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The formation and quality of nutrients before and after fermentation depends on microbial

community dynamics. In this study, the nutrients and microflora of mare milk were

studied before and after traditional fermentation. To achieve this goal, ultra-performance

liquid chromatography-mass spectrometry and Illumina MiSeq sequencing were used

to study the changes in the main nutrients and microbial communities, respectively,

before and after mare milk traditional fermentation. A total of 81 nutrients were

identified before and after the fermentation of mare milk into koumiss; among these,

6 compounds [citraconic acid, 6-hydroxycaproic acid, creatine, adenine, d-(+)-proline,

and histamine] were differentially upregulated. Histamine levels increased after traditional

fermentation, whereas Lactobacillus, Dekkera, and Acetobacter grew rapidly and

became the dominant microorganisms in the fermentation process. These three genera

were positively correlated with creatine and proline levels, whereas Lelliottia was

negatively correlated with citraconic acid and proline levels. Prediction of the functions of

bacteria and fungi in the mare milk before and after fermentation included carbohydrate

metabolism, cofactors and nutrition, and plant pathogens. The results of this study

provide new insights into the formation of nutrients in koumiss; it is important to study

changes in bacteria and fungi before and after traditional fermentation.

Keywords: mare milk, koumiss, nutrient content, microbial communities, diet

INTRODUCTION

Fermentation, defined as a technology that uses the growth and metabolic activities of
microorganisms to preserve food, is one of the oldest and most economical methods of food
preparation worldwide (Nuraida, 2015; Terefe, 2016;Wilburn and Ryan, 2017). Previously, humans
processed and preserved food through fermentation. Therefore, fermentation is an important
component of the human diet. An increasing number of people are realizing that, in addition to
extending the shelf life and improving the flavor of food, the microbes involved in fermentation
are also beneficial for human health. Over time, the health benefits of microbes have attracted
widespread scientific attention, and fermented foods have been increasingly used in dietary therapy.
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Dietary therapy plays an important role in Mongolian
medicine, and koumiss is the first beverage used in dietary
therapy (Xia et al., 2021). Koumiss is a mild alcoholic beverage
that produces acid and gas through the co-fermentation of
bacteria and yeast with mare milk as a raw material (Yu
et al., 2021). For several years, grassland herdsmen have
drunk fresh mare milk directly or made it into koumiss
for medicinal purposes (Yang et al., 2008). Koumiss therapy
has not only been used in China, but also nursing homes
or medical centers for koumiss have been established in
Russia, Kazakhstan, Kyrgyzstan, and Mongolia (Jacobs and
Gordon, 2018). In traditional Mongolian medicine, koumiss has
rich pharmacological effects, prevents diseases, and improves
immunity to such diseases as tuberculosis, digestive system
diseases, hepatitis, heart disease, hypertension, and dyslipidemia
(Manlai, 2013; Zheng et al., 2019). Koumiss has also been
used to improve the immune system and treat weight loss and
anemia (Manlai, 2013; Zheng et al., 2019). The nutritional value
and health care function of koumiss are closely related to its
nutritional composition and bacterial community structure (Xia
et al., 2022). Therefore, a comprehensive understanding of the
microbial composition and function of koumiss and the changes
in nutrient composition before and after fermentation is of great
significance to improve koumiss production quality, explore the
beneficial microbial resources of koumiss in western China, and
develop new products.

In the past, traditional identification and classification
methods, such as pure culture technology, have been used to
determine microbial diversity, but traditional methods have
limitations because most of the microorganisms in nature
cannot be cultivated (Wu et al., 2019; Zhao et al., 2019). The
second generation of high-throughput sequencing technology,
represented by Illumina MiSeq, detects many uncultured
and low-abundance microorganisms compared to previous
technologies (Liu et al., 2019; Rui et al., 2019). However, there
are few studies that have used this technology to identify koumiss
microbes. Therefore, in this study, ultra-performance liquid
chromatography-mass spectrometry (UPLC-MS) and Illumina
MiSeq sequencing were used to study the changes in the
structural diversity of the main nutrients and core microbiota,
respectively, before and after the traditional fermentation of
mare’s milk. Additionally, functional prediction was used to
analyze the related functional genes of different microbial
communities to further standardize koumiss and provide a
theoretical basis for industrial production of high-quality,
safe koumiss.

