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Plant growth-promoting
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production: Focus on yield and
disease resistance in Bambara
groundnut
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Orphan legumes are now experiencing growing demand due to the constraints

on available major food crops. However, due to focus on major food crops,

little research has been conducted on orphan legumes compared to major

food crops, especially in microbiome application to improve growth and

yield. Recent developments have demonstrated the enormous potential of

beneficial microbes in growth promotion and resistance to stress and diseases.

Hence, the focus of this perspective is to examine the potential of plant

growth promoting rhizobacteria (PGPR) to improve Bambara groundnut yield

and quality. Further insights into the potential use of PGPR as a biological

control agent in the crop are discussed. Finally, three PGPR genera commonly

associated with plant growth and disease resistance (Bacillus, Pseudomonas,

and Streptomyces) were highlighted as case studies for the growth promotion

and disease control in BGN production.
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Introduction

Food security is the ability of a population to access and afford enough food to

live a healthy life (Olanrewaju et al., 2022). Climate change poses a significant threat

to achieving food security, especially in developing countries. Rising temperatures and

extreme weather events have caused droughts, floods, and increased soil salinity, which

have reduced crop yields and caused food prices to spike. The impacts of climate change

on our food system are already being felt in communities across developing countries

(Lenaerts et al., 2019). Food security in sub-Saharan Africa is already threatened by

climate change. As temperatures increase and rainfall patterns change, sub-Saharan

Africa is expected to experience droughts and floods that will reduce crop yields, damage

infrastructure, and drive-up food prices. These climate-induced shocks will have a

devastating impact on people, many of whom live in poverty and cannot afford more
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food. The impact of climate change on food production in

sub-Saharan Africa has led to programs such as the food for

progress initiative, purchase for progress initiative, and other

programs which are working to help smallholder farmers in

sub-Saharan Africa improve their access to markets and invest

in climate-resilient technologies, like drip irrigation systems

(Crocker, 1986; Devereux, 2016).

Orphan legumes are a group of important but neglected

crops that are an important part of a food-secure diet. Orphan

legumes are also an important part of sub-Saharan African diets,

as they are a nutritious source of protein, calcium, and other

essential nutrients (Cullis and Kunert, 2017). In addition to

climate change impacts, food security is threatened by a lack

of research and investment in orphan legumes. The protein-

and nutrient-rich seeds of orphan legume crops can be used

to make flour and animal feed (Tadele, 2009; Adebowale et al.,

2011; Adebola et al., 2017; Ruckle et al., 2017; Adeleke et al.,

2018; Afolabi et al., 2018; Lambein et al., 2019; Oluwole et al.,

2021). They include Bambara groundnut, African yam bean,

winged bean, marama bean, grass pea, chick pea, and cowpea,

among others.

In search of ways to mitigate climate change impact on

food crops, use of beneficial microorganisms has become as

important as any other form of plant improvement program.

Many microorganisms have been used to make products, such

as, nodumax and biofix, which have improved plant production

(Akley et al., 2022). While there is a healthy debate about which

plants are most important in the food system, the fact that

plant-microbe interactions play a key role in the food system

is undeniable. The variety of plants and microbial species that

interact with one another in the food system is enormous. This

means that an enormous amount of research is being done

to identify the specific microbes that are involved in specific

plant processes. The primary food source for these microbes

in the rhizosphere is plant biomass. Plant microorganisms

are a major component of the ecosystem and the food chain

for all organisms on the planet. Incorporating plant-microbe

interaction research into orphan legume crop production will

be a great advancement in the production of these crops. We

will focus on Bambara groundnut in this review as it is fast

receiving improved research activities, but only one research on

its microbiome has been reported so far (Ajilogba et al., 2022b).

Bambara groundnut (BGN) production is drawing

attention, especially in sub-Saharan Africa, because it can be

used as food, fiber, and medicine (Jideani and Jideani, 2021;

Ajilogba et al., 2022a). The demand for BGN is increasing

because of its high nutritional value and increasingly recognized

medicinal value, which makes it a preferable alternative to the

major crops.

Because of the absence of a well-annotated reference

genome, studies have attempted to determine which elements of

cultivation and genetics contribute to BGN traits by comparing

them with the genomes of closely related crops (Ho et al.,

2017). Hence, molecularmarkers have been developed in various

studies (Molosiwa et al., 2015; Fatimah and Ardiarini, 2018).

