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Cassava mosaic disease in South
and Southeast Asia: current status
and prospects
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Cassava is one of the most important food and industrial crops in Asia, Africa,

and South America. Cassava mosaic disease (CMD), caused by cassava mosaic

geminivirus, is one of the major constraints to cassava cultivation. In Asia, the

disease is caused by the Indian cassava mosaic virus and Sri Lankan cassava

mosaic virus. Phytosanitation, vector control, breeding, and genetic engineering

strategies have been widely adopted to manage the disease. This study provides

a comprehensive review of the disease spread, the development of diagnostic

methods, and various approaches employed for themanagement of CMD in South

and Southeast Asia.
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Introduction

Cassava (Manihot esculentaCrantz) originated in the south edge of the Brazilian Amazon

and was domesticated by indigenous South Americans ∼12,000–17,000 years ago (Allem,

1994; Oslen and Schaal, 1999). The starchy root of this woody perennial shrub serves as a

staple food for more than 800 million people around the world and is also an important

industrial commodity. Its adaptability to poor soil and relatively dry weather conditions

makes it attractive to smallholder farmers. Cassava has gained global attention as a “famine

crop” with production increasing from ∼124 to 278 million tons over the period from 1980

to 2018. It is the fourth most important staple food in the world after rice, wheat, and maize,

with a global caloric intake of 2.6% (Rey and Vanderschuren, 2017; Tafesse et al., 2021).

Cassava cultivation has severely been affected by several insect pests and viruses. Cassava

brown streak virus and cassava mosaic geminivirus (CMG) affect cassava cultivation to a

large extent (Bock et al., 1978; Lennon et al., 1986). Cassava mosaic disease (CMD) caused

by CMG (family: Geminiviridae; genus: Begomovirus) is the major constraint to cassava

cultivation with an estimated crop loss of USD 1.9–2.7 billion annually (Patil and Fauquet,

2009). The cassava plants infected with CMG exhibit symptoms of leaf curling and distortion,

mosaic patterns, yellowing, and stunting, which result in decreased photosynthesis and

reduced yield (Figure 1). The virus is transmitted by whitefly (Fauquet and Stanley, 2003). In

Africa, the major viruses associated with cassava mosaic disease are African cassava mosaic

virus (ACMV; Stanley and Gay, 1983), East African cassava mosaic Malawi virus (EACMMV;

Zhou et al., 1998), East African cassava mosaic Cameroon virus (EACMCMV; Fondong

et al., 2000), East African cassava mosaic virus (EACMV; Pita et al., 2001), South African

cassava mosaic virus (SACMV; Berrie et al., 2001), East African cassava mosaic Zanzibar

virus (EACMZV; Maruthi et al., 2004), East African cassava mosaic Kenya virus (EACMKV;

Bull et al., 2006), Cassava mosaic Madagascar virus (CMMGV; Harimalala et al., 2012), and
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African cassava mosaic Burkina Faso virus (ACMBFV;

Tiendrébéogo et al., 2012). In Asia, the disease is caused by

the Indian cassava mosaic virus (ICMV) and the Sri Lankan cassava

mosaic virus (SLCMV; Hong et al., 1993; Saunders et al., 2002).

The genome of CMG is bipartite, designated as DNA A

and DNA B, encapsidated in twinned icosahedral particles with

a molecular size of ∼2.7 kb (Stanley and Gay, 1983; Zhang

et al., 2001). DNA A consists of genes, AC1, AC2, AC3, AC4,

AVI, and AV2, which are important in replication, transcription,

defense, and encapsidation. The two genes in DNA B, BC1,

and BV1, are involved in cell-to-cell and systemic movement of

the virus (Hanley-Bowdoin et al., 2013). DNA A and DNA B

components share a common region or intergenic region of ∼200

nucleotides where the regulatory elements required for replication

and transcription are situated (Hong et al., 1993; Saunders et al.,

2002).

Based on genetic diversity and geographical origin,

begomoviruses are classified into “Old World” and “New World”

viruses. Members of Old World viruses are monopartite as well

as bipartite, while members of New World viruses have bipartite

genomes (Nawaz-ul-Rehman and Fauquet, 2009; Zhou, 2013). In

addition to the major encapsidated genomic components, most

of the Old World viruses and some New World begomoviruses

are found associated with sub-genomic DNA components such

as betasatellites, alphasatellites, delta satellites, and defective

interfering DNAs (Briddon and Stanley, 2006; Patil and Dasgupta,

2006; Fiallo-Olive et al., 2012). These are circular single-stranded

DNA components having genome sizes of ∼½ of their helper

viruses. Betasatellites contain a βC1 ORF and a non-anucleotide

sequence. βC1 is essential for the pathogenesis and suppression

of gene silencing (Cui et al., 2004; Eini et al., 2012), and they

depend on a helper virus for replication. Alpha satellites encode

an ORF alpha-Rep and are self-replicating. Both alphasatellites

and betasatellites depend on their helper viruses for encapsidation

and movement (Nawaz-ul-Rehman and Fauquet, 2009). The only

natural association of an alphasatellite with a cassava mosaic

infection has been reported from cassava fields in Madagascar

infected with EACMKV. These alphasatellites, designated as

“cassava mosaic alphasatellites,” were closely related to Cotton

FIGURE 1

Infected cassava plants on the field exhibiting cassava mosaic disease symptoms.

leaf curl Gezira virus alphasatellite (Harimalala et al., 2013).