MATERIALS AND METHODS

Sample Collection
Twelve samples were collected from the Xilingol League, Inner
Mongolia Autonomous Region, in October 2021. Six samples of
mare’s milk and six samples of koumiss were collected at three
different sampling sites in the Xilingol League, with two parallel
samples at each sampling site. After collection, samples were
divided into sampling tubes and stored at 4◦C before and after
transportation (Sha et al., 2018; Li et al., 2022). Samples were

sent to the Transformation Center Laboratory of Baotou Medical
College, Inner Mongolia University of Science and Technology,
and cryopreserved at−80◦C for sub-sequent tests.

Determination of Nutritional Ingredients
Koumiss and mare milk samples were freeze-dried into powder
using a lyophilizer. The koumiss and mare’s milk freeze-dried
powder samples weighing∼1 g were placed into a centrifuge tube
(1 g koumiss freeze-dried powder corresponded approximately
to 20mL koumiss, and 1 g mare’s milk freeze-dried to 20mL
mare’s milk). Distilled water (4mL) was added for dissolution,
and the mixture was centrifuged at 3,000 r/min for 5min.
The supernatant was collected; the same amount of acetonitrile
was added to precipitate protein, and the mixture was stirred
with a vortex oscillator for 30 s. After standing for 5min, the
mixture was stirred again for 30 s and centrifuged at 8,000
r/min for 10min. This process was repeated three times and
the supernatant was injected into the sample bottle through a
0.22µmmicroporousmembrane for UPLC-MSmachine analysis
(Li et al., 2022).

Samples were analyzed using a Thermo Scientific Ultimate
3000 RS system (Thermo Fisher Scientific, Waltham, MA, USA)
coupled to a Q Exactive High-Resolution Benchtop Quadrupole
Orbitrap mass spectrometer (Thermo Fisher Scientific) with a
heated electrospray ionization source. The system was controlled
using the Xcalibur 3.0 software program (Thermo Fisher
Scientific). Chromatographic separation was performed on a
Hypersil GOLD C18 column (100 × 2.1mm, 1.9µm) with the
column temperature maintained at 30◦C. The mobile phase
consisted of 0.1% formic acid in water (A) and acetonitrile (B)
in the positive ion and the negative ion modes. The gradient
conditions were as follows: 0–70min, 5–95% B. The flow rate
was maintained at 0.30 mL/min, and the injection volume was
2 µL. A full MS/dd-MS2 mode scan was used in the positive
ion and negative ion mode with a scan time of 70min. See
Supplementary Table S1 for details on the MS settings of the
positive/negative ionization modes.

Determination of Microbial Flora
DNA was extracted from the microbial community using a
HiPure Soil DNA kit (Magen, Guangzhou, China), according
to the manufacturer’s instructions. The purity of the DNA
was tested using a NanoDrop 2000 microspectrophotometer
(Thermo Fisher Scientific), and the integrity of the DNA sample
was tested using agarose gel electrophoresis (Sha et al., 2018).

Polymerase chain reaction (PCR) amplification conditions
were based on previous reports. The upstream primer used
for the V3–V4 variable region of the bacterial 16S rRNA

gene was 341F 5
′

-CCTACGGGNGGCWGCAg-3
′

and the

downstream primer was 806R 5
′

-GGactachVGGGTATctaat-3
′

.
The upstream primer for the fungal internal transcription spacer

(ITS1) was ITS1-F 5
′

-CTTGGTCATTTAGagGaAGTAA-

3
′

and the downstream primer (ITS2) was 5′-
GCTGCGTTCTTCATCGATGC-3′. PCR reactions were
performed in triplicate in a 50 µL mixture containing 10 µL 5×
Q5@ Reaction Buffer, 10 µL 5× Q5@ High GC Enhancer, 1.5 µL
dNTPs (2.5mM), 1.5 µL of each primer (10µM), 0.2 µL Q5@
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High-Fidelity DNA Polymerase, and 50 ng of template DNA.
The related PCR reagents were purchased from New England
Biolabs (USA). PCR was performed as follows: 95 ◦C for 5min,

followed by 30 cycles at 95◦C for 1min, 60◦C for 1min, and
72◦C for 1min, and a final extension at 72◦C for 7min (Gao
et al., 2016; Guo et al., 2017; Sha et al., 2017, 2019).

FIGURE 1 | Volcano plots and Structures of differential compounds for the two groups of samples.

FIGURE 2 | Microbial species abundance and diversity indices of koumiss and mare’s milk. (A) According to the difference analysis of bacterial α diversity, there were

differences in the species diversity between the two groups (**P < 0.01). (B) According to the difference analysis of fungal α diversity, there were differences in the

species diversity between the two groups (*P < 0.05; **P < 0.01). (C,D) PCA analysis of bacteria and PCoA analysis with weighted uniFrac distance algorithm. (E,F)

PCA analysis of fungal and PCoA analysis with weighted uniFrac distance algorithm.

