02828* 0.016 −0.001 0.019

1/2PREC_SQ2 −0.119 0.349 0.118 0.536 −0.218 0.646

TIME −0.039 0.026 −0.048 0.045 −0.016 0.042

TIMESQ 0.003 0.003 0.005 0.005 0.001 0.004

Lambda| 6.177*** 0.027 0.99681*** 0.000 0.962*** 0.006

Sigma(u)| 3.55 7.67 77.63 134,953 7.762 495.86

*, **, ***, indicate statistically significant at 10%, 5%, and 1% significance level, respectively.

TABLE 3 Determinants of productivity among smallholder beef producers in Botswana.

Latent class stochastic frontiers

Pooled Class 1 Class 2

(n = 2,050) (n = 985) (n = 1,065)

Independent variables Coefficient Standard error Coefficient Standard error Coefficient Standard error

Age −0.136 0.100 −0.404** 0.202 0.025 0.359

Education −0.120*** 0.038 −0.167** 0.083 −0.139 0.092

Training| −0.004*** 0.001 −0.005*** 0.002 −0.006 0.004

Gender −0.184*** 0.032 −0.152* 0.082 −0.2784*** 0.096

Artificial insemination 0.0003 0.001 0.003* 0.001 −0.002 0.002

Exotic breed −0.0803*** 0.007 −0.081*** 0.021 −0.160*** 0.028

Mortality rate 0.019 0.012 −0.042* 0.024 −0.007 0.036

Transport facility −0.0023** 0.001 0.001 0.002 −0.005 0.004

Herd size −0.0748*** 0.006 −1.253*** 0.122 −0.0539*** 0.012

Crop income −0.0329*** 0.008 0.017 0.017 −0.067*** 0.023

Gross off take −0.0953*** 0.020 −0.136*** 0.046 −0.202*** 0.049

*, **, ***, indicate statistically significant at 10%, 5%, and 1% significance level, respectively.
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The coefficient for the availability of transport is negative and 
significant only for the pooled model, which implies that having access 
to a transport facility has the potential to improve production 
efficiency. These results imply that those farmers with access to 
transport facilities can conveniently access distant markets in search 
of better sale prices for their output and also access key inputs such as 
veterinary medicine and supplementary feeds. This effect appears to 
be generally applicable to all cattle farms but is not reflected as specific 
to either of the two classes.

The coefficient of gross off-take rate (the ratio of livestock sold to 
the total number purchased and home slaughtered) is negative, 
indicating efficiency gains from an increase in gross off-take rates. 
Temoso et al. (2016) found similar results for traditional farmers and 
argued that they are due to farmers’ selling their animals to meet their 
immediate cash needs and during drought seasons as a drought risk 
management strategy.

Moreover, Table 4 presents the parameter estimates of the SMF 
model. All of the coefficients of the individual inputs are positive and 
significantly different from zero and imply that, on average, an extra 
unit of each of these inputs positively affects the technology gap ratios 
(TGRs) of beef production in Botswana. When they enter the 
production function as squared values of their original form, most of 
the inputs (except) feed have negative and statistically significant 
coefficients. However, when used interactively, some of the inputs 
affect TGRs of beef production positively or negatively to highlight 
heterogeneous effects of inputs on how far districts in each class may 
be off the country’s stochastic meta-frontier.

With regard to industry-specific environmental variables, average 
temperature and access to LACs are significantly different from zero 
at 1 and 5% significance levels, respectively. The negative coefficient 
on access to LACs implies that districts whose beef cattle farmers have 
access to LACs operate closer to the meta-frontier production 
function than those that do not have access to LACs. This is plausible 
because, through LACs, such services as the purchase of drugs, 
vaccines, animal equipment, and animal health advice are available to 
an agricultural district (Malope et al., 2016) and enabling such areas 
to operate near the frontier. On the other hand, we  find that an 
increase in average temperature would result in a district operating far 
from its beef cattle production frontier. In sum, findings from 
industry-specific environmental variables imply that higher 
temperatures would result in the district’s technology at beef cattle 
production being inferior. However, districts whose farmers have 
access to LACs operate with superior technology to those without.