Alphasatellites or betasatellites associated with SLCMV or ICMV

infection have not yet been reported, although it has been shown

that SLCMV DNA A can interact with Ageratum yellow vein virus

betasatellite and that interaction expands its host range (Saunders

et al., 2002).

Geminiviruses often produce deleted versions of their genomes

and give rise to defective interfering DNAs (DI DNAs) by

recombination, deletion, and rearrangement of the parent genome.

This was first reported in association with ACMV infection (Stanley

and Townsend, 1985). Defective DNAs depend on the parent

virus for replication, movement, and transmission although they

contain an intergenic region with all cis-acting elements (Patil

and Dasgupta, 2006). They ameliorate the symptoms and cause a

reduction in helper DNA levels (Bach and Jeske, 2014). This could

be due to their competition with the helper virus for essential host

and viral factors and thereby inhibiting the replication of the helper

virus. DI DNAs are generally derived from DNA B but a type

of DI-DNA derived from the DNA-A of EACMV has also been

reported (Ndunguru et al., 2006). Though they usually form in

relation to infections in experimental hosts, the natural association

of DI DNA-B with SACMV-infected cassava plants in South Africa

was reported by Rey et al. (2012). Upon infection with SLCMV

infectious clones, DI DNAs were produced from both DNA A

and DNA B components. The DNA-B-derived DI DNAs are found

associated with a decrease in levels of DNA-B with a change in

the symptoms from downward leaf curling in the older leaves to

upward leaf-rolling in newly emerging leaves (Patil et al., 2007).

Two novel episomal begomovirus-associated sequences,

namely sequences enhancing geminivirus symptoms (SEGS-1

and SEGS-2), were identified in the cassava field affected by

CMD. SEGS-2 contains sequences highly similar to the cassava

genome and a 26-bp sequence identical to alphasatellite replication

origin. This supports the hypothesis of its possible evolution

by the recombination between a cassava genomic sequence and

an alphasatellite. Arabidopsis thaliana plants co-infected with

ACMV and SEGS-2 developed severe CMD symptoms. The

satellite molecule when co-inoculated with Cabbage leaf curl virus

could infect an ecotype of A. thaliana, recalcitrant to geminivirus
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infection. This confirms its status as a satellite molecule capable of

enhancing CMD symptoms (Ndunguru et al., 2016; Aimone et al.,

2021b).

Recombinations, mutations, and pseudorecombinations or

reassortment of the viral components occurring inmixed infections

are the major causes of the emergence of new viruses (Fondong

et al., 2000; Seal et al., 2006). Recombinant viruses have been

associated with severe outbreaks of CMD in Africa. The intergenic

region and the 5′ part of the Rep gene were identified as hot

spots of recombination in begomoviruses (Lefeuvre et al., 2007).

EACMV-like viruses are highly prone to recombination compared

with ACMV. The highly virulent strain, EACMV-UG, was a

recombinant virus that resulted from the exchange of a portion of a

coat protein (CP) gene of an EACMV genome with a homologous

CP gene fragment of EACMV (Zhou et al., 1997).

The Sri Lankan cassava mosaic virus DNA A has many

characteristics of a monopartite begomovirus. Sequence analysis

and pseudorecombination studies revealed that SLCMV evolved

into a bipartite virus by recombination with ICMV DNA B.

High-sequence similarity of SLCMV DNA B and ICMV DNA B

outside their common regions reinforces this hypothesis. In the

phylogenetic analysis of viruses causing CMD in Africa, and South

and Southeast Asia, SLCMV and ICMV formed a separate clade,

revealing their distinct evolutionary lineage compared with their

African counterparts (Figure 2 and Table 1). SLCMV DNA A alone

produces typical monopartite symptoms of upward leaf curling

and stunting in Nicotiana benthamiana, proving its evolutionary

intermediate position between bipartite and monopartite viruses.

Pseudorecombination studies of SLCMV DNA A and ICMV DNA

B suggest that SLCMV can trans-replicate ICMVDNA B in spite of

the difference in their Rep binding sequences, revealing its complex

infectious patterns. Moreover, its ability to interact with the DNAβ

component of Ageratum yellow vein virus (AYVV) to produce

systemic infection in Ageratum conyzoides also indicates that a

monopartite ancestor of SLCMV might have existed in association

with a betasatellite component (Saunders et al., 2002). SLCMV is

highly recombinogenic. Studies by Crespo-Bellido et al. (2021) also

showed the evolution of SLCMV by interspecific recombination,

which was further supported by PCR-RFLP analyses (Borah and

Dasgupta, 2012). SLCMV Rep is even shown to be triggering

transposon activity in Agrobacterium tumefaciens (Resmi et al.,

2014).