TABLE 1 | Sample bacterial and fungal alpha diversity indices.

Type Sample Chao 1 Ace Shannon Simpson

16S M 121.53 ± 10.26 127.48 ± 11.14 2.79 ± 0.23 0.77 ± 0.03

K 88.46 ± 11.72 93.05 ± 11.59 1.26 ± 0.27 0.40 ± 0.06

ITS M 285.45 ± 77.17 287.64 ± 75.74 4.66 ± 0.21 0.90 ± 0.02

K 175.27 ± 57.13 175.19 ± 54.00 1.05 ± 0.59 0.30 ± 0.24

n = 6, x̄ ± s.
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Amplicons were extracted from 2% agarose gels, purified
using the AxyPrep DNA Gel Extraction Kit (Axygen Biosciences,
Union City, CA, USA), according to the manufacturer’s
instructions, and quantified using the ABI StepOnePlus Real-
Time PCR System (Life Technologies, Foster City, USA). Purified
amplicons were pooled in equimolar amounts and paired-
end sequenced (PE250) on an Illumina platform, according
to standard protocols. Raw reads were deposited in the
National Center for Biotechnology Information Sequence Read
Archive database.

Data Processing and Bioinformatics
Analysis
Raw data containing adapters or low-quality reads may affect
subsequent assembly and analysis. Thus, to obtain high quality
clean reads, raw reads were further filtered using FASTP (Chen
et al., 2018) by removing those containing more than 10%
unknown nucleotides (N) and <50% of bases with quality (Q-
value) >20. Paired end clean reads were merged as raw tags
using FLASH (Magoč and Salzberg, 2011) (version 1.2.11), with a
minimum overlap of 10 bp andmismatch error rates of 2%. Noisy
sequences of raw tags were filtered under specific conditions
(Bokulich et al., 2013) to obtain high-quality clean tags.

The clean tags were clustered into operational taxonomic units
(OTUs) of ≥97% similarity using the UPARSE (Edgar, 2013)
(version 9.2.64) pipeline. All chimeric tags were removed using
the UCHIME algorithm (Edgar et al., 2011) and effective tags
were obtained for further analysis. The tag sequence with the

highest abundance was selected as the representative sequence for
each cluster.

RESULTS

Changes in Nutrient Composition Before
and After Traditional Fermentation
The pH of mare’s milk is 6.140 ± 0.13, while the pH after
fermentation is 3.625± 0.12. An important factor in determining
pH is the compounds present in the sample. Therefore, to further
investigate the changes in nutrient composition before and after
fermentation of mare milk, Q Exactive was used to collect data
in positive and negative ion modes for mare’s milk (M) and
koumiss (K) groups. A total of 81 nutrients were identified in
both groups (Supplementary Table 2). Data from the two groups
were analyzed for similarities and differences using principal
component analysis (PCA) (Supplementary Figure S1). In the
positive and negative ion modes, the samples of the two groups
were well aggregated and had different aggregation locations,
suggesting that there were differences in the compositional basis
of the two groups; the differential substances of the two groups
might reflect the biological differences between the samples. To
clarify the differential compounds in the fermentation process
of mare milk, the obtained data were further analyzed using
volcano plots (Figure 1). Green and orange represent down-
and upregulation, respectively, of the corresponding differential
compounds. Six differential compounds were upregulated after
fermentation of mare’s milk into koumiss, including citraconic

FIGURE 3 | Analysis diagram of species composition of mare’s milk before and after fermentation. (A,B) Superimposed maps of species distribution of bacteria at the

phylum and genera levels, respectively. (C,D) Superimposed maps of species distribution of fungi at the phylum and genera levels, respectively. (E,F) Species

distribution of bacteria and fungi at the genus level respectively. (G,H) Heat maps of bacteria and fungi distribution at the genus level, respectively.
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acid, 6-hydroxycaproic acid, creatine, adenine, D-(+)-proline,
and histamine. The structures of the compounds are shown in
Figure 1.

