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Integrated pest management (IPM) has greatly influenced farming in the

past decades. Even though it has been e�ective, its adoption has not been

as large as anticipated. Operational issues regarding crop monitoring are

among the reasons for the lack of adoption of the IPM philosophy because

control decisions cannot be made unless the crop is e�ectively and constantly

monitored. In this way, recent technologies can provide unique information

about plants a�ected by insects. Such information can be very precise and

timely, especially with the use of real-time data to allow decision-making

for pest control that can prevent local infestation of insects from spreading

to the whole field. Some of the digital tools that are commercially available

for growers include drones, automated traps, and satellites. In the future, a

variety of other technologies, such as autonomous robots, could be widely

available. While the traditional IPM approach is generally carried out with

control solutions being delivered throughout the whole field, new approaches

involving digital technologies will need to consider adaptations in the concepts

of economic thresholds, sampling, population forecast, injury identification,

and ultimately the localized use of control tactics. Therefore, in this paper, we

reviewed how the traditional IPM concepts could be adapted, considering this

ongoing digital transformation in agriculture.
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Introduction

Integrated pest management (IPM) has greatly improved

farming. Its theoretical concepts are based on control tactics

from the 1940s, conceptualized most thoroughly in the 1950s

by Stern et al. (1959). Its major goals have been greatly

associated with reducing pest status, accepting tolerable pest

levels, conserving natural enemies and environmental quality,

and improving growers’ profits. Achieving these economic and

ecological goals typically requires pest monitoring and the use

of the economic injury level (EIL) and economic threshold (ET)

for the decisions about pest control.

Predominant reliance on pesticide-based pest control

can cause long-term effects on sustainability; thus biological

production systems are shifting agricultural practices and

research (Ehler, 2006; Goulson, 2020; Bueno et al., 2021;

Deguine et al., 2021). Hence, successful IPM programs

rely on accurate decision making for implementation of

a combination of selective and compatible strategies and

tactics for dynamic agricultural systems (Pedigo et al., 1986;

Higley and Pedigo, 1996; Stenberg, 2017). Innovative farming

technologies, including global positioning systems, various

sensors, automated traps, radars, drones, satellites, and robots

are shaping new IPM programs (Peterson et al., 2018;

Dara, 2019). Using gadgets that connect information through

the internet of things (IoT) and artificial intelligence (AI),

some farmers or practitioners have remote access to real-

time information about crop development and health, insect

population, weather, soil moisture, and many other parameters

accessed anytime and anywhere.

Digital agriculture is considered an evolution of precision

agriculture and is a widespread terminology in the field (Borém,

2020). New digital technologies have a great potential for

insect monitoring and local pest management, especially before

population outbreaks. Implementing tools for recording and

analyzing big datasets from the soil, weather, plants, and insects

are shaping modern agriculture (Heege, 2018). Enabling crop

field monitoring at the plant level (or sometimes leaf level)

can increase the adoption of the most efficient agronomic

practices using precise knowledge about the location of infested

plants (Greene et al., 1976; Oerke et al., 2010). Radars and

automated insect traps provide information about where and

when a given pest species arrives in the field (Lima et al., 2020;

Preti et al., 2021a,b). Additionally, spectral remote sensing can

be used for the detection of individual or groups of plants

under attack (Yao et al., 2019; Marston et al., 2022). Digital

platforms connecting insectmonitoring data, crop development,

and weather stations can help analyze area-wide outbreak risks,

which can be used to predict population peaks of pests and

natural enemies (Bajwa et al., 2003; Wang et al., 2019; Dutta

et al., 2020). Some technologies also change the traditional

way of delivering control solutions within the fields. Robotic

sprayers and dispensers of biocontrol agents attached to drones

can selectively deliver products only to the plants that need

protection (Iost Filho et al., 2019).