Weeds from the family Euphorbiaceae are shown to be potential

reservoirs of cassava mosaic geminiviruses. Various ICMV and

ACMV strains were found to be associated with Jatropha curcas

mosaic disease in South India (ICMV-Dharwad) and Southeast

Asia (ICMV-Singapore; Gao et al., 2010; Wang et al., 2014). Many

SLCMV strains isolated from Southeast Asia exhibit a seven amino

acid deletion at the carboxy-terminal of the replication-associated

protein (Rep). This deletion is associated with decreased virulence

of the virus compared with the virus harboring the full-length Rep

protein, hence identified as the virulence determinant. To date, only

one isolate identified from South Asia contains this truncated Rep,

which shows a similarity to the SLCMV-Col strain isolated from Sri

Lanka. However, the SLCMV-Col strain cloned from China did not

show this mutation and exhibited hypervirulence. Further studies

are needed to understand whether this is an adaptation of the virus

FIGURE 2

Maximum-likelihood phylogenetic tree obtained from the alignment

of full-length nucleotide sequences of the cassava mosaic viruses

given in Table 1. The sequences were aligned with CLUSTAL W, and

the tree was constructed using MEGA11 software with 1,000

bootstrap replications.

to exist in the plant in the dormant stage without triggering host

defense mechanisms (Siriwan et al., 2020; Wang et al., 2020).

Ecological conditions and farming practices influence the

evolution of plant viruses. Evaluating nucleotide diversity in

ACMV and EACMCV using high-throughput sequencing on a

susceptible landrace Kibandameno, Aimone et al. (2021a) have

shown that cropping practices can affect viral evolution and disease

progression. Vegetative propagation over several generations has

a significant impact on diversity at the nucleotide level and

was unique to each of the viruses studied. Such changes were

represented by biased base substitution toward C→ T and G→
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TABLE 1 List of virus species used in the phylogenetic analysis with accession numbers and designations used.

Sl. no. Virus Designation given Accession no. (DNA A) References

1. African cassava mosaic virus ACMV J02057

Stanley and Gay, 1983

2. East African cassava Malawi virus EACMMV AJ006459.1

Zhou et al., 1998

3. East African cassava mosaic Cameroon virus EACMCMV AF112354.1

Fondong et al., 2000

4. East African cassava mosaic virus EACMV AF126802.1

Pita et al., 2001

5. South African cassava mosaic virus SACMV AF155806.1

Berrie et al., 2001

6. East African cassava mosaic Zanzibar virus EACMZV AF422174.1

Maruthi et al., 2004

7. East African cassava mosaic Kenya virus EACMKV AJ717536.1

Bull et al., 2006

8. Cassava mosaic Madagascar virus CMMGV HE617299

Harimalala et al., 2012

9. African cassava mosaic Burkina Faso virus ACMVFB HE616777.1

Tiendrébéogo et al., 2012

10. Indian cassava mosaic virus ICMV Z24758.1

Hong et al., 1993

11. Sri Lankan cassava mosaic virus SLCMV AJ314737.1

Saunders et al., 2002

A and the highest nucleotide diversity in the non-coding regions

of DNA A and B, except the promoter regions. In addition to

this, increased variations were also observed in coding regions and

predicted to have deleterious effects on protein structure, owing to

relaxed selection pressure over half a dozen vegetative passages. The

effect of temperature changes or the presence of SEGS did not have

a significant impact on the viruses (Aimone et al., 2021b).

Cassava mosaic geminivirus is vectored by the whitefly, Bemisia

tabaci (Fauquet and Stanley, 2003). The species complex consists

of ∼35 genetically distinct cryptic species (Liu et al., 2012). In

Africa, the virus transmission by whiteflies plays a major role in

the spread of CMD (Legg et al., 2014). Field studies in India and

Vietnam confirmed that white fly-mediated infections occurred

only in younger leaves and accounted for a very less percentage

compared with cutting-borne infections. The infections borne

from diseased planting material occurred both in younger and

older leaves (Jose et al., 2011; Minato et al., 2019). Transmission

efficiencies of SLCMV by three whitefly species in Asia, namely

Asia II 1, Mediterranean (MED), and Middle East-Asia Minor

(MEAM1), vary significantly, and only Asia II 1 whiteflies transmit

this virus efficiently (Chi et al., 2020). Temperature, rainfall, and

wind affect the whitefly population (Fauquet and Fargette, 1990).

The infection begins from the plants situated at the edge of a

plot and gradually spreads inward to the newly planted cassava

stands (Saokham et al., 2021). Monitoring the plants at regular

intervals helps in preventing further spread of the disease in fields.

Even though whiteflies contribute only to the secondary source

of infection (Minato et al., 2019), their control is important to

eradicate CMG infection in cassava and its spread to alternate hosts.

Outbreaks of CMD in South and
Southeast Asia

Cassava mosaic disease was first reported in Tanzania

(Warburg, 1894), and it was proposed as a viral disease by

Zimmermann (1906; reviewed in Patil and Fauquet, 2009). The

virus was initially designated as Cassava latent virus, and it was

sequenced and renamed as African cassava mosaic virus (Bock

et al., 1981; Bock and Woods, 1983; Stanley and Gay, 1983). The

incidence of CMD in India was initially reported by Abraham

(1956) and Malathi et al. (1985) from Kerala. The virus was first

cloned and sequenced from the samples collected from Kerala

and named as Indian cassava mosaic virus (Hong et al., 1993). A

second virus species, Sri Lankan cassava mosaic viruswas identified

from infected cassava samples from Sri Lanka (Saunders et al.,

2002). Later, SLCMV was also identified from infected cassava

material collected from Kerala (Dutt et al., 2005). CMD is also

prevalent in major cassava-cultivating districts of Tamil Nadu with

a disease incidence of more than 90% (Rajinimala et al., 2011).