Changes in the Abundance and Diversity of
Microbial Species Before and After
Traditional Fermentation
Changes in metabolites produced by microorganisms before
and after fermentation have important effects on food flavor
and nutrition. Hence, high-throughput sequencing technology
was used to study the microbial changes before and after the
fermentation of mare milk. The mean reads for the koumiss
samples were 119,396 [standard deviation (SD) = 2,377] and
123,947 (SD = 3,597), respectively, and the mean reads for the
mare’s milk samples were 112,731 (SD = 6,751) and 111,816
(SD = 8,771), respectively. The UCHIME algorithm was used to
divide the OTUs at ≥97% similarity level, and in each cluster,
the sequence with the highest abundance of labels was selected
as the representative sequence. Species annotation based on the
sequence information of OTU/ASV revealed that all koumiss
sample bacterial sequences belonged to 1 domain, 4 phyla, 8
classes, 21 orders, 24 families, 32 genera, and 15 species with
an average of 82 OTUs, whereas fungal sequences belonged
to 2 domains, 4 phyla, 17 classes, 36 orders, 57 families, 84
genera, and 72 species with an average of 155 OTUs. All bacterial
sequences from mare milk samples were attributed to 1 domain,

5 phyla, 14 classes, 29 orders, 36 families, 46 genera, and 29
species, with an average of 111 OTUs, whereas fungal sequences
were attributed to 4 domains, 6 phyla, 25 classes, 59 orders,
105 families, 151 genera, and 123 species, with an average
of 252 OTUs.

α-diversity is a measure of the richness and evenness of the
microbial community in a single sample. According to the α-
diversity difference analysis, species diversity differed between
the groups (Figures 2A,B). ACE, Chao, Shannon, and Simpson
indices were used to evaluate the α-diversity of a single sample
(Table 1). After mare’s milk is fermented into koumiss, ACE

and Chao indices decreased, indicating that the richness of

bacteria and fungi decreased after fermentation. The Shannon

and Simpson indices also decreased, so the richness and evenness
of bacteria and fungi not only decreased after fermentation, but

also showed a downward trend. The mean Chao (121.53± 10.26)

and ACE (127.48 ± 11.14) indices of bacteria from mare’s milk
samples were higher than the mean Chao (88.46 ± 11.72) and
ACE (93.05 ± 11.59) indices of bacteria from koumiss samples,
whereas the mean Chao (285.45 ± 77.17) and ACE (287.64 ±

75.74) indices of fungi from mare’s milk samples were higher
than the mean Chao (175.27± 57.13) and ACE (175.19± 54.00)
indices of fungi from koumiss samples. In addition, the mean
Chao and ACE indices of fungi in the samples were higher than
those of bacteria. The Simpson and Shannon indices characterize
community diversity; the higher the values, the higher the

FIGURE 4 | Distribution of indicator species before and after mare’s milk fermentation. (A,B) Upset diagrams of bacteria and fungi at the genus level, respectively.

(C,D) Welch’s t-test of bacteria and fungi at the genus level, respectively. The left half of the ordinate represents the difference species, the abscissa represents the

mean species abundance; the right half of the abscissa represents the difference in abundance between groups, the dot color represents the group with higher

abundance, and the error bar of the dot represents the difference 95%. The fluctuation range of the confidence interval, and the ordinate represents the significance of

the difference between the corresponding species groups, that is, the size of the p-value. (E,F) LEFSe analyses of bacteria and fungi, respectively. The LDA score plot

shows the biomarkers of different groups, and the length of the histogram represents the impact size of the different species. In the clade diagram, each small circle at

a different taxonomic level represents a species at that taxonomic level, and the diameter of the small circle is proportional to the relative abundance.
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community diversity (Guo et al., 2019). The mean Simpson (0.77
± 0.03) and Shannon (2.79 ± 0.23) indices of bacteria after
fermentation of mare milk were higher than those in koumiss
(0.40 ± 0.06 and 1.26 ± 0.27, respectively), with identical results

observed for fungi. The mean Simpson and Shannon indices
of koumiss bacteria were higher than those of koumiss fungi.

Microbial community richness and diversity decreased after the

fermentation of mare milk into koumiss. It is noteworthy that

in the koumiss samples, although the abundance level of fungi

is higher than that of bacteria, the bacterial community diversity

is higher.
To compare the similarity in bacterial and fungal composition

between the two groups, the QIIME software was used to

calculate β-diversity. PCA based on the abundance information
of species (ASV/OTU) in the samples showed that both K
and M fungal and bacterial groups clustered separately, with

significant differences in microbial communities (Figures 2C,E).

