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Traditional food fermentation is a practice that precedes human history. Acidic products

such as yogurts and sourdoughs or alcoholic beverages produced through lactic acid

or yeast fermentations, respectively, are widely described and documented. However,

a relatively less popular group of fermented products known as alkaline fermented

foods are common traditional products in Africa and Asia. These products are so called

“alkaline” because the pH tends to increase during fermentation due to the formation of

ammonia resulting from protein degradation by Bacillus species. Plant-based alkaline

fermented foods (AFFs) are generally produced from legumes including soybean,

non-soybean leguminous seeds, and other non-legume plant raw materials. Alkaline

fermented food products such as natto, douchi, kinema, doenjang, chongkukjang, thua

nao, meitauza, yandou, dawadawa/iru, ugba, kawal, okpehe, otiru, oso, ogiri, bikalga,

maari/tayohounta, ntoba mbodi, cabuk, and owoh are produced at small industrial scale

or household levels and widely consumed in Asia and Africa where they provide essential

nutrients and health-promoting bioactive compounds for the population. Alkaline food

fermentation is important for sustainable food security as it contributes to traditional

dietary diversity, significantly reduces antinutritional components in raw plant materials

thereby improving digestibility, improves health via the production of vitamins, and may

confer probiotic and post-biotic effects onto consumers. In this review, we present

currently available scientific information on plant-based AFFs and their role as sustainable

sources of nutrients and bioactive compounds for improved health. Finally, we provide

perspectives on research needs required to harness the full potential of AFFs in

contributing to nutrition and health.
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OVERVIEW OF TRADITIONAL ALKALINE
FERMENTED FOODS

Food fermentation is a practice that precedes human history and
will continue to be with us far into the future as populations
around the world today obtain a considerable portion of
their nutritional needs and incomes through fermented foods
processing (Hesseltine and Wang, 1980; Tamang et al., 2020).
When applied to foods, fermentation has a much broader
meaning as opposed the strict biochemical definition of “an ATP-
generating process in which organic compounds act as both
donors and acceptors of electrons” (Kim et al., 2012). Thus,
fermented foods and beverages include “foods that are made
through desired microbial growth and enzymatic conversions
of food components” (Marco et al., 2021). It is estimated
that over 5,000 varieties of fermented foods and beverages are
produced and consumed around the world from diverse raw
materials (substrates) such as cereals, roots and tubers, meat,
dairy products, fish, fruits, vegetables and legumes (Owusu-
Kwarteng et al., 2012, 2020; Akabanda et al., 2013; Tamang et al.,
2016a, 2020; Agyei et al., 2020).

Traditional fermented foods and their associated microbes
are diverse depending on the substrate and the methods
used for the fermentations. Whether they are produced by
uncontrolled natural fermentation or with controlled starter
cultures, fermented foods attain their characteristic taste, flavor,
consistency, improved nutritional, and functional properties
through the effects of microbial assimilation, metabolites
production, and enzymatic activities (Owusu-Kwarteng et al.,
2015, 2020; Marco et al., 2021). Microbial communities in natural
(spontaneous) fermented foods are principally determined
by dispersal and selection. Thus, in traditional spontaneous
fermentation of foods, naturally occurring autochthonous
microorganisms adapt to the complex food substrate and the
fermentation environment leading to competitive selection of
the microbial species that are more effectively adapted and
positively respond to the in-situ conditions (Ouoba et al.,
2007; Illeghems et al., 2012; Walsh et al., 2016; Einson
et al., 2018). Consequently, an active change in the microbial
community and metabolic profile gets established, leading to a
stable fermented food ecosystem with characteristic microbiota
structure and composition, metabolome, organoleptic properties,
and nutritional and health benefits (Giraffa, 2004; Wolfe and
Dutton, 2015; Marco et al., 2021). However, the desired outcomes
and final properties of fermented foods do not only depend on
the microbial-led conversion of substrates but also on a range of
physicochemical parameters such as water activity, temperature,
pH, oxidation-reduction potential and substrate accessibility.
Therefore, effective management of both the intrinsic and
extrinsic parameters during fermentation is critical in achieving
the desired characteristics and final properties of fermented food
products (Terefe and Augustin, 2020).

Throughout the world, lactic acid fermented products such
as yogurts and sourdoughs, acetic acid fermented vinegar or
alcoholic beverages produced by lactic acid bacteria, acetic acid
bacteria or yeast fermentations, respectively, are widely described
and their suggested nutritional and health benefits documented.

FIGURE 1 | Comparison of cumulative publication outputs in Scopus

database on the search terms “lactic acid fermentation” and “alkaline

fermentation” (Search done on 23rd February 2022).

This has contributed, in part, to consumer interest and the
popularity of these fermented food products (Dimidi et al., 2019;
Staudacher and Nevin, 2019). However, a relatively less popular
yet rich diverse group of fermented products known as alkaline
fermented foods (AFFs) which form an essential part of the
diets and culture of people in parts of Africa and Asia (Ouoba
et al., 2004; Azokpota et al., 2006; Parkouda et al., 2009; Owusu-
Kwarteng et al., 2020; Tamang et al., 2020) have received relatively
little attention. Figure 1 shows a comparison of studies published
on the Scopus database with the terms “lactic acid fermentation”
and “alkaline fermentation” in title, abstract or keywords. Active
research in the area of “alkaline food fermentation” only began to
“take off” in the late 1980s, whereas lactic acid fermentation had
benefited from detailed scientific research dated as far back as in
1950. Indeed, pioneering scientific research on African alkaline
fermented foods only started in 1980s with the microbiology
works on iru (Odunfa, 1981), dawadawa (Campbell-Platt, 1980),
ogiri (Odunfa, 1983, 1985), and ugba (Odunfa and Oyewole,
1986).