A survey conducted across 80 locations in nine districts of Tamil

Nadu revealed that the majority of the samples were infected

with SLCMV. Mixed infections of SLCMV and ICMV were also

observed in a few samples. Sequence analysis displayed only a low

level of genetic variability in these samples, observed as scattered

single nucleotide changes (Kushawaha et al., 2018). In a recent

survey conducted in West Bengal, India, an incidence of 61–92%

was recorded with varying symptoms from mild chlorotic pattern

to severe mosaic and leaf distortion. Sequence analysis showed that
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the isolates are similar to SLCMV from India (Adhikary et al.,

2018). Unlike in Africa, where CMD causes remarkable crop losses,

CMD has not yet turned out as a serious threat in India as the yield

loss ranges only between 10 and 15% (Rothenstein et al., 2006).

Ever since the advent of CMD at Ratanakiri, Cambodia, in the

year 2015 (Wang et al., 2016), SLCMVhas been spreading rapidly in

Southeast Asian countries. CMDwas confirmed in farmers’ fields in

Vietnam and China in 2017 and Thailand in 2019 (Uke et al., 2018;

Minato et al., 2019; Wang et al., 2020). During the field surveys,

CMD has also been identified in Laos in 2020 (Chittarath et al.,

2021). All the strains isolated so far from the South and Southeast

Asia are closely related to previously characterized SLCMV isolates.

Minato et al. (2019) investigated the geographical distribution

of SLCMV in Vietnam and Cambodia in the year 2016. In the

systematic nationwide survey in Vietnam, 15 districts with the

largest cultivating area were selected and a total of 2,640 samples

were collected from 179 fields. Similarly, in Cambodia, 16 districts

were included in the survey, collecting 3,840 samples from 240

fields. PCR-based diagnostics identified 49 plants representing nine

fields, accounting for 2% of the total field samples collected. Among

these positive plants, 14% did not show any visible symptoms,

and the majority of positive samples belonged to two provinces

in Eastern Cambodia-Ratanakiri and Stung Treng. However, no

infection was detected in other samples collected from either

country. The incidence of within-field level in two fields in

Ratanakiri province was 25 and 37.5%, and other fields showed

SLCMV incidence. The within-field level incidence in two fields in

Ratanakiri province was 25% and 37.5%. In Stung Treng province it

ranged from 6.3 to 56.3% among various fields, and, interestingly, it

was much higher compared to Ratanakiri province where SLCMV

was detected initially (Minato et al., 2019).

In Thailand, Cassava plantations in five provinces, along the

Thailand–Cambodia border were surveyed during 2018–2019 in

order to understand the incidence of CMD caused by SLCMV.

The survey showed an overall incidence of 40% with the highest

incidence of 80% in the Prachinburi area, followed by 43% in

Sakaeo (Saokham et al., 2021).

During field surveys in Laos in the year 2020, eight fields

were studied, of which the fields from the Kong district showed

a considerable incidence of SLCMV. Only 6.7% of plants showed

visible symptoms, but 18.3% of the plants were positive when tested

by PCR. The visible symptoms were confined to older leaves, owing

to the use of contaminated stakes, as the majority of cassava grown

in Laos is from neighboring countries, where CMD was already

reported (Chittarath et al., 2021).

The severity of the disease depends on various factors such as

the age of the plant, cultivar, virus strain, and climatic conditions.

The effect of SLCMV infection on the root yield of cassava

was attributed to 16–33% when infected cuttings were used as a

planting material (Uke et al., 2021). When 1–3-month-old plants

showed moderate to severe mosaic symptoms, 5–7-month-old

plants displayed only mild chlorosis. Whitefly-borne infections

were less severe than infected-cutting-borne infections. In many

cases, the infected plants remained asymptomatic. It was also found

that genotypes, such as CMR-89 and Ryong 11, were susceptible to

CMD (Saokham et al., 2021).

The studies conducted so far confirm that SLCMV is the major

virus causing cassava mosaic disease in South and Southeast Asia,

and it is more successful as a pathogen than ICMV. Though

ICMV and SLCMV co-exist in cassava fields in the Indian sub-

continent, in mixed infections, SLCMV suppresses ICMV and

the latent ICMV can re-emerge when the recovery type cassava

genotype recuperates from the SLCMV infection. This dominance

of SLCMV might be the reason for the prevalence of SLCMV

over ICMV in cassava fields (Karthikeyan et al., 2016). In Asia,

no new cassava-infecting geminivirus species have been reported

other than SLCMV and ICMV. The overlapping occurrence of

SLCMV and ICMV in the cassava fields of South India and

their presence in other host plants, which serve as reservoirs

of various geminiviruses, demand immediate attention due to

their recombinogenic properties. The long-distance spread of

CMD mainly occurs due to the movement of contaminated plant

materials, and the local spread can be affected by the whitefly

vectors. Though ACMV has not yet been reported from Asia

except for an odd incident in Oman (Khan et al., 2013), the

recovery of ACMV from cotton plants in Pakistan hints at the

risk of interspecific recombination. If Asian and African CMGs

get an opportunity to co-exist in the same host, the emergence

of highly virulent CMG could happen. Thus, proper surveillance

measures are needed and should be imposed to curtail the spread

of the disease.