BGN yield is influenced by photoperiodism and plant density

(Kendabie et al., 2020). However, little research has been

conducted regarding the response of yield and other BGN

traits to the application of plant-growth promoting rhizobacteria

(PGPR), although studies have extensively demonstrated the

importance of PGPR in the production of many crop species

(Olanrewaju, 2016; Olanrewaju and Babalola, 2019a; Lee

et al., 2020). For example, the priming of plant seeds with

PGPR and the application of PGPR to plant roots reportedly

stimulate plant growth through the production of nutrients

and pathogen controlling metabolites. In addition, PGPR can

improve tolerance to abiotic (e.g., drought and salinity) and

biotic stresses (e.g., plant pathogens) (Babalola et al., 2019;

Ojuederie et al., 2019; Olanrewaju et al., 2021a).

The exploitation of PGPR from orphan legume microbiome

will play an important role in BGN production, and there

is a clear need to better understand the relationship between

the microbiome, BGN yield, and BGN disease resistance.

This perspective summarizes the knowledge about the factors

that contribute to BGN yield. In addition, we examine the

potential role of PGPR, with a focus on Bacillus, Pseudomonas,

and Streptomyces; three widely prevalent genera in achieving

high yields, improved nutrient profiles, and disease resistance

in BGN.

Strategies to increase BGN yield and
quality

Production conditions that influence BGN yield and

nutrient composition include plant genotype, environmental

conditions (such as temperature, water availability, and

fertilizer application), photoperiod, and plant development stage

(Kendabie et al., 2020; Khan et al., 2020; Obidiebube et al.,

2020; Olanrewaju et al., 2021b,c; Ajilogba et al., 2022b). At the

physiological level, plant growth regulators can also affect the

nutrient composition.

Plant-growth promoting
rhizobacteria for BGN production

Plant growth-promoting rhizobacteria are present in plant

roots and have been associated with plant growth by providing

nutrients for plants, production of growth hormones, induction

of the plant immune system, and production of metabolites

which support plants against pathogens (Olanrewaju, 2016;

Olanrewaju et al., 2017; Backer et al., 2018; Etesami and

Maheshwari, 2018; Babalola et al., 2019; Singh et al., 2019; Hakim

et al., 2021). PGPR is important for sustainable crop production

and achieving food security (Ajilogba et al., 2022a). PGPR for
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FIGURE 1

(A) Bambara groundnut (BGN) in the field; (B) healthy matured BGN pods during harvest; (C) infected BGN pods; (D) drought stressed BGN

plants. [Source: Olanrewaju et al., 2022].

crop yield and quality increase as well as disease/pathogen

control has been extensively studied in many crops such as

soybean (Silva et al., 2019; Riviezzi et al., 2021), rice (Raja et al.,

2017; Xu et al., 2019), maize (Ke et al., 2019; Olanrewaju and

Babalola, 2019a; Liu et al., 2020), wheat (Kumar et al., 2018; Ma

et al., 2021), chickpea (Laranjeira et al., 2021; Khalifa et al., 2022),

and cowpea (Kanthaiah and Velu, 2019; Kumar et al., 2021).

Yield and quality enhancements
associated with plant-growth
promoting rhizobacteria

Compared to the major food crops, there is relatively

little data to support the use of PGPR on BGN production.

Most research data on this crop has emerged from evaluation

studies for growth traits, nutrient and antinutrient components,

antioxidant compositions, and recently, medicinal uses. In the

study by Ikenganyia et al. (2017), the effects of bioinoculant

methods (soil inoculation and seed inoculation methods) on

BGN growth and yield were compared. Both methods increased

the yield of BGN, with the soil inoculation method having the

highest yield result. Another study by Gomoung et al. (2017)

reported the effect of cross inoculation of groundnut and BGN

rhizobium on the growth and yield of both crops. Their study

further proved that rhizobacteria on a plant species can improve

the growth and yield of another plant species. A previous

study showed that PGPR improved nutrient acquisition in BGN

(Oyewole et al., 2018). Many studies have shown the effect of

PGPR on plant growth and nutrient composition (Bakhshandeh

et al., 2020; Castaldi et al., 2021; Guo et al., 2021; Kushwaha

et al., 2021; Laranjeira et al., 2021); we can therefore postulate

that PGPR will improve the nutrient composition and yield of

BGN. It is important to determine the impact of PGPR on BGN

growth and nutrient composition at various growth stages and

different environments.

Our laboratory has already illustrated that bacteria isolated

from a plant species or habitat can improve growth promotion

and activate stress responses in other plant species (Ndeddy

Aka and Babalola, 2016; Olanrewaju and Babalola, 2019a).

This means that the tested PGPR can improve BGN growth

either in single inoculation or in consortia (Olanrewaju and

Babalola, 2019a). As a result, we believe that future research will

confirm that PGPR-based inoculants can impact BGN nutrient

composition, increase the growth and yield of BGN, promote

BGN stress tolerance, and control pathogens.