The benefits of digital agriculture can be seen in the precise

use of inputs. For instance, crop productivity and environmental

resources are optimized if pesticides are precisely applied when

and where they are needed, and in the necessary amounts

(Corwin, 2013). While the traditional IPM approach is generally

carried out with control solutions being delivered throughout

the whole field or plots, new approaches involving digital

technologies will need to consider adaptations in the concepts

of ETs and EILs, sampling, injury identification, population

forecasting, and ultimately the localized use of control tactics.

Therefore, in this paper, we review how some traditional

IPM concepts could be adjusted based on the ongoing digital

transformation in agriculture.

Challenges with traditional IPM

Even though various specialists differentially define IPM,

its strategies focus on sampling or monitoring procedures,

knowing control and non-control levels, and selecting integrated

control methods to be used (Kogan, 1998). For most field crops,

chemical control through synthetic pesticides is the primary

management tactic; however, there is a range of other tactics for

pest control, such as biological control, pest-resistant and pest-

tolerant cultivars, cultural control (crop rotation, intercropping,

trap crops, manipulation of fertilizer and planting calendar,

and elimination of crop residues), genetic control (sterile

insect technique), and behavioral control (baits, traps, mating

disruption techniques), alone or in combination with chemical

control (attract-and-kill) (Govaerts et al., 2006; Huang et al.,

2014; Alphey and Bonsall, 2018; Neves et al., 2018; Padilha et al.,

2018; Blassioli-Moraes et al., 2019; Sharma et al., 2019; Nunes

et al., 2020; Preti et al., 2020; Cardé, 2021; Jalli et al., 2021;

Kovaleski and Mastrangelo, 2021; Adomako et al., 2022; Parra

et al., 2022; Pazini et al., 2022).

References to the adoption of IPM over the last decades are

commonly found (McDonald and Glynn, 1994; Farrar et al.,

2016; Rossi et al., 2019; Bueno et al., 2021; Rahman, 2022).

However, many farmers and practitioners are still reluctant to

fully adopt IPM. The adoption of IPM is affected by several

barriers, including the need for faster and easier pest sampling

procedures, the “commercial pressure” from the agrochemical

industry to the intensification of chemical control, and some

cultural barriers such as the conviction that non-chemical pest

control tactics are inefficient and that chemical pesticides solve

all problems (Martins et al., 2016; Bueno et al., 2021). Moreover,

one can say that the lack of incentives to use IPM and the

complexity of its strategies can hamper the large adoption of this

management system (Brewer and Goodell, 2012; Lefebvre et al.,

2015).
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An essential part of the decision-making process is

diagnosing the problems in the field. However, inmany cropping

systems, thorough scouting is hampered by the lack of resources,

both human and technological (Dara, 2019; Iost Filho et al.,

2019). This is especially true in large fields, such as soybean,

cotton, and maize fields in the Brazilian Central Region, being

one of the reasons for the limited adoption of IPM in these

areas and the large adoption of calendar-based pest control.

Newmonitoring technology could help change this scenario. For

instance, sensors aremore widely available for precision fertilizer

management and precision weed management than they are for

precision pest management.

Strategies from IPM do not strictly apply to every situation,

meaning that there are no one-size-fits-all solutions. On the

contrary, IPM can be defined as a philosophy that guides

the practitioners to use the best tools as appropriate for each

situation (Dara, 2019). Regarding the control options, it is

noteworthy the importance of not only knowing each tool but

knowing how to use them (Peterson et al., 2018). Although a

particular pest can be controlled by a given option, this may not

be available in all regions, for all crops, at any time, or even at

economically viable prices (Dara, 2019). For instance, a chemical

pesticide may not be registered for all the crops where it could

be used, a biological or behavioral tool may not be affordable

in large fields, and a cultural control method cannot be used

for the same crop under different cultivation system, among

many other scenarios. For achieving the best results, control

decisions should be made based on available and affordable

control options (Dara, 2019).