These so called “alkaline fermented foods” tends to have
their pH increasing during fermentation. Thus, the predominant
Bacillus spp. in these alkaline fermentations degrade the
endogenous proteins in the raw plant into peptides and amino
acids (Odunfa, 1985; Ouoba et al., 2003). As shown in equation
1, the free amino acids are further utilized by the Bacillus spp. as
carbon and nitrogen sources to produce ammonia/ammonium
hydroxide, resulting in the high pH values and the associated
atypical odor of these fermented condiments (Ouoba et al., 2003,
2005; Parkouda et al., 2009; Amoa-Awua et al., 2014).

RCH(NH+

3 )COO
−
+ nO2 → nCO2 + nH2O+ NH+

4 + OH−

AFFs of Africa and Asia are produced from a range of protein-
rich substrates such as Glycine max (soybeans), Parkia biglobosa
(African locust bean) seeds and other non-leguminous plant
parts. Plant-based AFFs of Asia are almost exclusively produced
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FIGURE 2 | Diversity and distribution of plant species used for the production of alkaline fermented foods in Africa and Asia.

from soybean as the substrate, giving credence to the first
domestication of soybean in Asia particularly in the eastern
half of north China in 1,000 BC, and the importance and
agricultural sustainability of soybean across the Asian region
(Tamang et al., 2020). In Africa, however, several wild as well
as cultivated legumes and non-leguminous plants are used as
substrates to produce AFFs. Asian AFFs produced from soybean
include natto from Japan (Kanno and Takamatsu, 1987), douchi
from China (Fan et al., 2009), kinema and similar products
from Nepal and neighboring countries such as Bengal, India,
and Bhutan (Tamang et al., 2002), doenjang and chongkukjang
from Korea (Park, 2000; Kim, 2002; Park and Jung, 2005;
Baek et al., 2008; Park et al., 2010), thua nao from Thailand
(Leejeerajumnean, 2000), and meitauza and yandou from China
(Zhu et al., 2008; Xu et al., 2012; Qin et al., 2013). On the
other hand, African locust bean [Parkia biglobosa (Jacq. Benth)]
is a common substrate for AFF condiments in Africa under
different local names such as dawadawa in Ghana and Nigeria,
soumbala in Burkina Faso (Ouoba et al., 2004), afitin, iru or
sonru in Benin (Azokpota et al., 2006), nététou in Senegal (N’Dir
et al., 1994), kinda in Sierra Leone and iru among the Yoruba
tribe of Southwestern Nigeria (Sanni et al., 2000). Similarly,
roselle seeds [Hibiscus sabdariffa (Linn.)] is used to produce
AFF condiment such as bikalga in Burkina Faso (Ouoba et al.,
2008), yanyanku and ikpiru in Benin (Agbobatinkpo et al., 2013)
and mbuja in Cameroon (Mohamadou et al., 2013). Other plant
based AFFs in Africa include okpehe from Prosopis africana seeds
(Achi, 1992; Oguntoyinbo et al., 2010), otiru from African yam
bean (Jeff-Agboola, 2007), oso fromCathormion altissimum seeds
(Popoola et al., 2004), ugba from Pentaclethra macrophylla seeds

(Sanni et al., 2002; Ahaotu et al., 2013), maari and tayohounta
from Baobab seed (Parkouda et al., 2010; Chadare et al., 2011;
Kaboré et al., 2012), ogiri from melon/castor oil seeds (Odunfa,
1985; Ademola et al., 2018), owoh from cotton seeds (Gossypium
hirsutum) seeds (Sanni and Ogbonna, 1991; Ezekiel et al., 2015),
mantchoua and kantong from Kapok tree (Ceiba pentadra) seed
(Kpikpi et al., 2014; Kere-Kando et al., 2020) and ntoba mbodi
from cassava leaves (Louembe et al., 2003; Mbozo et al., 2017;
Moutou-Tchitoula et al., 2018). A range of plant species used for
the processing of AFFs in Asia and Africa are shown in Figure 2.

Being predominantly produced from locally cultivated and
wild plants, AFFs and the microorganisms therein provide
sustainable diets serving as sources of nutrients and health
promoting bioactive molecules thereby contributing toward
achieving the United Nations Sustainable Development Goals
(SGD), specifically SGDs 2 and 3. In addition to the general
benefits associated with fermentation such as improvement
in shelf-life, organoleptic quality and safety, alkaline food
fermentations play a significant role in nutritional intake of
several traditional communities in Africa and Asia where
these fermentation processes transforms somewhat inedible,
unpalatable, potentially toxic and undigestible plant materials
into diverse desirable food products that delivers essential
nutrients such as proteins, amino acids, vitamins and minerals
within otherwise marginal diets (Wang and Fung, 1996;
Parkouda et al., 2009; Reddy et al., 2018). Furthermore, AFFs
and their associated microorganisms have been associated with
several putative health-promoting effects that can positively
impact human health via mechanisms such as including
nutritive alteration of raw components, biosynthesis of bioactive
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compounds, modification of the human gut microbiota, and
development andmodification of the immune system (Shin et al.,
2001; Sarkar et al., 2002; Hosoi et al., 2003; Suzuki et al., 2004;
Zhang et al., 2006; Wang et al., 2008; Tolhurst et al., 2012;
Tamang et al., 2016a; Araki et al., 2020). However, except for
natto which has received at least one Randomized Control Trial
(RCT), evidence of nutritional and health promoting effects of
AFFs or their inherent microorganisms have so far been limited
to laboratory chemical analysis and animal/cell model studies in
contrast to other fermented foods such as yogurts and cultured
milk which have their health benefits reported through at least
20 RTCs for both healthy and patient population groups (Dimidi
et al., 2019; Araki et al., 2020; PraŽnikar et al., 2020; Savaiano
and Hutkins, 2021). In this review, we demonstrate based on
reported scientific information, the potential contribution of
plant-based AFFs toward achieving the UN-SDGs as these foods
serve as a sustainable source of healthy and nutritious diets for
many traditional communities in Africa and Asia. Finally, we
present future perspective on the need to apply holistic, meta-
omics methods (metagenomics, meta-transcriptomics, meta-
proteomics and metabolomics) to characterize traditional AFFs
as well as conduct properly designed large placebo-controlled
RCTs that will provide a better understanding of the health
benefits of traditional AFFs.