Serological and molecular diagnostics

Effective and rapid diagnostic methods need to be developed

and implemented to detect CMGs and control their spread

effectively. Molecular and serological methods are commonly

used to detect the viruses. The serological techniques, such as

double antibody sandwich ELISA (DAS-ELISA) and triple antibody

sandwich ELISA (TAS-ELISA), have been successfully used to

detect and distinguish between CMGs and to produce the first

CMG distribution map for Africa (Sequeira and Harrison, 1982;

Swanson and Harrison, 1994; Charoenvilaisiri et al., 2021). Malathi

et al. (1989) produced ICMV antiserum and tested the field-

infected plants by the DAS-ELISA method. Using TAS-ELISA,

dot immunobinding assay (DIBA), and tissue blot immunoassay

(TBIA), ICMV infection was detected both in symptomatic and

asymptomatic cassava leaf samples (Makeshkumar and Nair, 2001;

Hegde et al., 2010). ELISA is cost-effective and simple and hence

adapted for the large-scale screening of the virus, but ELISA

sometimes fails to detect asymptomatic infections.

Different types of PCRs such as immunocapture PCR (IC-

PCR), spot capture PCR (SC-PCR), print capture PCR (PC-PCR),

were tested and found that all are equally effective in detecting

ICMV. The nucleic acid spot hybridization technique was also

demonstrated to be more effective in the detection of ICMV

using CP gene non-radioactive probe (Makeshkumar et al., 2005).

Different sets of primers targeting the conserved AC1 and AV1

regions have been used by various groups in India and Southeast

Asia to detect ICMV and SLCMV from field-infected samples

(Dutt et al., 2005; Anitha et al., 2019; Uke et al., 2022). Multiplex

PCR is useful in detecting mixed infections (Patil et al., 2005),

and real-time PCR also has been developed for the detection and

quantification of viruses from asymptomatic plants (Makeshkumar

et al., 2005; Deepthi et al., 2012).
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For the specific detection of SLCMV in Southeast Asia, most

research groups have used primer sets that specifically target AV1

(CP). Coat protein-targeting primers, reported by Dutt et al. (2005)

were used to detect SLCMV in cassava samples collected from

Cambodia (Wang et al., 2016). On the other hand, Minato et al.

(2019) reported the use of a PCR-primer set targeting the whole

ORF of the AC1 gene (Duraisamy et al., 2013) to screen for

SLCMV in Cambodia and Vietnam, while Uke et al. (2018) used

the rolling circle amplification (RCA) process to characterize the

virus detected in Vietnam.

Loop-mediated isothermal amplification (LAMP) can detect

viruses even from stem tissues and it does not require a thermal

cycler. The sensitivity of the LAMP assay is 10,000 times higher

than the conventional PCR. A commercial LAMP kit containing

dried reagents is stable at room temperature and can be used for

the on-site detection of CMGs (Uke et al., 2022).

The advent of next-generation sequencing (NGS) and third-

generation sequencing technologies has taken the virus diagnosis

far ahead. For example, shotgun metagenomic analysis does not

require any previous knowledge of viral sequences. Millions of

RNA/DNA fragments can be sequenced simultaneously, allowing

the diagnosis of mixed infections of all viruses. But this method

is associated with high costs. Recently, Leiva et al. published a

nanopore-based full genome sequence of SLCMV from Thailand

(Leiva et al., 2020). Further research on affordable next-generation

platforms could help in the early diagnosis of the virus and

thereby reduce crop losses. The multispectral imaging system

(MSIS) consists of an electron multiplying charge-coupled device

(EMCCD) camera that can detect changes in the red:far-red

fluorescence image ratio due to CMD stress at an early stage.

The technique is highly useful for monitoring the health of crops

from proximal sensing platforms (Raji et al., 2015). An active

multispectral imaging (A-MSI) device combined with machine

learning and CIDER sequencing was also used for the early

detection of cassava-infecting viruses in a cost-effective way (Mehta

et al., 2020; Peng et al., 2022).

Breeding for CMD resistance

Conventional breeding is considered the main egress from

the problems faced by cassava growers worldwide (Lynam and

Byerlee, 2017). Cassava breeding faces several challenges such as

long breeding cycles as long as 8 years, low multiplication rate,

and most importantly, the use of heterozygous progenitors, which

detains conventional back-crossing (Ceballos et al., 2004, 2020).

Identifying cassava mosaic geminivirus-resistant genetic

resources for breeding has been a major focus in the battle against

CMD (Malik et al., 2020). Over the past few decades, several

conventional breeding programs were carried out, in order to

impart resistance against CMD, both in Africa and Asia. To date,

three sources of resistance, named CMD1, CMD2, and CMD3,

have been identified and partially characterized and are also being

used for the development of CMD-resistant cassava varieties (Rey

and Vanderschuren, 2017).

CMD1 is a recessive polygenic locus initially reported in a wild

relative of cassava, Manihot glaziovii Mull. Arg. (Nichols, 1947;

Fregene et al., 2001). Conversely, CMD2 resistance, a dominant

single genetic locus on chromosome 12, was identified in tropical

M. esculenta (TME) populations cultivated as landraces across

West Africa (Akano et al., 2002; Okogbenin et al., 2012). The

varieties carrying CMD2 resistance locus have been the main

source for CMD resistance breeding programs in Africa, Latin

America, and Asia, as they exhibited a high level of resistance to

almost all cassava mosaic begomoviruses. The loss of CMD2 type

of resistance was reported (LCR phenotypes) upon regeneration

during de novo morphogenesis (Beyene et al., 2016). However, it

was not observed in the varieties developed through conventional

breeding programs. Recently, Lim et al. (2022) demonstrated

that CMD2 and LCR phenotypes have a genomic basis and co-

localize on the cassava genome. An independently evolved non-

synonymous single-nucleotide polymorphism (SNP) variant in the

delta subunit 1 of polymerase (MePOLD1) was found segregating

with CMD resistance, which is considered a novel type of resistance

protein in plants. MePOLD might have been selected as a chimeric

clonal variant under several selections by African farmers, and

its monogenic dominant nature enabled their use in breeding

programs in Africa, India, and Southeast Asia (Rabbi et al., 2014).