4.3. Technical efficiency and technological 
gap analysis

Generally, the agricultural blocks in latent Class 1 are more 
technically efficient than those in latent Class 2. The mean technical 
efficiency scores for beef production between 2006 and 2014 for the 
blocks in Class 1 and Class 2 are 0.616 and 0.591, respectively. While 
the difference in mean technical efficiency scores is small, it is 
significantly different from zero at a 1% significance level as indicated 
by the t statistics in Table 5. These results imply that the blocks in Class 
1 may be more homogenous (Mekonnen et al., 2015) and on the same 
path toward their frontier further than those in Class 2. In addition, 
these results imply that there is high potential in both blocks in Class 

1 and Class 2 to increase beef production output by 38.4 and 40.9%, 
respectively, using the same amount of inputs. With regard to MTE, 
its mean values for districts in Classes 1 and 2 are, respectively, 0.563 
and 0.528 and the mean difference between them is significantly 
different from zero. These mean scores imply that, on average, districts 
in Class 1 are significantly closer to the industry’s beef production 
potential than their counterparts in Class 2. That is, beef producers in 
Class 2 would have to increase their production levels to close the gap 
with the industry’s potential and their counterparts in Class 1.

Our results are not directly comparable to previous estimates from 
Bahta et al. (2015) and Temoso et al. (2016), which may have been 
overestimated if technology heterogeneity is present in the sample but 
not accounted for in the estimation process. Based on the highest 
posterior probability, the model classified 125 blocks as Class 1 and 
the remaining 136 blocks as Class 2. It is noted that some agricultural 

TABLE 4 Stochastic-meta frontier parameter estimates.

Variable name Coefficient Std. Error

Constant 10.170*** 0.042

LN_LABOR 0.652*** 0.019

LN_VETERINARY 0.660*** 0.035

LN_ARABLE LAND 0.530*** 0.020

LN_FEED 0.079*** 0.007

LN_PRECIPITATION 0.097* 0.051

LAB_VET −0.003 0.008

LAB_LND −0.083*** 0.007

LAB_FEE 0.005** 0.002

LAB_PRECIP 0.019 0.016

1/2LAB_SQ −0.086*** 0.004

VET_LAND 0.092*** 0.010

VET_FEED −0.039*** 0.003

VET_PRECIP 0.049** 0.019

1/2VET_SQ −0.122*** 0.010

LND_FEE 0.010*** 0.002

LND_PRECIP 0.013 0.015

1/2LND_SQ −0.117*** 0.006

FEE_PRECIP 0.007 0.005

1/2FEE_SQ 0.005*** 0.001

1/2PREC_SQ −0.087*** 0.032

TIME −0.005 0.005

TIMESQ 0.000 0.000

Industry-specific environmental variables

Access to livestock advisory centres 

(LACs) −0.479** 0.241

Average temperature 11.844*** 1.990

Constant −30.149*** 4.524

Ancillary parameters

SIGMA_U 0.112 0.110

SIGMA_V 0.100*** 0.005

THETA 0.708*** 0.015
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districts have blocks that belong to either Class 1 or 2. Thus, a 50% 
frequency percentage was used as a cut point to classify the agricultural 
districts into either Class 1 or 2.7 The minimum posterior probability 
of belonging into either class is 0, whereas the maximum is 1 and 0.99 
for classes 1 and 2, respectively. For the agricultural districts which 
belong to Class 1, the average posterior probability of belonging to 
class one is 99.6%, whereas, for those that are categorized as Class 2, 
it is about 96%.

Figure  1 provides the average Beef Technical Efficiency (TE) 
Scores of Agricultural Districts in Botswana, 2006 to 2014 (the average 
technical efficiency scores of beef production for Classes 1 and 2 
agricultural districts are also presented in Appendix 1.1). In Class 1, 
the top five performing agricultural districts are, respectively, Gantsi, 
Hukuntsi, Letlhakane, Tutume, and Selebi Phikwe districts, while the 
three lowest performers are Ngamiland west, Kweneng South, and 
Barolong, respectively.