PREDOMINANT MICROORGANISMS IN
AFFs

In order to appreciate the scope of AFFs in nutrition and
health, it is necessary to acknowledge the diversity and origin of
predominant microorganisms responsible for the fermentation
of these products. In general, traditional AFFs of Africa and
Asia are processed by spontaneous fermentation (depends
on autochthonous or resident microorganism present in the
raw substrate and/or surrounding environment) to initiate the
fermentation processes in these products (Parkouda et al.,
2009; Owusu-Kwarteng et al., 2020; Tamang et al., 2020). In
assessing their microbial ecology, the gold standard culture
dependent phenotypic approaches complemented by molecular
tools such as internal transcribed spacer PCR (ITS-PCR), random
amplification polymorphic DNA-PCR (RAPD-PCR), repetitive
sequence-based PCR (rep-PCR), pulsed field gel electrophoresis
(PFGE), as well as sequencing of 16S rRNA, gyrA, gyrB, and
rpoB genes, have shown that plant-based AFFs of Africa and Asia
are characterized by complex microbial communities. Despite
this complexity, Bacillus subtilis and related species are the
predominant functional microbiota in a wide-range of plant-
based AFFs of Africa and Asia (Ouoba et al., 2004, 2010; Meerak
et al., 2007, 2008; Oguntoyinbo et al., 2007; Parkouda et al.,
2009, 2010; Chukeatirote et al., 2010; Kamada et al., 2015;
Owusu-Kwarteng et al., 2020). Predominant microbial species
associated with the fermentation of plant-based AFFs in Asia
and Africa are shown in Table 1. Frequently identified species
of Bacillus and related genera associated with plant-based AFFs
are Bacillus subtilis, Bacillus cereus, Bacillus megaterium, Bacillus
endophyticus, Bacillus licheniformis, Bacillus borstelensis, Bacillus

pumilus, Bacillus coagulans, Bacillus circulans, Paenibacillus
polymyxa, Lysinibacillus sphaericus, and Lysinibacillus fusiformis
(Odunfa, 1981; Sarkar et al., 2002; Ouoba et al., 2004, 2010;
Azokpota et al., 2007; Parkouda et al., 2009).

Irrespective of raw material or geographic location of
production, B. subtilis remains the dominant functional species
in most AFFs in Africa and Asia. B. subtilis is reported as the
predominant species in the fermentation of dawadawa and soy-
daddawa in Ghana and Nigeria (Dakwa et al., 2005; Amoa-Awua
et al., 2006; Ezeokoli et al., 2016), soumbala, bikalga, maari and
mantchoua in Burkina-Faso (Bengaly, 2001; Ouoba et al., 2004,
2007, 2010; Parkouda et al., 2010; Kaboré et al., 2012; Kere-
Kando et al., 2020), kawal in Sudan and Chad (Mbaiguinam
et al., 2005), soumbara in Côte d’Ivoire (Adjoumani et al.,
2019), afitin, sonru, and iru in Benin (Azokpota et al., 2007),
tayohounta, yanyanku, and ikpiru in Benin (Chadare et al., 2011;
Agbobatinkpo et al., 2013), mbuja in Cameroon (Mohamadou
et al., 2013), kinda in Sierra Leone (Meerak et al., 2008), and
okpehe, oso, ugba, iru, and owoh in Nigeria (Sanni et al., 2000,
2002; Popoola et al., 2004; Oguntoyinbo et al., 2010; Adewumi
et al., 2013, 2014; Ahaotu et al., 2013; Ezekiel et al., 2015;
Ademola et al., 2018). Similarly, Asian AFFs produced from
soybean such as kinema produced in Nepal, thua nao in Thailand,
chongukukjang and doenjang in Korea, meitauza in China, and
natto in Japan are produced by B. subtilis (Tamang et al.,
2016b).

The B. subtilis species complex is a tight assemblage of
related species that includes B. subtilis subsp. subtilis BEST195,
the starter strain used for natto fermentation which is thought
to have been isolated from a traditionally prepared natto and
was therefore originally named Bacillus natto. However, Bacillus
natto was re-classified and included in B. subtilis in 1970
supported by phylogenetic analyses using 16S rRNA genes
(Tamang et al., 2002; Kubo et al., 2011). Since its isolation, further
characterization including entire genome information (Kiuchi
et al., 1987; Sulistyo et al., 1988; Nishito et al., 2010) have led to the
development of B. subtilis subsp. subtilis BEST195 starter strain
used for natto production in Japan. Natto starter cultivation
generally targets genes regulating the metabolic pathways of
secondary metabolites that affect texture, aroma, sensitivity to
bacteriophages, spore formation and germination, and high
productivity ofgPGA via the pgs operon (Ashiuchi and Misono,
2002; Beckett, 2009; Kubo et al., 2011) which imparts a sticky
texture onto natto. In plant-based African AFFs, B. subtilis
play technological and functional roles such as Production of
Aroma/flavor compounds (Owens et al., 1997; Ouoba et al.,
2005; Nwokeleme and Ugwuanyi, 2015; Akanni et al., 2018),
amino acids synthesis (Ouoba et al., 2003; Azokpota et al.,
2006), degradation of carbohydrates and oils (Kiers et al., 2000;
Ouoba et al., 2003, 2007; Azokpota et al., 2006), production of
antimicrobial peptides (Ouoba et al., 2007; Savadogo et al., 2011;
Kaboré et al., 2012, 2013; Compaore et al., 2013), and reduction
of anti-nutritional factors and toxic compounds (Okafor, 1977;
Odunfa, 1985; Abban et al., 2013).

Being produced predominantly by spontaneous fermentation
processes, the microbial ecology of traditional plant-based
AFFs of Africa and Asia are generally characterized by mixed
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TABLE 1 | Overview of predominant microorganisms occurring in plant-based AFFs in Africa and Asia.