Biological control and disease
resistance associated with
plant-growth promoting
rhizobacteria

Streptomycetes, Bacillus, Pseudomonas, Rhizobium, and

Azospirillum are widely used as biocontrol agents (Olanrewaju

et al., 2017; Olanrewaju and Babalola, 2019b). Many studies have

reported their use in controlling various plant pathogens. For

example, by producing the metabolite, wuyiencin, Streptomyces

albulus CK-15 controls powdery mildew of cucumber (Yang

et al., 2021), while Bacillus (Cui et al., 2019, 2020; Castaldi et al.,
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TABLE 1 Biocontrol activities of Bacillus spp., Pseudomonas spp., and Streptomyces spp. on various plants.

PGPR Plant Disease Pathogen References

Bacillus subtilis strain Bs-1 Cucumber Root galls/root knot Meloidogyne incognita Cao et al., 2019

Bacillus velezensis NKG-2 Tomato Wilt diseases Fusarium oxysporum Myo et al., 2019

Bacillus subtilis RH5 Rice sheath blight Rhizoctonia solani Jamali et al., 2020

Bacillus amyloquefaciens B9601-Y2 Maize Leaf blight Bipolaris maydis Cui et al., 2019

Bacillus amyloquefaciens

YN201732

Tobacco Powdery mildew Erysiphe cichoracearum Jiao et al., 2021

Pseudomonas stutzeri Chickpea Sheath blight Fusarium oxysporum var. ciceri and

Rhizoctonia solani

Kumar et al., 2022

Pseudomonas aeruginosa CQ-40 Tomato Botrytis cinerea Wang et al., 2021

Pseudomonas segetis strain P6 Potato and carrot Soft rot Dickeya solani Rodríguez et al., 2020

Pseudomonas spp. Olive Verticillium wilt Verticillium dahlia kleb Gómez-Lama Cabanás et al., 2018

Pseudomonas fluorescens ZX Orange Blue mold decay Penicillium italicum Wang et al., 2020

Streptomyces cellulosae isolate

Actino 48

Tobacco Tobacco mosaic virus Tobamovirus Abo-Zaid et al., 2020

Streptomyces sp. HAAG3-15 Cucumber Fusarium wilt Fusarium oxysporum f. sp. cucumerinum Cao et al., 2020

Streptomyces sp. MBFA-172 Straw berry Anthracnose Glomerella cingulata Marian et al., 2020

Streptomyces griseocarneus R132 Pepper Anthracnose Colletotrichum gloeosporioidesMPU99,

Colletotrichum guaranicola INPA2408

Liotti et al., 2019

Streptomyces A1RT Potato Potato common scab Streptomyces scabies, S. turgidiscabies and S.

stelliscabiei

Sarwar et al., 2018

2021), Rhizobium (Wong et al., 2021; Kawaguchi and Noutoshi,

2022), and Pseudomonas (Omoboye et al., 2019; Khalifa et al.,

2022) species have been reported in the biocontrol of some

plant species.

PGPR acts via direct and indirect mechanisms to control

plant pathogens. Antibiosis and the production of secondary

metabolites that act as toxins to pathogens are examples

of direct mechanisms, whereas indirect mechanisms include

nutrient competition and the induction of induced systemic

resistance (ISR) (Beneduzi et al., 2012; Olanrewaju et al.,

2017, 2019; Backer et al., 2018). ISR is strongly connected

to the jasmonic acid and ethylene-sensitive pathways (Van

Der Ent et al., 2009; Olanrewaju et al., 2019). An effective

PGPR must be able to properly colonize its host (Olanrewaju

and Babalola, 2019b); hence, PGPR-induced ISR is largely

dependent on the rhizobacterium-colonizing ability (Beneduzi

et al., 2012). Upon successful activation, ISR can improve

the plant’s defense capabilities by activating the expression of

defense-related genes. Through the production of hormones

such as indole acetic acid and gibberellin, PGPR increases

the plant’s ability to defend against pathogens. ACC-producing

PGPR reportedly improves the plant’s capacity to produce

ethylene and increases its immunity by the induction of

ISR (Glick, 2005). However, triggering ethylene and jasmonic

acid-dependent plant responses to pathogens does not always

correlate with an increase in the phytohormones, as reported in

the study by Beneduzi et al. (2012). Hence, PGPR research on

BGN should focus on the ability of PGPR to control pathogen

infection in BGN through the activation of ISR.

Pathogen control in BGN cultivation:
insight into the potential of PGPR
applications

The ability of BGN to produce its seeds embedded in the

soil has improved its resistance to pest attack but not pathogens.