These results possibly reflect livestock production specialization 
of those agricultural districts, where cattle production is the most 
dominant agricultural activity, followed by goats and sheep farming 
(Statistics Botswana, 2015). Moreover, these are the districts with a 
relatively large number of commercial farmers (e.g., Sandveld 
Ranches), so the results may indicate technology spillovers (i.e., 
adoption of better breeds and livestock management, etc.) from 
commercial farmers in those regions. For Class 2, the highest 
performers are Kweneng West and Bobonong, while the lowest 
performers are Kweneng South and Ngwaketse South (Figure 1 and 
Appendix 1.1).

7 Hukuntsi and Ngwaketse North agricultural districts are exceptions since 

an equal number of blocks belong to Class 1 and 2, a score of exactly 50/50 

or a cut point of 50%. A decision to delineate these agricultural districts to 

either class 1 or 2 was made by comparing the average technical 

efficiency scores.

Figure  2 presents the technology gap ratio scores (TGR) and 
meta-technical efficiency (MTE) scores, which are estimated with 
respect to the stochastic meta-frontier (SMF) that encompasses all the 
class stochastic frontiers, thus allowing direct comparison of the 
efficiency of a given agricultural district to any other agricultural 
district in Botswana. The TGR measures the technological gap faced 
by an agricultural district in each class when their performance is 
compared against any agricultural district in the sample. A higher 
(lower) TGR implies a smaller (larger) technology gap between the 
class frontier and the meta-frontier. A value of 1 (100%) is equivalent 
to a point where the class frontier coincides with the meta-frontier.

According to Figure  2 and Appendix 1.2, on average, Class 1 
agricultural districts have superior beef production technology to 
Class 2 agricultural districts. Amongst Class 1 agricultural districts, 
Kweneng South, Selebi Phikwe, Borolong, Sorrow, Letlhakane, Serowe, 
Tutume, Mahalapye West, Plapye, and Tutume have the highest beef 
farming technology (TGR of more than 0.9), whilst Gantsi and 
Hukuntsi have the least beef farming technology (TGR of 0.87). In 
Class 2, Mahalapye East, Kgatleng, Chobe, and Ngwaketse West have 
the highest beef production technology (TGR more than 0.9), whilst 
Tati and Tonota have the least (TGR of 0.81–0.84). Figure  2 and 
Appendix 1.3 also shows that the technical efficiency score relative to 
the meta-frontier (available beef production technology) for Class 1 
is, on average, higher than for Class 2 (Appendix 1.4). Overall, the 
top-performing agricultural districts in Botswana are Letlhakane, 
Gantsi, and Hukuntsi. Whilst, Barolong, with higher TGR, recorded 
relatively lower meta technical efficiency. Although Barolong district 
was traditionally a mixed farming area, in recent times, arable 
agriculture has become the mainstay of the area’s economy. This shift 
of farmers from beef cattle farming to arable agriculture may explain 
the lower performance of this district as compared to the other 
livestock specialization districts such as Gantsi and Hukuntsi.

4.4. Implication of technology differences 
between Class 1 and Class 2 districts

The previous section reveals the existence of clear significant 
differences in beef production technology between Class 1 and Class 
2 agricultural districts. Table 5 below further illustrates this difference, 
with Class 1 districts significantly outperforming Class 2 districts in 
all efficiency estimates.