Product name Substrate/raw

material

Predominant microorganisms Method of identification Country/region References

Legume; soybean products

Aakhone Soybean B. subtilis, B. licheniformis, B. cereus, Staphy. Epidermis, Proteus

mirabilis, Alcaligenes faecalis

Phenotypic tests, 16S rRNA sequence India Singh et al., 2014; Jamir

and Deb, 2018

Bekang Soybean B.subtilis, B.brevis, B.circulans, B.coagulans, B. licheniformis, B.

pumilus, B. sphaericus, L. fusiformis

Phenotypic tests, ARDRA, ITS-PCR,

and RAPD-PCR

India Chettri and Tamang,

2015; Tamang et al.,

2016a

Chongkukjang (also

written as

Chungkukjang)

Soybean B subtilis, B.amyloliquefaciens, B.licheniformis, B. cereus, Pantoea

agglomerans, Pantoega ananatis, Enterococcus sp., Pseudomonas

sp., Rhodococcus sp.

Culture-based, DGGE, barcoded

pyrosequencing, RAPD-PCR

Korea Lee et al., 2010; Hong

et al., 2012; Nam et al.,

2012; Shin and Jeong,

2015

Douchi Soybean B. amyloliquefaciens, Pediococcus acidilactici, P. pentosaceus, L.

brevis, L. plantarum, S. cerevisiae, M. farinosa (formerly Pichia

farinosa), C. guilliermondii, A. oryzae Absidia corymbifera, D. hansenii,

C. guilliermondii, C. variabilis

DGGE and sequencing of excised PCR

products

China Peng et al., 2003;

Parkouda et al., 2009;

Chen et al., 2011a,b,

2012; Liu et al., 2012; Qu

et al., 2012

Doenjang Soybean B. subtilis, B. licheniformis, Staphy. equorum, E. durans, E. faecium,

Leuco. mesenteroides, Tetragenococcus halophilus, Absidia

corymbifera, A. corymbifera, A. oryzae, Mucor plumbeus,

Debaryomyces hansenii, Candida rugose, D. hansenii, Zygo. rouxii, G.

geotrichum, C. pelliculosa (formerly Pichia anomala/Hansenula

anomala), Pichia farinose, Sterigmatomyces halophilus

Phenotypic tests, DGGE and

sequencing, PCR-DGGE,

pyrosequencing of 16S rRNA genes

sequencing

Korea
Yoo et al., 1999; Kang

et al., 2000; Cho and Seo,

2007; Kim et al., 2009;

Lee et al., 2010; Nam

et al., 2012; Shin and

Jeong, 2015

Furu Soybean curd B. pumilus, B. megaterium, B. stearothermophilus, B. firmus, Staph.

hominis

Phenotypic tests, PCR China
Sumino et al., 2003;

Tamang et al., 2016a

Gochujang/Kochujang Soybean, red

pepper

B. velezensis, B. amyloliquefaciens, B. subtilis, B. licheniformis, B.

velezensis, Zygo. rouxii, C. apicola, Z. beilli

Phenotypic tests, PCR Korea Shin and Jeong, 2015

Hawaijar Soybean B. subtilis, B. licheniformis, B. amyloliquefaciens, B. cereus, Staph.

aureus, Staph. sciuri, Alkaligenes sp., Providencia rettgers, Proteus

mirabilis

Phenotypic tests, ARDRA, PCR

amplification of 16S-23S rDNA region,

RAPD-PCR, RFLP

India
Jeyaram et al., 2008;

Singh et al., 2014;

Tamang et al., 2016a

Kanjang Soybean Bacillus citreus, B. circulans, B. licheniformis, B. megaterium, B.

mesentricus, B. subtilis, B. pumilis, Lactobacillus sp., Pedicocus sp., P.

acidilactici, A.s oryzae

Phenotypic tests, PCR Korea Shin and Jeong, 2015

Kinema Soybean B. subtilis, E. faecium, C. parapsilosis, G. candidum, B. licheniformis,

B. cereus, B. circulans, B. thuringiensis, B. sphaericus

RAPD-PCR Nepal, Bhutan, Bengal Sarkar et al., 1994,

1997a,b, 2002; Sarkar

and Tamang, 1995; Kiers

et al., 2000; Dahal et al.,

2005; Parkouda et al.,

2009

Thua nao Soybean B. subtilis, B. licheniformis, B. megaterium, B. pumilus, Lactic acid

bacteria

Phenotypic test, randomly amplified

polymorphic DNA-PCR fingerprinting,

16S rRNA gene sequencing

Thailand Chantawannakul et al.,

2002; Visessanguan et al.,

2005; Inatsu et al., 2006;

Chukeatirote, 2015;

Pakwan et al., 2020

(Continued)
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TABLE 1 | Continued

Product name Substrate/raw

material

Predominant microorganisms Method of identification Country/region References

Tungrymbai Soybean B. licheniformis, B. pumilus B. subtilis Phenotypic tests, ARDRA, ITS-PCR,

and RAPD-PCR

India Chettri and Tamang, 2015

Meitauza Soybean B. subtilis, Actinomucor elegans, Zymomonas mobilis China Kronenberg and Hang,

1984; Xu et al., 2012

Natto Soybean B. subtilis var natto 16S rRNA genes sequencing Japan Tamang et al., 2002;

Kiuchi and Watanabe,

2004; Kubo et al., 2011

Peruyaan Soybean B. subtilis, B. amyloliquefaciens, Vagococcus lutrae, P. acidilactici, E.

faecalis

India Singh et al., 2014

Yandou Soybean B. subtilis subsp. Subtilis, B. licheniformis, B. amyloliquefaciens 454 pyrosequencing of 16S rRNA

genes sequencing

China Qin et al., 2013

Sere kedele Soybean B. cereus B. flexus, B. subtilis, B. thuringiensis, W. confusa, W. cibaria,

Acinetobacter baumannii, Proteus mirabilis, Klebsiella pneumoniae

Phenotypic tests, 16S rRNA gene

sequencing

Indonesia Suparthana et al., 2018

Soy-daddawa Soybean B. subtilis, B. licheniformis, B. pumilus, B. cereus, B. firmis, M. luteus,

Staphy epidermidis

Phenotypic, PCR-DGGE and 16S rRNA

gene sequencing

Nigeria Dakwa et al., 2005;