This is important information for breeders who can use the

SNPs as markers when introgressing CMD2 into non-resistant

varieties. CMD3 is produced by the crossing between TME and

TMS genotypes (Lokko et al., 2005). However, the genetic analysis

of a cultivar named TMS 97/2205 and its offspring revealed that

CMD3 is a new quantitative trait locus (QTL). It provides putative

resistance to CMD and is not linked to CMD2 (Okogbenin et al.,

2012).

The pioneering work in molecular breeding is the identification

of SSR and RFLP markers associated with putative single dominant

resistance gene CMD2 (Akano et al., 2002; Fregene et al., 2006). A

high-density map of cassava sequencing revealed a single putative

chromosomal location of CMD2-associated dominant resistance

(Rabbi et al., 2014; Wolfe et al., 2016).

Cassava breeding programs in India were initiated by Central

Tuber Crop Research Institute (CTCRI) with its rich cassava

germplasm, holding several indigenous and exotic landraces and

breeding lines including wild relatives of cassava (Malik et al.,

2020). The collaboration of CTCRI with CIAT since 1996, accepting

different combinations of F1 seeds, has been instrumental in

extensive breeding programs in the country (Abraham et al., 2000;

Legg et al., 2015; Malik et al., 2020).

Subsequent to several evaluation trials of MNga-1 (a breeding

line from IITA) in the field conditions of India, CTCRI has released

a variety named Sree Padmanabha in the state of Tamil Nadu,

which showed high-level resistance to ICMV and SLCMV, and

has been used in developing resistant clones through intervarietal

hybridization (Nair et al., 1998; Unnikrishnan et al., 2002; Abraham

et al., 2006; George et al., 2012). In addition, evaluation of

the MNga-1 seedling population yielded CMR1 and CMR129

with CMD resistance and high starch content (Unnikrishnan

et al., 2011). The West African landraces with CMD2 resistance,

introduced in India, are used to generate heterotic hybrids

through inbreeding and are being evaluated (Sheela et al., 2012).

Interspecific breeding of cassava with M. caerulescens and other

species resulted in the prebreeding population of CMD-resistant

clones with a high level of resistance to CMD and are being used

as donor parents in the breeding programs (Sheela et al., 2002,
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2004; Unnikrishnan et al., 2002; Malik et al., 2020). Over the past

two decades, ICAR-CTCRI has evaluated several resistant sources

of CMD, including interspecific back-cross lines, inbred lines, and

introductions from CIAT, Cali, and Columbia. ICAR-CTCRI and

AICRP(TC) have released five CMD-resistant varieties, namely

Sree Reksha, Sree Sakthi, Sree Suvarna, PDP-CMR-1, and Sree

Kaveri, which are very popular among farmers (Malik et al., 2020).

The long breeding cycle of cassava is a major limiting

factor for developing and implementing breeding programs. It

has been found that the over-expression of the Arabidopsis

FLOWERING LOCUS T (FT) gene encoding florigen improves

floral development in cassava (Adeyemo et al., 2017). Hence,

the utilization of FT gene orthologs of cassava in the breeding

programs could efficiently lessen the long breeding cycle, and

efforts are underway.

Management of CMD in Southeast Asia

Various control strategies have been exploited in order to

control the disease, and to some extent, planting resistant

varieties had a promising effect. The development of disease-free

planting material was another focus area in tackling CMD in

Southeast Asia. In 2016, the Science and Technology Research

Partnership for Sustainable Development (SATREPS) project

funded by the Japanese Government was launched for the

overall management of cassava diseases. It is a collaborative

research program between the Agricultural Genetics Institute

(AGI), Plant Protection Research Institute (PPRI), Hung Loc

Agricultural Research Center (HLARC), Nong Lam University

(NLU), Vietnam; University of Battambang (UBB), Cambodia, and

the Rayong Field Crops Research Center (RFCRC), Thailand. This

project was instrumental in the development of diagnostic tools,

pest management technologies, and novel molecular breeding

strategies. Production and dissemination of healthy planting

materials (Tokunaga et al., 2018) were another major focus area of

the project.

The International Center for Tropical Agriculture (CIAT) and

The International Institute of Tropical Agriculture (IITA) were

involved in the development and introduction of CMD-resistant

materials in Thailand and Vietnam subsequent to the outbreak of

CMD in these countries and Thailand. In the SATREPS project, a

breeding line (C-33) that contained CMD2 loci was introduced in

the field of prevailing CMD to serve as a potential source against

SLCMV infection. This line showed normal growth and remained

asymptomatic under the high-SLCMV pressure in the fields of

Tay Ninh province, Vietnam, while the Asian cultivars exhibited

CMD symptoms 3 months after planting. In addition to this, it

was also shown that SLCMVwas not transmitted when C-33 plants

were used as a rootstock in grafting experiments (Vu et al., 2020),

suggesting that the CMD2 as a resistant source for breeding cassava,

which is suitable for cultivation in Southeast Asian countries (Uke

et al., 2021). These approaches were useful to address the CMD

problem in Southeast Asia and to generate new cassava varieties

with high resistance to CMD. These collaborative projects could

strengthen the efforts to minimize CMD and offer significant

contributions to food security in Southeast Asian countries.