The differences in species diversity between the different groups
were further verified by principal co-ordinates analysis (PCoA)
using the weighted UniFrac distance algorithm (Figures 2D,F).
Before and after fermentation ofmaremilk, significant separation
occurred between the M and K groups. The above results
indicate changes in both fungi and bacteria in group M
before and after fermentation and significant differences in
the species composition of microorganisms between groups
K and M.

Species Composition Analysis of
Microorganisms Before and After
Traditional Fermentation
To count the bacterial distribution of mare milk and koumiss
samples at each classification level, Krona software was
used to perform visual statistics on the abundance of each
classification (Ondov et al., 2011), and the changes in species
composition and abundance of each sample at each classification
level were counted (Figure 3). In the stacking diagram of
species distribution, all bacteria in mare’s milk samples
were classified into five phyla (Figure 3A): Proteobacteria,
Firmicutes, Actinobacteria, Bacteroidetes, and Patescibacteria.
Proteobacteria was the dominant phylum, with an average
abundance of 81.85%, followed by Firmicutes, with an average
abundance of 17.56%. The proportion of other bacterial phyla
not mentioned was relatively low, all below 1%. All bacteria in
koumiss samples were classified into four phyla (Figure 3A):
Firmicutes, Proteobacteria, Actinobacteria, and Bacteroidetes,
the abundance of which decreased successively. Similar to the
results of previous studies (Yu et al., 2021), the dominant bacteria
were Firmicutes, with an average abundance of 78.88%. The
dominant bacteria changed after fermentation into koumiss.

Lelliottia and Pseudomonas were the two genera with
the highest bacterial abundance in the mare milk samples
(Figures 3B,E). Before and after the fermentation of mare
milk into koumiss, 32 bacterial genera were identified at

FIGURE 5 | Random forest analysis of bacteria and fungi [(A) for bacteria, (B) for fungi]. The Gini index represents the purity of the nodes of the decision tree. The

larger the Gini index, the lower the purity. The larger the species Gini index, the more obvious the effect of the species in distinguishing the two groups. Mean

Decrease Accuracy is the mean square error, which is used to measure the degree to which the accuracy of the prediction results decreases when the variables are

assigned randomly. The larger the value, the stronger the indicating effect of the species between the two groups. The size and color of the bubbles in the figure

indicate the abundance of the corresponding species, and the position of the bubbles indicates the size of the index.
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the genus level, and six were found with an abundance of
>1%. In order of abundance (Figure 3G), the six genera
were Lactobacillus, Acetobacter, Lelliottia, Acinetobacter,
Streptococcus, and Lactococcus, which is consistent with
previous studies (Yu et al., 2021). As fermentation proceeded,
Lactobacillus became the dominant bacteria, with an average
abundance of 77.32% (Figure 3E), while other genera, such
as Lelliottia and Pseudomonas were inhibited. The differences
betweenmare’s milk and koumiss samples at the bacterial phylum
and genus levels were significant. According to recent research
reports (Zhao et al., 2019), microbes largely determine koumiss
quality and harmful microorganisms, including Enterococcus,
Escherichia, and Bacillus, are found in mare’s milk. Microbes may
affect the color, texture, and nutritional composition of koumiss,
and even threaten human health. Lactobacillus was the dominant
bacterium after mare’s milk fermentation. We speculated that
Lactobacillus fermentation inhibited the growth of pathogenic
bacteria, which might explain the significant decrease in koumiss
microbial diversity.

Fungi are also an important community in koumiss; therefore,
the distribution of fungi before and after fermentation was
investigated. According to the ITS sequences (Figure 3C), the
dominant fungal phylum after fermentation of mare’s milk was

Ascomycota, with an average abundance of 98.60% (Figure 3F).
A total of 84 fungal genera were identified in six koumiss
samples, the number of which was significantly higher than that
identified in bacteria. Two fungal genera with abundance >1%
(Dekkera and Kazachstania) were identified and were the most
abundant in koumiss (Figure 3H); Dekkera was the dominant
genus (Figure 3D). The average abundance was 79.14%.

Indicator Species Analysis of
Microorganisms Before and After
Traditional Fermentation
The different microbial communities before and after mare’s milk
fermentation were screened using the species distribution of
bacteria and fungi, and the association of the different microbial
communities at different classification levels was determined
using an upset Venn diagram. This results revealed that there
were 46 bacterial genera in mare’s milk samples at the genus
level, including 19 unique genera in M group (Figure 4A). The
koumiss sample contained 32 bacterial genera, of which five were
endemic. There were 27 species of bacteria in the genera that were
common to koumiss and mare milk. In addition, welch’s t-test
was used to analyze the indicator species at the level of the two

FIGURE 6 | Functional predictive analysis of bacteria and fungi. (A) Based on PICRUSt functional prediction, the obtained KEGG functional abundance of sample

bacteria was displayed using a river map. (B) Based on the information in the OTU abundance table, further functional annotation of fungi was performed using

FUNGuild.