Amoa-Awua et al., 2006;

Terlabie et al., 2006;

Ezeokoli et al., 2016

Tungrymbai Soybean B. subtilis, B. licheniformis, B. pumilus ARDRA, ITS-PCR and RAPD-PCR

techniques

India Chettri and Tamang, 2015

Legume; non-soybean products

Afitin, sonru, and iru Parkia biglobosa

seed

B. subtilis, B. licheniformis, B. cereus, Staphylococcus spp. ITS-PCR-RFLP, 16S rRNA gene

sequencing

Benin Azokpota et al., 2007

Bhallae Black gram (Vigna

mungo)

B. subtilis, Candida curvata, C. famata, C. membraneafaciens, C.

variovaarai, Cryptococcus humicoius, D. hansenii, G. candidum,

Hansenula anomala, H. polymorpha, K. marxianus, L. fermentum,

Leuc. mesenteroides, P. membranaefaciens, R. marina, S. cerevisiae,

E. faecalis, Trichosporon beigelii, Trichosporon pullulans, Wingea

robertsii

India Tamang et al., 2016a

Dawadawa Parkia biglobosa

seed

B. subtilis, B. pumilus, B. licheniformis, B. firmus, B. atrophaeus, B.

amyloliquefaciens, B. mojavensis, Tetragenococcus halophilus, P.

pentosaceus, L. plantarum, Lysininbacillus sphaericus. Leuconostoc

spp., Staphylococcus spp., P. aeruginosa

Phenotypic tests, 16S rRNA gene

sequencing

Ghana, Nigeria Sanni et al., 2000;

Omafuvbe et al., 2004;

Amoa-Awua et al., 2006;

Meerak et al., 2008;

Uaboi-Egbenni et al.,

2009

Soumbala Parkia biglobosa

seed

B. subtilis, B. pumilus, B. cereus, B. sphaericus, Brevibacillus

borstelensis, B. thuringiensis, B. licheniformis, B. badius, Paenibacillus

alvei, B. firmus, P. larvae, Brevibacillus laterosporus, B. megaterium, B.

mycoides, E. faecium, E. hirae, P. acidilactici, L. brevis

ITS-PCR, ITS-PCR RLFP, PFGE, 16S

rRNA sequencing, RAPD-PCR

fingerprint

Burkina Faso Sarkar et al., 2002; Ouoba

et al., 2004, 2010

Maseura Black gram (Vigna

mungo)

B. subtilis, B. mycoides, B. pumilus, B. laterosporus, P. acidilactici, P.

pentosaceous, E. durans, L. fermentum, L. salivarius, S. cerevisiae,

Pic. burtonii, C. castellii

Phenotypic tests Nepal, India Chettri and Tamang, 2008

(Continued)
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TABLE 1 | Continued

Product name Substrate/raw

material

Predominant microorganisms Method of identification Country/region References

Nététou Parkia biglobosa

seed

B. licheniformis, B. coagulans, B. subtilis, B. pumilus, Staphylococcus

spp. Micrococcus spp

Phenotypic tests Senegal N’Dir et al., 1994; N’dir

et al., 1997

Kawal Sickle pod (Senna

obtusifolia (L.)

leaves

B. subtilis, L. plantarum, Propionibacterium sp., Staphy. sciuri, C.

krusei Saccharomyces sp

Phenotypic tests Sudan, Chad Dirar, 1984; Harper and

Collins, 1992;

Mbaiguinam et al., 2005

Kinda Locust bean B. pumilus, B. licheniformis, B. subtilis, B. atrophaeus,

B.amyloliquefaciens, B.mojavensis, Lysininbacillus sphaericus

16S rDNA sequencing Sierra Leone Meerak et al., 2008

Okpehe Prosopis africana

seeds

B. subtilis, B. licheniformis, B. pumilus, B. megaterium, B. cereus,

Staphy. epidermidis, M. luteus, E. coli, Ent. cloacae, K. pneumoniae,

Lactobacillus spp., Proteus spp., Pseudomonas spp., Enterococcus

spp., Staphylococcus spp., Micrococcus spp., S. cerevisiae

Phenotyping, RAPD-PCR, ARDRA

fingerprinting, 16S rRNA gene

sequencing

West Africa/middle belt

and southern Nigeria

Achi, 1992; Omafuvbe

et al., 1999; Oguntoyinbo

and Oni, 2004; Ogunshe

et al., 2007; Oguntoyinbo

et al., 2007, 2010;

Balogun and Oyeyiola,

2011; Musa et al., 2011

Otiru African yam bean

(AYB) plant

L. jensenii, B. coagulans, Aero. viridans, P. pentosaceus, S. cerevisiae,

C. vini. A. niger, S. cerevisiae, C. vini (formerly Candida mycoderma)

Phenotypic and biochemical tests Nigeria Jeff-Agboola, 2007

Oso Seeds of

Cathormion

altissimum Hutch

Bacillus subtilis, Bacillus licheniformis, Leuconostoc mesenteroides,

Staphylococcus spp

West Africa/Nigeria Popoola et al., 2004,

2005, 2007

Ugba Pentaclethra

macrophylla

B. subtilis, B. pumilus, B. licheniformis, B. brevis, B. megaterium, B.

polymyxa, B. coagulans, B. macerans, B. cereus, Lactobacillus spp.,

Micrococcus spp., Pseudomonas chlororaphis, Micrococcus roseus,

Staphyl. saprophyticus, Staphylococcus spp.