Engineering resistance against cassava
mosaic disease

Advancements in the field of plant genetic engineering have

unveiled a new arena in the management of plant diseases. Various

strategies have been successfully employed in engineering disease

resistance in plants. The initial trials in the management of plant

viruses were based on the concept of pathogen-derived resistance

(PDR; Hamilton, 1980; Sanford and Johnston, 1985; Dong and

Ronald, 2019), and several models have been shown to be effective

against a broad range of viruses. This is based on the fact that when

transgenic plants express viral genes or viral genomic regions, it

may lead to improved resistance against invading viruses (Lindbo

and Falk, 2017; Rosa et al., 2018). Pioneer studies based on the

concept of PDR were focusing on protein-mediated resistance,

involving the use of full-length functional protein coding sequences

that provide a moderate level of protection against a wide range

of related viruses. PDR generated by transgene expression largely

depends on the sequence homology of the viruses to be targeted

(Ratcliff et al., 1997). However, the PDR was not restricted to

such fully functional protein alone, but the presence of the non-

translatable sequence could also attenuate the virus infection to a

certain level and was later identified as an RNA-mediated silencing

mechanism (Lindbo and Dougherty, 1992). The discovery of RNA

interference has explained the mechanism of antiviral defense both

in protein/non-translated sequence-mediated resistance (Lindbo

and Falk, 2017; Rosa et al., 2018). Small RNAs (sRNAs) regulate

the gene expression of target genes by mRNA degradation or

translational repression. Similarly, the small interfering RNAs

(siRNAs) formed from the viral genes/genomic regions through

their expression in the host can target the invading viral genes as

they have extensive base-pair complementarity with virus genes.

These sequences can either be in sense or antisense orientation (Lin

et al., 2019).

RNAi strategies have been effectively employed in conferring

resistance against many viruses, including cassava mosaic

geminiviruses. The capability of the ACMV-derived AC1 gene

to impart strong resistance against CMD is a classic example of

utilizing RNAi technology in Cassava (Chellappan et al., 2004). The

AC1 gene from ACMV, when expressed constitutively in the host,

conferred resistance to ACMV and related species EACMV and

also to SLCMV, although SLCMV is considered a far distant species

as per the species demarcation threshold described by Brown

et al. (2015). Cassava plants with increased ACMV resistance

using improved antisense RNA technology by targeting the viral

mRNAs of Rep (AC1), TrAP (AC2), and REn (AC3) were developed

by Zhang and co-workers (Zhang et al., 2005). The transgenic

ACMV-resistant plants showed reduced viral DNA accumulation

in their infected leaves, proving the high efficacy of antisense RNAs

against viral mRNAs encoding essential non-structural proteins.

Vanderschuren et al. (2007) developed transgenic cassava plants

producing siRNAs from an intron-containing dsRNA homologous

to the common region containing a bidirectional promoter of

DNA-A of ACMV. Symptom manifestations were attenuated in

two of the transgenic lines, with reduced accumulation of viral

DNA in their leaves, compared to wild plants. It was concluded

that in transgenic cassava plants expressing hairpin RNA, the
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natural RNA silencing mechanism against the virus was triggered

by the formation of virus-derived dsRNAs prior to infection. In

another study, the hairpin RNA turnover was correlated with

the level of resistance in transgenic lines. The significance of the

load of hairpin-derived small RNAs in geminivirus resistance was

demonstrated in CMD-susceptible cassava cultivar (TMS60444)

expressing a hairpin dsRNA homologous to a conserved region

of the replication-associated protein coding sequence (Rep/AC1;

Vanderschuren et al., 2009). Transgenic cassava lines, with a high

turnover ofAC1-homologous small RNAs, showed a corresponding

increase in immunity when the viral load was elevated.

Resistance to SLCMV was imparted through RNA silencing

in the KU50 line, an important cultivar used for non-food

purposes (Ntui et al., 2015). Transgenic KU50 lines expressing

dsRNA homologous to the region between AV2 and AV1 in

the DNA A of SLCMV displayed high levels of resistance to

SLCMV compared to the wild-type plants without any growth

impairment. The use of the coat protein gene in imparting

resistance against SLCMVwas demonstrated by Gogoi et al. (2019),

in N. benthamiana. The coat protein gene (AV1) was cloned both

in sense and antisense orientation under the control of the CaMV

35S promoter, and the transgenic N. benthamiana plants were

developed. Upon challenging agroinfectious clones of SLCMV, the

plants showed delayed symptom expression and a high level of

resistance against SLCMV.

RNAi technology is currently being used extensively in

engineering virus resistance. However, its efficacy is limited when

targeting a virus species with <90% identity to the transgene-

derived dsRNA. Hence, profiling virus sequence diversity has

become a prerequisite to the development of RNAi constructs. A

new full-length circular DNA sequencing method, termed circular

DNA enrichment sequencing (CIDER-seq) has been developed

and effectively demonstrated for the assessment of virus sequence

diversity in transgenic plants. Intriguingly, it showed a considerable

shift of the virus species toward a population with less homology to

the transgene-derived dsRNA (Mehta et al., 2019a).