Frontiers in Sustainable Food Systems | www.frontiersin.org 7 July 2022 | Volume 6 | Article 913763

https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org
https://www.frontiersin.org/journals/sustainable-food-systems#articles


Li et al. Mare Milk Changes Upon Fermentation

groups (Figure 4C). At the 95% confidence interval, there were
significant differences in Lactobacillus, Acetobacter, and Lelliottia
after mare milk fermentation (P < 0.05). Linear discriminant
analysis effect size (LEFSe) multistage species difference
analysis was performed to quantitatively identify bacterial
genera with significant changes in abundance after mare milk
fermentation (Figure 4E), with a linear discriminant analysis
>2 as the threshold. Gammaproteobacteria, Proteobacteria,
Pseudomonadales, and Enterobacteriaceae were significantly
enriched before the fermentation ofmare’s milk, and their relative
abundance was significantly reduced after fermentation. The
relative abundance of Lactobacillus, Lelliottia, Lactobacillaceae,
Lactobacillales, Bacilli, and Firmicutes significantly increased
after fermentation into koumiss. Owing to the high accuracy
of the random forest classification results, random forest was
also used to identify potential indicator species (Figure 5A). The
greater the Gini index of species, the more obvious the effect of
the species in distinguishing the two groups, which showed that
Lactobacillus, Lelliottia, and Acetobacter were significant genera.

The Upset Venn diagram showed that there were 151 fungal
genera in mare milk samples at the genus level, and 71 were
endemic. There were 84 fungal genera in the koumiss samples,
of which four were endemic. Eighty fungal genera were common
to koumiss and mare’s milk (Figure 4B). There were significant
differences in Dekkera, Aspergillus, and Candida counts before
and after mare milk fermentation (P < 0.05; Figure 4D).
Subsequently, LEFSe difference species analysis was conducted
(Figure 4F). The differential species were identified as Dekkera,
Kazachstania, and Aspergillus (Figure 5B).

Functional Predictive Analysis
To further analyze the microorganisms in the microbial
community before and after mare milk fermentation,
functional prediction of bacteria was performed using PICRUSt
(Figure 6A). By comparison with the Kyoto Encyclopedia of
Genes and Genomes (KEGG) database, a total of six categories
of primary metabolic pathways were annotated, among which
metabolism, genetic information processing, and cellular
processes were the main metabolic pathways. A total of 27 sub-
functional components were annotated in secondary metabolic
pathways. The main groups involved in metabolism were
carbohydrate metabolism, metabolism of cofactors and vitamins,
and amino acid metabolism. Replication and repair, folding, cell
motility, and cell growth and death were the main sub-functions
of the cellular process pathway. Carbohydrate metabolism,
cofactor and vitamin metabolism, and amino acid metabolism
were the most prominent before and after fermentation of mare
milk (Figure 6A).

Based on the information in the OTU abundance table,
further functional annotation of fungi was performed using
FUNGuild (Figure 6B). Animal pathogens, plant pathogens,
animal endosymbionts, and endophytes were the main fungal
functional groups. Among them, animal pathogens and plant
pathogens were significantly higher in group M than those
in group K. Unassigned saprotrophs were the most abundant
in group M, followed by undefined saprotrophs and animal
pathogens. Undefined saprotrophs were the most abundant in
group K, followed by animal endosymbiont, animal pathogen,
plant pathogen, and pathogen-undefined saprotroph.

FIGURE 7 | Sparse partial least squares (SPLS) and SPARCC analysis among species. (A) Correlation analysis of different bacteria and different compounds before

and after mare’s milk fermentation. (B,C) sPLS analyses at the family and genus levels, respectively. (D) Heat map of the SPARCC correlation coefficient at the