Phenotyping, sequencing of 16S rRNA,

gyrB and rpoB genes, 16S-23S rRNA

ITS-PCR, and rep-PCR

Nigeria Isu and Njoku, 1997;

Mbajunwa et al., 1998; Isu

and Ofuya, 2000; Sanni

et al., 2000, 2002;

Parkouda et al., 2009;

Ahaotu et al., 2013

Iru Parkia biglobosa

seed

B. subtilis, B. amyloliquefaciens, B. cereus, B. licheniformis, B. pumilus,

Brevibacillus formosus, B. brevis, B. megaterium, B. polymyxa,

Leuconostoc spp., Staphylococcus spp., Pseudomonas aeruginosa

Phenotypic tests, ARDRA, ITS-PCR,

ITS-PCR-RFLP, RAPD-PCR,

PCR-DGGE, 16S rRNA gene

sequencing

Nigeria Odunfa and Oyewole,

1986; Sanni et al., 2000;

Omafuvbe et al., 2004;

Adewumi et al., 2013,

2014

Dawadawa-type

condiment

Bambara

groundnut

B. subtilis subsp. subtilis, B. amyloliquefaciens subsp. plantarum, B.

pumilus and B. licheniformis

MALDI-TOF MS, 16S rRNA, and gyrA

genes sequencing

Ghana, Nigeria Barimalaa et al., 1994;

Amadi et al., 1999; Akanni

et al., 2018

Soumbara Parkia biglobosa

seed

B. subtilis, B. velezensis, B. pumilis, E. faecium, E. hirae, Pediococcus

acidilactici, L. brevis

16S rRNA genes sequencing, RFLP

analysis

Côte d’Ivoire, Burkina

Faso

Ouoba et al., 2010;

Adjoumani et al., 2019

(Continued)
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TABLE 1 | Continued

Product name Substrate/raw

material

Predominant microorganisms Method of identification Country/region References

Non-legume products

Bikalga Hibiscus sabdariffa B. subtilis, B. licheniformis, B. cereus, B. pumilus, B. badius,

Brevibacillus bortelensis, B. sphaericus, B. fusiformis, B.

amyloliquefaciens, B. sphaericus, B. coagulans, and B. firmus, B.

polymyxa, B. circulans, Brevibacillus brevis, and Brevibacillus

laterosporus Enterococcus faecium, Enterococcus hirae, P. acidilactici,

P. pentosaceus, L. brevis, Leuc. mesenteroides subsp. dextranicum, L.

bulgaricus, Staphylococcus spp.

Phenotypic tests, 16S-23S rRNA

(ITS-PCR) gene sequencing

Burkina Faso Bengaly, 2001; Ouoba

et al., 2007; Ouoba et al.,

2008a, Mohamadou et al.,

2008; Ouoba et al., 2010;

Mohammadou et al., 2018

Maari Baobab seed B. subtilis, B. licheniformis, B. velezensis, B. safensis, B. megaterium,

B. endophyticus, B. cereus, B. coagulans, B. circulans, E. faecium, E.

casseliflavus, P. acidilactici, Staphy. sciuri, Staphy. gallinarum,

Corynebacterium sp.

Phenotypic tests, rep-PCR

(GTG)5-fingerprinting and 16S rRNA

gene sequencing

Burkina Faso Parkouda et al., 2010;

Kaboré et al., 2012

Ogiri Melon/Castor oil

seeds

B. safensis, B. siamensis, B. altitudinis, B. encimensis, B. subtilis, B.

circulans, B. stearothermophilus, Brevibacillus brevis, B. megaterium,

L. pentosus, L. plantarum

Phenotypic tests (API kit software), 16S

rRNA gene sequencing

Nigeria Odunfa, 1985; Ojinnaka

and Ojimelukwe, 2013;

Ademola et al., 2018

Owoh Cotton seeds

(Gossypium

hirsutum)

B. subtilis, B. licheniformis, B. pumilus, Staphylococcus spp. Phenotypic tests Nigeria Sanni and Ogbonna,

1991; Ezekiel et al., 2015

Semayi Coconut fruit B. subtilis, B. licheniformis, and B. polymyxa Phenotypic tests Indonesia Kuswanto, 1988

Tayohounta Baobab seed B. licheniformis, B. pumilus, B. subtilis, B. thermoamylovorans, B.

thuringiensis, B. borstelensis, L. fermentum, Enterococcus

casseliflavus, E. durans, L. agilis,P. pentosaceus, S. equinus,W.

confuse, E. cloacae, E. faecium, E. italicus, Jeotgalicoccus

halotolerans, K. pneumoniae, Staphy.aureus

PCR-DGGE and cloning of 16S rRNA

PCR fragments

Benin Chadare et al., 2011

Mantchoua Kapok tree (Ceiba

pentadra) seed

B. subtilis subsp. Subtilis, B. cereus sensu lato, B. amyloliquefaciens

subsp. Plantarum, B. licheniformis, B. altitudinis, B. safensis

Phenotypic tests, 16S rRNA, ITS-PCR,

M13-PCR

Burkina Faso Kere-Kando et al., 2020

Kantong Kapok tree (Ceiba

pentadra) seed

B.s subtilis subsp. subtilis, B. safensis, B. amyloliquefaciens subsp.

plantarum/B. methylotrophicus

Phenotypic tests, M13-PCR; gyrA

sequencing.

Ghana Kpikpi et al., 2014

Mbuja Hibiscus sabdariffa B. subtilis, B. megaterium, B. amyloliquefaciens, B. pumilus B. cereus Phenotypic tests, 16S rRNA, and gyrB

genes sequencing

Cameroon Mohamadou et al., 2013

Yanyanku Hibiscus sabdariffa B. subtilis, B. cereus, B. amyloliquefacience, B. licheniformis, B.

safensis, B. altitudinis, B. aryabhattai, B. flexus, B. circulans,

Lysinibacillus spp, Paenibacillus spp, Brevibacillus spp, Aneurinibacillus

spp

Phenotypic tests, rep-PCR, M13-PCR,

16S rRNA, gyrA, gyrB sequencing

Benin Agbobatinkpo et al., 2013

Ikpiru Hibiscus sabdariffa B. subtilis, B. cereus, B. amyloliquefaciens, B. licheniformis, B. safensis,

B. altitudinis, B. aryabhattai, B. flexus, B. circulans, Lysinibacillus spp,

Paenibacillus spp, Brevibacillus spp, Aneurinibacillus spp

Phenotypic tests, rep-PCR, M13-PCR,

16S rRNA, gyrA, and gyrB genes

sequencing

Benin Agbobatinkpo et al., 2013

Ntoba Mbodi Cassava leaves B. macerans, B. subtilis, B. pumilus, Staphylococcus xylosus, Erwinia

spp, E. faecium, E. hirae, E. casseliflavus, E. faecalis; E. avium, L.

plantarum, P. pentosaceus, W. confusa, W. cibaria, Pediococcus spp.