The importance of cassava improvement through

genetic engineering is that it helps to overcome the high

heterozygosity of cassava plants, the trait separation occurring

in traditional breeding, and the faster achievement of

improved target traits (Liu et al., 2011). Hence, genetic

engineering is considered the most important tool for the

improvement of cassava. The challenges in delivering new

products to farmers using this system are either biological or

associated with regulation, approval, and perception of crops

enhanced through genetic engineering tools (Bart and Taylor,

2017).

Current trends and prospects in the
management of CMD

In order to subvert the host immune response, pathogens

utilize their virulence factors in association with certain host

processes to complete pathogenesis (Mandadi and Scholthof,

2013; Toruño et al., 2016). In instances where the pathogen

depends on a singular host-encoded susceptibility gene or small

gene families, editing of such candidate genes could stall the

disease progression. Genome editing refers to the process of

inducing nucleotide modifications at targeted loci in the genome

of organisms (Hsu et al., 2014). This technique utilizes nuclease-

mediated double-stranded DNA breaks in the target sequence

coupling with cellular DNA repair mechanism, homology-

directed repair (HDR), and non-homologous end joining (NHEJ)

breaks that introduce modification at the target site (Puchta

et al., 1996; Gorbunova and Levy, 1997). Current nuclease-

based genome editing tools focus on techniques based on

zinc-finger nucleases (ZFNs), transcription activator-like effector

nucleases (TALENs), and clustered regularly interspaced short

palindromic repeats/CRISPR-associated (CRISPR/Cas) (Kim et al.,

1996; Christian et al., 2010; Cong et al., 2013; Mali et al., 2013; Gaj

et al., 2016).

CRISPR-/Cas9-based genome editing was first reported in

A. thaliana (Li et al., 2013) and N. benthamiana (Nekrasov

et al., 2013) and can be used in managing CMD as well.

In cassava, CRISPR/Cas9-mediated editing of the phytoene

desaturase (MePDS) gene in the genome of TME 204 and cv

TM60444 cassava cultivars were reported (Odipio et al., 2017).

Although several trials have been carried out with various

genes including the disease-susceptibility gene, MeSWEET10a,

using the CRISPR/Cas9 system, the homozygous mutations in

the T0 generation were insignificant. However, in A. thaliana,

when Cas9 was expressed under YAO promoter (pYAO:hSp

Cas9 binary vector), the number of targeted and homozygous

mutations was increased compared to the cauliflower mosaic

virus (CaMV) 35S promoter. Similarly, the use of the pYAO:

hSpCas9 binary vector to knock out the MePDS gene in cassava

improved the efficiency of homozygous mutations. This system

is highly promising for use in cassava gene editing (Wang et al.,

2022).

Conversely, being DNA viruses, the CRISPR/Cas system can be

used to target the CMG genome itself, as demonstrated successfully

inN. benthamiana andA. thaliana, against geminiviruses (Ali et al.,

2015, 2016; Baltes et al., 2015; Ji et al., 2015). A likely problem

associated with this system is the evolution of editing resistance

of viral genomes and the formation of truncated proteins which

may be functional, hence the system becomes unrewarding (Mehta

et al., 2019b). An alternative to this is the targeting of non-coding

motifs located in the intergenic regions of the viruses that are

crucial for replication and has been demonstrated with the LIR

motif, wherein reduced geminiviral accumulation was observed

(Ali et al., 2016). In addition to this, targeting multiple loci of the

same virus was also more beneficial (Ali et al., 2015; Baltes et al.,

2015).

Conclusion

The adaptability of cassava in poorly fertile soils, its drought

tolerance, and its relaxed harvesting period make the crop very

attractive in tropical regions. Cassava cultivation has remarkably

increased in South and Southeast Asia in recent years owing

to its demand in use as a source for biofuel production apart

from starch and its derivatives. The expansion of crop area along

with a large demand for planting materials imposes threats of

the virus being transported across the region and its further
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spread. Transport of infected materials among different countries

in Southeast Asia makes it nearly impossible to find cassava fields

devoid of CMD. In South and Southeast Asia, most of the cassava

cultivating fields are mainly affected by SLCMV; ICMV is also

detected in a few fields of South India. The cassava-infecting

begomoviruses have evolved rapidly due to their aggressiveness

in recombining with related viruses and infect alternate hosts.

Primarily, training farmers for the visual identification of the

symptoms and creating awareness among them to use disease-

free stem cutting for planting could help to restrict the disease’s

spread. Deployment of cultivars resistant to SLCMV developed

through conventional breeding has been a major focus area in

the management of CMD. Several genetic engineering strategies

were proven to be effective against SLCMV, but the concerns

of possible environmental and health hazards are lessening

their acceptance. However, novel marker-free genome editing

technologies appear to be more promising, and the development of

farmer-preferred Asian cultivars resistant to SLCMV is underway.

Successful deployment of efficient, and economical diagnostic

methods for the early detection of viruses and routine surveillance

will certainly help in devising proper strategies to contain the

disease. This will provide clues for detecting the emergence of

any new strain. There is an urgent need for a coordinated effort

by all countries affected by this disease to monitor the disease’s

progression and enforce strict prohibitions on the movement of

infected planting materials to areas that are currently free from

CMD. As an immediate solution, large-scale multiplication and

distribution of resistant cultivars will help growers in reducing

the inoculum source and overcoming the present crisis to a

considerable extent.
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