Significant technological advances are drastically changing

the decision-making components of IPM and expanding

its tactical options. The most significant changes relate to

applications of geographic information systems, precision

agriculture, accuracy of weather-driven computational models

for pest prediction, diffusion of real-time information to

farmers, and real-time diagnostics. Changes in control tactics

also are in substantial transformation, such as the wider use

of drones to precisely deliver natural enemies in field crops,

boosting the use of biological control (Iost Filho et al., 2019).

Thus, all these aspects will be covered in the next sections.

Precision pest management

Precision pest management is based on making decisions

based on precise subfield-scale information about pest

infestations instead of pest density averages at the field

scale (Naud et al., 2020). The most significant advantages of

precision pest management for crop sustainability are the

reduction of pesticide use and the increased use of non-

chemical tools targeted to populations in restricted parts of

the field. Its central premise is to deliver control solutions

only where and when pest populations reach economic levels

(Park et al., 2007; Pedigo et al., 2021). Because the spatial

distribution of many insects is aggregated (Davis, 1994),

precision management can efficiently reduce the number of

resources needed in some pest management situations (Park

et al., 2007).

Responsive precision pest management programs are

based on the creation of subfield management zones (Molin

et al., 2015). The zones represent homogeneous field regions

according to plant health and development. Thus, the objective

of precision pest management is twofold: first, the detection

of groups of plants attacked by insects (locating the zones);

and second, the localized control on plants injured by insects

(Figure 1). Assessing the distribution of insects and injured

plants can be done by straightforward tools, such as visual

inspection and global positioning technologies (Corwin, 2013).

More recently, spectral remote sensing was indicated as a

technology that can also identify injured plants (Nansen and

Elliott, 2016).

The detection of insect-induced stress using remote sensing

is indirect. For example, plant spectral responses are mostly

caused by changes in photosynthesis, physical plant structures,

and pigments (Moran et al., 1997). The Normalized Difference

Vegetative Index (NDVI), proposed by Rouse Jr et al. (1974),

was initially used to determine the density of “green” on a

patch of land. Its values are typically associated with biotic

and abiotic stressors reducing chlorophyll content and leaf

cell organization. This index became one of the most used

strategies for creating management zones. However, different

stressors can cause similar plant physiological responses, making

it hard to identify which stressor is contributing to most of

the changes in the NDVI values. For instance, how can we

differentiate among stressors and create reliable prescription

maps in a crop field where some plants are nutritionally

deficient and under the attack of pests or plant pathogens

simultaneously? Studies regarding this matter indicated the

use of more spectral bands (e.g., hyperspectral sensors) and

advanced analyzing methods can help selecting specific spectral

bands, or spectral regions, for each stressor, such as different

pest species, diseases, and nutrient deficiencies (Backoulou et al.,

2013, 2015; Iost Filho, 2019; Ma et al., 2019; Nguyen andNansen,

2020).

The spectral resolution is related to the quality of

information produced. The most common sensors include the

RGB (red, green, and blue), multispectral sensors (between 3

and 12 non-continuous wide spectral bands), and hyperspectral

sensors with hundreds of continuous narrow spectral bands.

The RGB sensors are cheap but provide limited spectral

information. Multispectral sensors result in more spectral

information, are easier to handle, are affordable and lightweight,

and are commonly used in agriculture. Hyperspectral sensors are

generally better at differentiating subtle differences in canopy

reflectance (Yang et al., 2009). However, hyperspectral sensors

are larger and heavier, more expensive, and produce more
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FIGURE 1

Digital transformation in agriculture, leading to precision pest management (PPM), with the use of digital tools to monitor the fields and identify

the regions (hotspots) where pest populations have reached the economic threshold (ET), and the delivery of control solutions only to the

hotspots, instead of delivery to the whole area, as in integrated pest management (IPM). Adapted from Molin et al. (2015).

data that require higher storage capability and more time and

experience for data analysis.