bacterial and fungal genus levels.
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Correlation Between Nutrients, Bacteria,
and Fungi Before and After Traditional
Fermentation
To better study the association between bacterial and fungal
species before and after mare milk fermentation, principal
components were extracted by dimensionality reduction of
high-dimensional data, and correlation analysis of samples was
conducted at the family and genus levels using the sparse partial
least squares (sPLS) model. The distribution characteristics of
the samples were consistent with expectations. At the family and
genus levels (Figures 7B,C), the bacterial community structure
of mare milk before and after fermentation was different, and the
results were similar to those of PCA. The species composition of
the koumiss and mare milk groups was not similar, and there
was obvious separation between the two groups. However, the
distribution of the two groups showed aggregation. Because the
traditional method is directly based on the relative abundance
calculation, the negative correlation is often excessive; that is, the
positive correlation is suppressed. However, the SPARCCmethod
optimizes the problem of limited positive correlation. Therefore,
species with an average abundance >0.1% at the genus level were
identified for SPARCC analysis (Figure 7D). As observed from
Figure 7A, Lactobacillus, Acetobacter, Enterobacter, and Rothia
are significantly positively correlated withDekkera,Kazachstania,
and Pichia (P < 0.01) and negatively correlated with Malassezia,
Aspergillus, Neoascochyta, and Candida (P < 0.01).

There were also numerous relationships between bacteria
and compounds. Spearman’s correlation analysis revealed that
Lactobacillus and Acetobacter were positively correlated with
creatine (Figure 7A), proline, and citraconic acid (P < 0.05).
Dekkerawas positively correlated with creatine and proline levels
(P< 0.05).Kazachstaniawas positively correlated with citraconic
acid and adenine levels (P < 0.05), whereas Lelliottia was
negatively correlated with citraconic acid, proline, and creatine
levels (P < 0.05).

DISCUSSION

In this study, UPLC-MS and high-throughput sequencing
technology (a culture-independent method) were used to
investigate the changes in the main nutrient components and
the structural diversity of core microbial communities before and
after koumiss fermentation. A total of 81 nutrients were identified
after mare milk fermentation, and six different compounds
were upregulated. Lactobacillus and Dekkera were the dominant
genera in the microbial communities, as determined by
high-throughput (or “next-generation”) sequencing technology.
PICRUSt and FUNGuild were used to annotate bacteria and
fungi, and the communities were analyzed.

Koumiss was rich in chemical composition. Citraconic acid,
6-hydroxycaproic acid, creatine, adenine, D-(+)-proline, and
histamine were differential compounds. Some studies have
shown that creatine supplementation reduces the consumption
of methionine in patients with diabetes, as well as the production
of homocysteine in the liver, and prevents the accumulation of
fat, which is effective in the treatment of fatty liver and non-
alcoholic liver diseases (Barcelos et al., 2016). In addition to

its protect liver function, creatine ameliorates oxidative stress
damage; researchers have induced oxidative stress injury using
H2O2 to reduce the myogenic ability of C1C12 cells, and
creatine supplementation in vitro restored the myogenic ability
of C1C12 cells (Barbieri et al., 2016). In addition to creatine,
adenine has anti-inflammatory effects by activating adenine
receptor signaling in mouse macrophages (Fukuda et al., 2017)
and citraconic acid is formed by the carboxylation of acetyl-
CoA and oxaloacetic acid in the tricarboxylic acid cycle of
the body, which is involved in the metabolism of sugar, fat,
and protein. Citraconic acid supplementation elicits low levels
of initial plasma TCA circulating metabolites in patients with
chronic fatigue syndrome, and dietary citraconic acid ameliorates
fatigue (Hara et al., 2021).

After mare milk fermentation, although the nutritional
composition is more effective, the microflora produced has
a beneficial role in human health. In previous reports using
high sugar and high fat feed chain urea combined with the
use of cephalosporins (sulfathiazole) as a method to establish
a diabetic mouse model, total cholesterol and triacylglycerol
content increased; when intestinal Lactobacillus increases,
the gut microbiota composition in high sugar and high
fat diabetic mice and the differences in the normal group
decrease, blood sugar levels drop, and the flora structure is
adjusted and obviously improved, indicating that Lactobacillus
improve and regulate lipid reduction (Gao, 2018). It has
been reported that Lactobacillus inhibits α-glucosidase by
95% (Koh et al., 2018). In addition to its lipid- and sugar-
lowering effects, Lactobacillus show good anti-inflammatory
and antioxidant activities. Lactobacillus promotes interleukin-
10 production in lipopolysaccharide (LPS)-induced macrophage
supernatants after LPS treatment (Liao et al., 2017), indicating
that Lactobacillus promotes the anti-inflammatory effect of
macrophages and regulates the body’s immune system. Among
them, the antioxidant activities of Lactobacillus acidophilus
and Lactobacillus casei have been experimentally confirmed; L.
acidophilus and L. casei significantly improve glucose tolerance
caused by a high-fructose diet and effectively reduce blood
glucose levels and oxidative stress in diabetic rats (Liu, 2015).
There are many studies related to the antioxidant capacity of
yeast, and all show good antioxidant capacity (Mi et al., 2021).