A major reason for the difference in beef production technology 
is resource endowment. Most parts of Botswana are disadvantaged by 
unfavorable environmental conditions, and the performance of 
different sectors within agriculture is closely related to these conditions 
(Burgess, 2006). For example, a descriptive analysis showed that the 
average temperature in Class 1 is 21.5 degrees Celsius while it is 22.3 
degrees Celsius in Class 2, whose difference is statistically significant. 
Most importantly, and not coincidentally, our SMF model results 
indicated that higher temperature affects productive efficiency of the 
district, and the higher temperatures recorded in Class 2 adds to a long 
list of plausible reasons for inferior productive efficiency in Class 2. 
Class 1 districts are mainly composed of livestock specialized districts 
(e.g., Gantsi, Hukuntsi, Tsabong, Mahalapye West, and Letlhakane), 
whilst Class 2 is composed of agricultural districts suitable for crop 
production (e.g., Chobe, Mahalapye East, and Tati) (Burgess, 2006; 
van Engelen et al., 2013). In addition, the least performing agricultural 

TABLE 5 Mean difference between Class 1 and Class 2 efficiency 
measures.

Group Observations Mean Std. Err.

TGR mean difference between Class 1 and 2

Class 1 985 0.9187 0.0011

Class 2 1,065 0.8916 0.0021

Combined 2,050 0.9046 0.0013

diff = mean(1) – mean(2) 0.0271 (t = 11.0388)

TE mean difference between Class 1 and 2

Class 1 985 0.6156 0.0102

Class 2 1,065 0.5908 0.0071

Combined 2,050 0.6027 0.0061

diff = mean(1) – mean(2) 0.0248 (t = 2.0234)

MTE mean difference between Class 1 and 2

Class 1 985 0.5632 0.0092

Class 2 1,065 0.5280 0.0066

Combined 2,050 0.5450 0.0056

diff = mean(1) – mean(2) 0.0352 (t = 3.1351)
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Class 2 districts are located in wildlife areas, foot-and mouth disease 
(FMD)-endemic areas, and FMD-intensive surveillance zones.

Another reason for the difference in productivity is that the more 
productive agricultural districts tend to have large commercial farms 
that employ improved livestock farming practices. In addition, 
smallholder farmers operating in the vicinity of these large commercial 
farms benefit from technology spillovers from these commercial 
farms. These findings are consistent with evidence from Southern 
Africa (e.g., Thirtle et al., 1993; Temoso et al., 2016). Moreover, a 
simple descriptive analysis indicates that at least 91% of farmers 
located in Class 1 have access to livestock advisory centers (LACs), 
while only 72% have access to LACs. We found access to LACs to have 
the potential to improve beef cattle production efficiency is a plausible 
justification for this difference in efficiency statistics between the 
two classes.

Other more productive agricultural districts such as Selebi 
Phikwe, Palapye, and Tutume are located in the Eastern part of the 
country where Government of Botswana agricultural policies and 
investment in agricultural infrastructure have produced better road 
networks, access to markets and information, and proximity to 
extension services and the main export abattoirs in Francistown and 
Lobatse (Temoso et al., 2015a,b).

The implication of these results is that the best performing 
agricultural districts have either benefited from enabling government 
agricultural policies (e.g., access to LACs) or have the resources to 
develop, adapt and implement good livestock production practices. By 
virtue of their existence in FMD zones and unfavorable mean 
temperatures, the least performing agricultural districts may 
be deprived of enabling government livestock development policies. 
This situation can be reversed with the adoption of a commodity-
based trade approach that allows greater integration of FMD-free with 
endemic zones (Rich and Perry, 2011; Naziri et al., 2015; Rich and 
Bennett, 2019).

These differences suggest the presence of clearly differentiated 
technologies among smallholder beef producers in Botswana and 
hence where policies to improve productivity could be focused. This 
study shows that providing livestock farmers with relevant livestock 
extension and better access to markets would facilitate better use of 
available technology by the majority of farmers, who currently 
produce sub-optimally. Possible essential interventions would include 
improving farmer access to LACs to help or speed up the provision of 
appropriate knowledge on animal husbandry, such as cattle feeding 
methods, disease monitoring, and breeding (Bahta et  al., 2015). 
Chronic under-investment in the livestock sector is a significant 

FIGURE 1

Average Beef Technical Efficiency (TE) Scores of Agricultural Districts in Botswana, 2006–2014.
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constraint to the livestock sector. Therefore, it is crucial for the 
livestock stakeholders in Botswana, particularly the department of 
animal production, to make a case for sustainable livestock 
investments. The country needs to improve the evidence base by 
adopting livestock master plans, which provide crucial evidence that 
livestock ministers often lack regarding returns on investment (Bahta 
et al., 2020). Such evidence is essential to get financial resources for 
livestock development from ministries of finance, donors, as well as 
public and private investors.