Staphy. sciuri

16S rRNA gene sequencing and

phylogenetic analyses

The Republic of Congo Louembe et al., 2003;

Jayani et al., 2005;

Mokemiabeka et al.,

2011; Moutou-Tchitoula

et al., 2018
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FIGURE 3 | Examples of traditional AFFs in Africa and Asia. (A) Natto (Photograph credit: Chichi Wang), (B) Kinema (Photograph from Tamang et al., 2016a), (C)

Doenjang (Photograph by Maangchi), (D) Douchi (Photograph by Xin-Mei Fang), (E) Dawadawa (Photograph by R. A. Atuna), and (F) Thua nao (Photograph by

puechkaset).

populations of different species of bacteria, yeasts and molds
(Dirar et al., 1985; Sarkar et al., 1994; Dakwa et al., 2005; Jeff-
Agboola, 2007; Parkouda et al., 2009, 2010; Sohliya et al., 2009;
Ouoba et al., 2010; Kim et al., 2011a; Rashad et al., 2011; Tamang
et al., 2012; Adewumi et al., 2013; Owusu-Kwarteng et al., 2020).
Thus, in addition to Bacillus and related species, other groups
of microorganisms including other aerobic endospore-forming
bacteria (AEB), lactic acid bacteria (LAB), yeasts and molds have
been frequently identified as members of the microbial consortia
of traditional plant-based AFFs. However, the contribution of
these so-called “secondary microbiota” to technological and
functional properties of AFFs have been sparsely reported. Lactic
acid bacterial may enhance the safety of AFFs through the
production of antimicrobial compounds (Kaboré et al., 2012).
Yeasts such as Candida parapsilosis and Geotrichum candidum
have also been shown to significantly lower the levels of free fatty
acids, while contributing to the production of free amino acids as
well as enhance the formation of flavor compounds in traditional
AFFs (Sarkar et al., 1996; Kim et al., 2011b; Rashad et al., 2011).

NUTRITIONAL AND DIETARY VALUE OF
PLANT-BASED AFFs

Plant-based AFFs play significant roles in the nutritional
intake and are important in achieving dietary sufficiency in
several traditional communities where they are produced and
consumed. Two main features of alkaline fermentation process
are particularly significant in relation to national and dietary
impacts of AFFs. Firstly, enzymes produced by predominant
bacteria during alkaline fermentation hydrolyses macronutrient
molecules i.e., complex carbohydrates, proteins, and fats,
thereby enhancing nutrient bioavailability and digestibility of the
fermented product compared with the unfermented substrate

(Wang and Fung, 1996). For example, B. subtilis fermentation
has been shown to effectively hydrolyse soybean proteins
and polysaccharides, resulting in low-molecular-weight, water-
soluble products that require little further degradation by
gastrointestinal enzymes (Kiers et al., 2000). Secondly, enzymatic
degradation during fermentation significantly reduces naturally
occurring toxic components, allergens, and antinutritional
components in the raw food substrate, thereby transforming
otherwise inedible, difficult to digest or potentially toxic raw
materials into palatable and culturally desirable food products
that deliver essential nutrients. In Africa, several of such alkaline
fermented food products are produced in each country or region,
thus contributing to a complex rich traditional dietary diversity,
with important food security and sustainability implications
(Iwuoha and Eke, 1996; Parkouda et al., 2009).

Soybean, themost common plant substrate for AFFs produced
in Asia, is nutritious with high levels of protein and fat
(Bouchenak and Lamri-Senhadji, 2013). However, unprocessed
soybean contains high levels of complex oligosaccharides
and antinutrients (Reddy and Pierson, 1994), as well as
potential allergens (Phromraksa et al., 2008). The presence of
antinutritional factors such as tannins, trypsin inhibitors and
phytic acid tend to limit the digestibility and bioavailability
of essential nutrients in unprocessed soy products (Ghavidel
and Prakash, 2007). Therefore, in order to liberate the essential
nutrients from soybean for human digestion and absorption,
some form of processing is necessary. Fermentation has proven
to reduce antinutrient levels, improving the nutritional and
organoleptic properties of fermented food products (Osman,
2004; Eltayeb et al., 2007; Atuna et al., 2022).

During the production of soy-based natto (Figure 3A),
biochemical changes occurring as a result of fermentation has
been shown to improve the content of protein, lipids and
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minerals such as iron, zinc and calcium (Table 2). Hu et al.
(2010) reported 1.1-fold increase in protein content of natto
after fermentation. It has been suggested that microorganisms
increase the protein content of samples on which they grow
due to microbial synthesis of protein (Hu et al., 2010). Crude
fat and total ash contents of natto ranges from 18–24.7 to 4.7–
4.6%, respectively (Table 2). Although fermentation is reported
to have little effect on the crude fat content of natto, there appears
to be strain-specific influence by the fermenting microorganism
which may result in increased or decreased fat content. For
example, the lipid content of natto decreased by 1.1-times
from 25.41% in raw soybeans inoculated with the “Itobiki”
strain of B. natto while the NRRL B-3383 strain of B. natto
increased lipid content by 1.1-fold (Wei and Chang, 2004).
Thus, different B. natto strains have different capabilities to
synthesize lipid or utilize carbohydrates during fermentation
(Wei and Chang, 2004). Another notable compositional change
in natto is the significant increase in vitamin K content after
fermentation. The extraordinary increase in vitamin K in natto
has been attributed to vitamin K2 (menaquinone-7 or MK-
7) synthesis by B. subtilis natto (Kouris-Blazos and Belski,
2016). Epidemiological studies have also shown that increased
consumption of Japanese natto is positively correlated with
bone density among Japanese females as a result of increases
in serum vitamin K and g-carboxylated osteocalcin, both of
which facilitate bone mineralization (Tsukamoto et al., 2000;
Katsuyama et al., 2002). For water-soluble vitamins, fermentation
was reported to increase thiamine and riboflavin contents by 3-
folds and a 5-fold increase in vitamin B12 content compared to
the raw substrate (Reddy et al., 1983).