It hosts pathogens varying from bacteria, fungal, virus, and

nematode origins, and they have a significant economic impact

through yield loss (Figure 1) (Olanrewaju et al., 2022). Brink

et al. (2006) reported fungal diseases such as cercospora leaf

spot (Cercospora spp.), powdery mildew (Erysiphe polygoni), and

Fusarium wilt (Fusarium oxysporum). Fourie et al. (2017) also

reported the activities of a root-knot nematode (Meloidogyne

javanica) on the plant. Pengnoo et al. (2006) also reported the

occurrence of leaf blight disease in BGN. In their study, they

isolated Bacillus sp. strains that were used to control the disease.

It is important to effectively address these threats, to

prevent yield losses in BGN production. Biocontrol of pathogens

has more advantages for plants, humans, animals, and the

environment compared to chemical controls. Bacillus subtilis

effectively controls leaf blight disease in BGN (Pengnoo et al.,

2006),Meloidogyne incognita on Capsicum annuum cv. Qiemen

(Cao et al., 2019) (Table 1).

These results in Table 1 suggest that inoculating BGN with

PGPRmay assist in controlling disease infestations, representing

a substantial advantage over currently available chemical

control methods. In addition, consumption of chemical residues

through the seeds because of being washed into the soil to the
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seeds can be eliminated with the application of an effective

biocontrol agent. This can be applied as a root trench in place of

spraying to minimize damage caused by sprays on young leaves.

Examples of widely prevalent
phytomicrobiome members:
Pseudomonas, Bacillus, and
Streptomyces for growth promotion
and disease control in BGN

Pseudomonas spp., Bacillus spp., and Streptomyces spp.

promote plant growth by synthesizing phytohormones, fixing

nitrogen, and solubilizing phosphate for plant use (Santoyo

et al., 2012; Olanrewaju and Babalola, 2019b). Pseudomonas

and Streptomyces are good plant colonizers and inhibitors of

plant pathogens (Olanrewaju et al., 2017). They help the hosts

to control pathogens by producing antipathogenic compounds

such as siderophores, cyanides, DAPG, antibiotics, lipopeptides,

and polysaccharides (Beneduzi et al., 2012; Santoyo et al., 2012).

In addition, Bacillus make use of their spores as biocontrol

agents (Ji et al., 2013).

Studies on various plant species have shown that Bacillus

spp., Pseudomonas spp., and Streptomyces spp. can promote

plant growth and suppress/control plant diseases (Cui et al.,

2019, 2020; Olanrewaju and Babalola, 2019a; Xu et al., 2019;

Liu et al., 2020; Yang et al., 2021). The success of plant growth

promotion and disease control by PGPR is host-dependent.

Studies on Bacillus spp. as biocontrol agents have mainly

focused on activation of ISR to improve plant resilience, direct

plant growth promotion, and aspects of microbial ecology,

while studies on Streptomyces spp. have mainly focused on

its biocontrol ability through the production of secondary

metabolites and antibiotics (Olanrewaju and Babalola, 2019b).

Inhibition of Fusarium and Armillaria pine rot diseases was

inhibited by Streptomyces kasugaensis in the study reported

by De Vasconcellos and Cardoso (2009). Another study by

Wonglom et al. (2019) reported the biological control of leaf

spot diseases of Brassica rapa subsp. pekinensis by Streptomyces

angustmyceticus NR8-2.

Overall, previous studies have shown that these three PGPR

genera have great promise in promoting plant growth and

biocontrol of plant pathogens (Raja et al., 2017; Babalola

et al., 2019; Ke et al., 2019; Olanrewaju and Babalola, 2019a,b;

Omoboye et al., 2019; Xu et al., 2019; Cui et al., 2020; Guo

et al., 2021; Kushwaha et al., 2021; Olanrewaju et al., 2021a; Yang

et al., 2021; Khalifa et al., 2022). However, their applications

on BGN have not been exploited. Based on a recent study on

the microbiome of BGN at various growth stages, these genera

are well represented in the rhizosphere of BGN (Ajilogba et al.,

2022b). It would be interesting to determine if any strains of

these genera can be formulated and tailored specifically for the

improvement of BGN yield and disease control.

Conclusions and prospects

BGN is a critical crop for achieving food and nutrition

security, particularly in Sub-Saharan Africa and other

developing world regions where it is cultivated. Hence, BGN is

fast becoming an important crop. Hence, BGN is fast becoming

an important crop. PGPR has been associated with benefits

such as nutrient mobilization, phytohormone production, stress

mitigation, and biocontrol abilities. As a result, studying PGPR

inoculants on BGN can increase yield in an environmentally

sustainable manner. The microbiome has enormous potential

for improving BGN production by increasing yield, mitigating

drought stress, and controlling disease.
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