5. Conclusion and policy implications

This study has employed a latent class stochastic frontier model 
(LCSFM) complemented with the stochastic meta-frontier (SMF) to 
identify different technology models for Botswana’s beef production 
and then assessed production efficiency within those models. This 
advances on previous studies of efficiency, particularly for agriculture 
and developing countries, in that the technologies were not imposed 
a priori but rather emerged from the analysis.

We conclude that there are differences in technologies applied in 
Botswana’s beef industry that led to differences in inefficiencies across 
agricultural districts. To our knowledge, we  provide the first 
quantitative measures of these effects (TGR measures and average 
technical efficiency scores) applied to Botswana and to extensive 

livestock production systems. We find that the majority of Botswana’s 
agricultural districts that perform better at beef cattle production are 
those located in areas where well-developed infrastructure and access 
to both output and input markets exist. Although unsurprising, this 
result’s strong confirmation lends support to its advocacy on other 
subjects. The centrality of infrastructure and market access to 
production efficiency, valid across all technologies, supports calls for 
improvements in all production areas.

The demonstrated use of differentiated beef production 
technologies by agricultural districts lends support to the importance 
of correctly accounting for heterogeneity in order to make appropriate 
policy recommendations regarding beef production and performance. 
The results of the study indicate that amongst factors of production, 
the beef output is positively related to the availability of labor, the size 
of arable land areas, feed availability and herd size. These result 
advocates for the implementation of policies that promote ownership 
of arable land in which farmers can plant fodder and or other crops, 
from which they could use residues to feed their livestock.

Agricultural districts that were found to perform poorly in 
terms of efficiency are mostly those without access to LACs, higher 
mean temperatures as well as where there is an occurrence of foot 
and mouth disease, which limits access to the Botswana Meat 
Commission (BMC) abattoirs. These agricultural districts also have 
large herds of wildlife, which leads to conflicts between wildlife and 
livestock keepers as the wildlife kills their livestock, and, in some 

FIGURE 2

TGR and MTE Scores of Agricultural Districts in Botswana, 2006–2014.
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cases, there are carriers of the FMD virus. The implication of this is 
that better ways of minimizing conflicts between wildlife and 
livestock should be  found in order to improve beef 
production efficiency.

The use of improved breeds (exotic and crossbreeds) was found 
to positively influence efficiency, and this result is valid across the 
technologies identified. Hence uptake and controlled cattle breeding 
practices should continue to be  encouraged for all production 
systems, as it has the potential to improve efficiency through the 
improvement of genetic quality and to enhance adaptation of cattle 
to environmental conditions. Similarly, the study has also shown that 
beef production efficiency is positively associated with levels of 
formal education across all production systems, and hence policies 
that address education and training of smallholder farmers should 
be pursued.

We find that animal mortality is associated with reduced beef 
production efficiency. Offtake, although a contributor to efficiency, is 
also likely to indicate forced management procedures, perhaps as an 
alternative to mortality where sales are infeasible or carried out too 
late. These results also apply across the technology spectrum and 
advocate for improvement in animal husbandry, alongside better 
trading conditions and raised marketing skill levels with a focus on 
closing the technology investments in livestock development between 
the two classes.

Amongst substantial variation within the classes, the mean 
technical efficiency scores for Classes 1 and 2 are 62 and 59%, 
respectively. We  infer that there is scope for improvement in 
production without using additional inputs. This study has provided 
insights into possible mechanisms for improving beef cattle 
production by identifying variation in efficiency statistics between 
districts while unearthing reasons for possible discrepancies between 
the localities and contexts. Several topics for future research are 
apparent, including the study of the detail of spillovers between 
production systems and the enhanced definition of outputs to include 
environmental products and contributions to sustainability.
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