The spatial resolution plays an essential role in the decision-

making process. Spatial resolution refers to the size of the pixels

of the image. Field surface is represented by pixels that may vary

from some meters in orbital platforms to a few centimeters in

ground-based or aerial platforms (Iost Filho et al., 2019). For

management purposes, spatial scale is defined by the area being

treated. In this way, digital tools might be used for area-wide,

whole-field, or site-specific management.

Although remote sensing has proven to be efficient for

pest monitoring (Alves et al., 2015; Nansen and Elliott, 2016),

the spectral responses vary depending on the location, type,

moment, and intensity of the attack (Pinto et al., 2021). An

extensive list of plant species, pest species, and the technology

used to monitor them is available in Iost Filho et al. (2019).

Most of the studies showing that remote sensing is effective

for identifying stressed plants were conducted under controlled

experimental conditions. Commercial applications of remote

sensing necessitate further studies under field conditions,

where multiple stressors can be affecting plants simultaneously.

Temporal resolution (how often the sensor collects data from

the field), repeatability, and accuracy can limit the use of

remote sensing. Remote sensing data are usually obtained under

different environmental conditions, causing variations that may

affect the results and generate unsatisfactory accuracy levels.

The quality of information is also related to the data processing

methods (Martins et al., 2017). A current challenge for analyzing

spectral data is the access to even faster computers and higher

capacity data storage gadgets (Caballero et al., 2020).

Remote sensing is typically associated with imaging

sensors but accessing information from a distance is not

limited to spectral information only. Insect-induced volatiles

released in the air can also be detected by real-time sensors

(Tholl et al., 2021). Analysis of DNA sequences of insect-

borne pathogens and plant fluorescence are becoming

more sensitive, inexpensive, and portable for real-time

field applications (Donoso and Valenzuela, 2018). Radars

represent another remote sensing technology that can

provide information about insect-pest dispersal. Studies

have shown the potential of using meteorological radars to

monitor insect migration, including detailed information

like flight activity, trajectory, population size, and species

identification (Drake, 2002; Drake et al., 2017; Poffo et al.,

2018).

Some of the digital technologies shown here facilitate data-

driven decisions from information collected, processed, and

transformed into management zones. This process might take

some time; thus, the next logical step is the establishment

of management decisions as soon as the monitoring data

are collected. Technologies that provide crop managers with

real-time information rely on an interconnected system of

sensors, hardware, software, connectivity web, and applications

(sometimes called the ‘internet of things’ or IoT) that allow

consumers, companies, and government to connect data gadgets

in the most diverse environments (Oliveira, 2020).
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Smart traps represent a real-time technology to monitor

the presence of insect pests in strategic parts of the field. They

are an evolution of the traditional methods to monitor pests

in commercial attractive traps and periodic in-field inspection,

which is a laborious and slow process. A case of success in the

evolution of this technology was reported in apple orchards to

monitor moths. The first evolution of this process was based on

wireless cameras that sent full images for remote classification

(Ding and Taylor, 2016). Although this system uses machine

learning (ML) to analyze the images collected, it demands time,

storage, and processing power because of the size of the full

images. Thus, researchers developed a system that processes

the picture in situ using a preprocessing algorithm, returns a

classification of the insects using an ML algorithm, and sends a

notification to the cropmanager (Brunelli et al., 2019; Preti et al.,

2021a,b). All these steps are done in the hardware located in the

trap (i.e., cloudless IoT).

The integration ofmultilayer information can promotemore

accurate control decisions. A general multilayer architecture

includes the soil and crop layer (the physical component of

the agricultural land and the crop present on it) interacting

with the rest of the architecture, the actuators layer (with

the distribution layer representing the tools to deliver the

solutions to specific areas within the field), the sensors layer

(representing the tools available to collect data from the soil

and plants), a networking layer (connecting all the layers), and,

finally, the application layer (with cloud services to process

all data and transform them into useful information) (Naud

et al., 2020). The integration of data is especially important

in the context of pest management because of the dynamics

of pest populations in space and time (Venette et al., 2010),

as well as the high dynamism of their environmental drivers,

such as temperature, radiation, and humidity (Méndez-Vázquez

et al., 2019). However, data come at different resolutions,

and some data are acquired at a resolution that differs from

the scale at which the decision must be made. Therefore,

data processing is imperative. Moreover, technically trained

interpretation should be capable of delineating biologically and

agronomically meaningful zones.