At present, the sequence information of microbial genomes
can be obtained using high-throughput sequencing, and the
microbial populations among different strains within a species
and the diversity among a specific genus can be observed
through sequence alignment (Gao et al., 2016; Sha et al.,
2018, 2019). Lactobacillus, Lelliottia, and Acetobacter were the
main bacterial genera involved in mare milk fermentation.
Dekkera, Kazachstania, and Aspergillus were the main fungal
genera. Different bacteria and nutrients were inextricably related.
Bacteria in fermented dairy products play an important role in
the formation of flavor, especially Lactobacillus, whichmetabolize
galactose, glucose, and citric acid to produce the intermediate
product pyruvate; pyruvate is completely converted into lactic
acid under homolactic fermentation, whereas in heterozygous
fermentation (Liu et al., 2010; Mcauliffe et al., 2018). In addition
to lactic acid fermentation, these bacteria also produce flavor
substances such as diacetyl, acetaldehyde, and acetic acid.
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At the same time, Lactobacillus can metabolize proteins and
lipids, thereby producing flavor substances. Dekkera not only
participate in the catabolism of proteins, lipids, and lactose
in fermented milk, but also metabolize citric and lactic acids,
which have an important impact on the formation of flavor
(Mcsweeney, 2004). In our study, Lactobacillus, Acetobacter, and
Enterobacterwere significantly positively correlated withDekkera
and Kazachstania (P < 0.01) and negatively correlated with
Malassezia, Aspergillus, Neoascochyta, and Candida (P < 0.01).
Dekkera, Lactobacillus, and Acetobacter played a leading role in
the fermentation of mare milk into koumiss. At the growth level,
Dekkera provides nutritional factors, such as vitamins and amino
acids, for Lactobacillus, and these provide energy sources, such as
glucose and other monosaccharides (Roostita and Fleet, 1996).
Therefore, Lactobacillus and Dekkera are mutually beneficial
and promoting.

Koumiss is a traditional fermented dairy product produced
in pastoral areas. The life practice of making koumiss by
herdsmen and previous research have proven its efficacy (Lu
and Liu, 2018). This study unveils the microbes that contribute
to the beneficial properties of mare milk and koumiss before
and after traditional fermentation. However, several aspects
need to be addressed to obtain more comprehensive and
reliable results. First, there is no national standard for koumiss,
and the quality of the produced koumiss is also uneven.
Therefore, it is necessary to combine phenotypic and biochemical
characterization analyses to elucidate the key microorganisms in
the traditional fermentation process of koumiss. For example,
yeasts have been phenotypically characterized using colony and
cell morphology, sugar fermentation, and sugar assimilation
assays (Sha et al., 2018). Using these indicators can optimize
the fermentation of koumiss, improve production quality, and
develop new products with high nutritional value that meet food
safety standards. Second, the shape, color, taste, and smell of
fermented foods are often the most intuitive sensory indicators
to describe and judge product quality. Sensory indicators not
only reflect the requirements for food enjoyment and edibility,
but also comprehensively reflect the requirements for food safety.
Therefore, it is necessary to combine sensory indicators to
evaluate product quality and establish quality requirements of
food in the future.

In summary, the dynamic changes in nutrient composition
and microbial communities before and after fermentation
of mare milk into koumiss in the Xilingol pastoral area
were measured and analyzed. A total of 81 nutrients were
detected in natural starter cultures, and differential compounds
included citraconic acid, 6-hydroxycaproic acid, creatine,
adenine, D-(+)-proline, and histamine. Microbial diversity
analysis showed that the bacterial community mainly included

Lactobacillus, Lelliottia, Lactobacillaceae, Lactobacillales, Bacilli,
and Firmicutes. The dominant bacterium was Lactobacillus
with an average abundance of 77.32%. The fungal community
included Dekkera, Saccharomycetes, Saccharomycetales,
Pichiaceae, and Kazachstania, among which the dominant
genera was Dekkera, with an average abundance of 79.14%.
After mare’s milk was fermented into koumiss, although the
richness level of fungi was higher than that of bacteria, the
bacterial community diversity was higher than that of fungi.
Concerning function prediction, carbohydrate metabolism,
cofactors, nutrition, and amino acid metabolism were the most
prominent, contributing to the flavoring substances in mare
milk fermentation.
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