Important questions for
future research

Social and economic questions are raised when digital

agriculture projects are planned. For instance, digital agriculture

is primarily targeted at large growers because of the cost of

investing in technology (Pedersen et al., 2020). Hence, how can

these tools, equipment, and systems becomemore affordable and

accessible for small growers?

Various players should be involved in the process of

improving digital pest management programs, including

companies, researchers, extensionists, farmers, consultants, and

regulators. Hence, another social concern is related to data

ownership and sharing because of the large number of people

working on the different components of the project. Instead of

using data in opportunistic ways, end-user license agreements,

algorithms, and company policies should aim for the protection

of data sovereignty (Fraser, 2019; Hummel et al., 2021).

Discussions about data stewardship agreements and open-

source formats should increase awareness about the benefits and

concerns of contemporary technology services and integration

of multilayer data.

Regarding the operational component, a critical question

is how precisely can we estimate the infestation level of

target pests? One must understand the clear difference between

classifying infested or non-infested areas and classifying areas

regarding the infestation levels. In other words, it requires

different analytical techniques to assess the infestation levels

or (at least) the infested/not infested zones. For practical

management decisions, some studies relied on the knowledge

of EILs for different pests and classified areas within a field as

above/below the threshold (Alves et al., 2019; Iost Filho et al.,

2022; Marston et al., 2022).

Many aspects such as pest biology and ecology, crop

phenology, available control tactics and their costs, weather,

crop economic value, and field size should be considered

to transform remotely collected infestation data into control

decisions. Knowing where the pest populations are found in

the field (hotspots) does not necessarily mean that one knows

where and when to manage the pest precisely. We should

consider that not all populations found in the hotspots will

develop into economically damaging populations based on

pest biology/ecology and crop economics. Hence, how can we

determine the size of the hotspot and intensity of infestation for

these hotspots that require treatment? Also, should we consider

how accurate and efficient is the delivery of the control solution?

These questions worry researchers and producers because

different results can be achieved, such as correct/incorrect

treatment decisions and correct/incorrect no-treat decisions.

Regardless of many studies showing the economic benefits of

using precision pest management (Park et al., 2007; Sana, 2020),

little is known about the economic impact of incorrect decisions.

Another challenge is related to the adaptation of ETs with

the use of digital tools. For example, if technology provides

us precise information about the location of a given pest

population in the field, should we consider controlling this

population even before it reaches ET, and therefore prevent

this initial population from spreading over the field? Or, should

we continue following the ET guidelines, but controlling the

pest at the sub-field level? To answer these, among other

questions, it is important to consider the level of injury caused

by such a population, its rates of spread, and population growth.

Regarding insect-borne plant pathogens (viruses, bacteria such

as mollicutes phytoplasmas and spiroplasmas, and fungi),

control strategies targeting the vectors should consider that even

low populations can transmit the disease throughout the field. In

this case, digital tools could improve vector-pest management
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by enhancing the monitoring of populations at low levels (i.e.,

early detection).

Additionally, sensors can be used to monitor host

susceptibility to the vector since infected plants tend to become

more attractive or acceptable to the vectors (Eigenbrode et al.,

2018). An example is the pathosystem composed of Liberibacter-

or phytoplasma-infected hosts, which are preferred over non-

infected plants for settling by their psyllid vectors (Mayer et al.,

2011; Davis et al., 2012). This approach can be understood as

the next step in the advancement of precision pest management,

where the focus will be on monitoring host susceptibility to

pests instead of finding patches of the field already attacked by

the pest.

The choice of digital technologies can vary based on the scale

of interest (Thomas et al., 2018). Is the primary scale the plant

tissue, leaves, individual plants, and canopies? Tissue- and leaf-

scale studies are usually conducted in the laboratory as basic

research. In contrast, plant- and group-of-plants-scale studies

tend to be carried out at the greenhouse and field levels (Barros

et al., 2021). With advances in monitoring and control tools,

management strategies might be taken at the plant level (or

group of plants) in the future. To precisely deliver solutions at

such a level for pest management, technologies currently in use

for precision nutrient management will need to be adapted.

Weather sensors from IoT devices have great potential

for insect forecasting in digital pest management programs

(Chen et al., 2022). Although the cost of weather sensors

has been decreasing, adding a weather station into each

field can still be costly for implementation and maintenance.

Field devices can also create difficulties for agricultural

machinery practices. For over 20 years, grids of weather

stations and numerical weather models have been used in

subfield spatio-temporal projections (Russo, 2000; Olantinwo

and Hoogenboom, 2014; Lalic et al., 2016; Kim et al.,

2020). Therefore, weather data networks and numerical

grid datasets are probably the most cost-effective, reliable

strategy to forecast the occurrence and distribution of insects

(Merrill et al., 2015; Newlands, 2018; Hu et al., 2019; Wang

et al., 2019). Integrating weather grid data with current and

historical pest scouting data, machine learning technologies, and

remote sensing can provide increasingly fine-scale information

for IPM.

Ecological modeling of insect movement is another

important tool to be considered. Garcia et al. (2021)

presented different approaches to model the movement of

the cucurbit beetle Diabrotica speciosa Germar (Coleoptera:

Chrysomelidae) in intercropping systems, and of the fall

armyworm Spodoptera frugiperda (J. E. Smith) (Lepidoptera:

Noctuidae) in transgenic (Bt) and conventional maize fields.

The information provided in this study can be used for

planning actions to delay insect resistance to transgenic crops.

Aerobiology simulations can also guide scouting and create

threat alerts to pests that use atmosphere to spread (Isard et al.,

2007).

Berra (2003), in the chapter “IPM in the future,” predicted

that pest forecasting, improved thresholds and monitoring, data

storage and retrieval for the recommendation, computer digital

imaging technology, and precision farming would indicate

directions of possible changes at that time. We see that all of

that is shaping today’s agriculture. Similarly, we try to predict

near future by asking what are the next advances in IPM due

to the use of autonomous vehicles (both aerial and ground),

plant spectral information, volatiles, and other data connected

through digital platforms? Probably, the biggest advance will be

related to how fast such data will be analyzed and transformed

into management decisions, such as real-time alerts to growers.

Conclusion

Due to the increasing number of tools developed almost

daily, it is essential to advance inter- and multidisciplinary

research to extract the maximum potential from related areas

of science. Areas that need advancements include, but are

not limited to, understanding the physiological processes of

stressed plants, analysis and processing of data, development

of sensors and collection platforms, and optimization of

data acquisition and solution delivery tools. Hence, there are

opportunities for collaboration on new projects, including

researchers from different institutions and countries, and with

diverse backgrounds, including computer science, sensors,

computer engineering, and entrepreneurship.

Regarding the practical aspects of IPM, it is necessary to

understand that the detection of pest populations for making

an appropriate decision about control still relies on periodic

sampling, which is challenging in some crop systems. Some of

the monitoring challenges could be overcome by using digital

tools. Another benefit of precision pest management is the

natural mortality of pests (e.g., biotic and abiotic mortality

factors) in the agricultural ecosystem, which is an important

basis of IPM programs, but is often neglected. Hence, control

decisions considering management only in the hotspots, instead

of whole-field treatments, could help maintain natural enemies

in the field, therefore boosting natural mortality. These benefits,

among others, could possibly lead to an increase in the adoption

of IPM in agriculture.
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