Kinema (Figure 3B), a fermented-soy condiment, is a
traditional delicacy produced in Nepal and parts of India.Kinema
not only possesses exceptional flavor but has a significant dietary
importance as a relatively cheap substitute for meat (Sarkar et al.,
1994). Like other soy-based fermented products, kinema is a rich
source of protein (43.4–48.7%), fat (16.1–22.7%), carbohydrates
(27.4–29.6%), and minerals (Table 1). The nutrient composition
of kinema has previously been reported (Sarkar and Tamang,
1995; Sarkar et al., 1997b, 1998). Total protein content of kinema
increases by about 1% while free amino acid content increases
by 60-fold compared to raw soybeans. However, for its dietary
role as meat substitute, tryptophan, cysteine, and methionine
are the main limiting amino acids in kinema, although protein
quality has been reported to be comparable to animal source
protein (Sarkar et al., 1994, 1997b). B-vitamins in kinema varies
from the raw soybean substrate with general increases in levels
of riboflavin and niacin, but a decrease in thiamine (Sarkar et al.,
1998). The minerals content of kinema was also reported to be
lower than raw soybean. The decline in the mineral level in
kinema has been attributed to the preparation process where
soybeans are soaked, cooked, and the water discarded (Sarkar
et al., 1998).

Doenjang (Figure 3C) is an indigenous alkaline fermented
soybean paste which serves as an important protein source and
seasoning agent in the traditional diets of the people of Korea.
Doenjang is considered a nutritious food that provides essential
amino acids, fatty acids, minerals, and vitamins, associated with

various nutritional benefits. Proximate composition of doenjang
include 54.7% water, 13.8% crude protein, 8.0% crude lipid,
14.4% (Park and Jung, 2005). Amino acids composition of
doenjang include glutamic acid, leucine, alanine, histidine, lysine,
proline, and valine (Park and Jung, 2005). Fermentation of
doenjang for 80 days results in relative increases in methionine
and threonine levels compared to raw soybeans. However,
these amino acids are still limiting in doenjang and therefore
other dietary strategies such as complementation would ensure
adequate intake of essential amino acids (Namgung et al., 2010).
Like doenjang, chongkukjang is another traditional Korean soy-
based fermented food, similar to Japanese natto, but different in
usage (Chukeatirote, 2015).Chongkukjang, commonly consumed
for its perceived health-promoting properties, is also regarded
as a rich source of proteins, lipids, amino acids, vitamins,
and minerals (Ali et al., 2018). Fermentation of soybean into
chongkukjang with higher concentrations (5–7%) of B. subtilis
enhances the minerals content of the product (Ali et al.,
2018). The significant improvement of minerals content has
been attributed to microbial involvement and interaction with
metabolites breakdown (Ali et al., 2018). Fermentation is also
reported to degrade antinutritional factors during chongkukjang
processing, invariably improving the bioavailability of minerals
(Ali et al., 2018). Themicroorganisms’ strains in the fermentation
process significantly influence the product’s value. The total
mineral contents in chongkukjang fermented with Bacillus
amyloliquefaciens RWL-1 increased by about 33% compared with
the quantity obtained from the conventional B. subtilis (Shahzad
et al., 2020).

Douchi (Figure 3D), a nutrient-rich fermented soy-based food
product, is widely used seasoning in China and other Asian
countries to enhance appetite (Li and Ma, 2014). During douchi
production, a series of complex biochemical reactions enhance
chemical and nutritional components in the raw soybeans.
During fermentation, proteins are converted to peptides and
amino acids, lipid to fatty acids, starch to reducing-sugars
and ethanol, and various aroma components by salt-tolerant
microorganisms (Li and Ma, 2014). The crude protein and
fat content of douchi ranges from 35.9–40.4 to 19.9–23.9%,
respectively (Table 1). The crude protein content of pre-
fermented douchi slightly increased and then decreased by 1.2-
fold after four (4) weeks of ripening (Wang et al., 2016). The
fermentation process is also reported to increase the product’s
mineral content and bio-accessibility (Liu et al., 2020).

Meitauza is produced from okara (a by-product from the
production of soybean foods such as soymilk and tofu) in
China. Crude protein content of meitauza declines by almost
6% due to the interaction between microbes and the fermenting
media. However, total free amino acids significantly increased
during the fermentation process (Xu et al., 2012). Strong-tasting
amino acids such as glutamic acid and glycine increase by
over 10-folds; and aspartic acid, alanine and arginine increased
several-fold. Similarly, amino acid with sweet taste: leucine,
valine, serine, and methionine significantly increase during
fermentation, improving the taste and overall nutritional value of
the fermented product. Although okara contains high moisture
content (>80%), the water is linked to dietary fiber, resulting
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TABLE 2 | Summarized nutritional information previously reported for some AFFs.

Plant-based AFF Proximate (unit/100g) Minerals (mg/100g)

Moisture (g) Crude

Protein (g)

Crude Fat (g) Total Ash

(g)

CHO (g) Fiber (g) Energy

(kcal)

Fe K Ca Mg P Zn Cu

Legume; soybean products

Natto 60.8–64 40.7–49.6 18.0–24.7 4.7–5.6 23.3–29.9 3.49–3.55 494 8.1–12.4 1,600 220–416 250 470 4.70 1.51

Douchi NA 35.9–40.4 19.9–23.9 NA NA NA NA NA NA NA NA NA

Kinema 57.3–64.8 43.4–48.7 16.1–22.7 5.6–7.4 27.4–29.6 NA 430–501.7 17.7 1,768 432 252 12.6 4.52 1.71

Doenjang 54.7 13.8–23.4 8.0 21 45.4 3.1 NA NA NA NA NA NA NA NA

Chongkukjang 57.7–62.8 14.8–20.9 5.4–8.5 1.4–2.3 8.6–16.3 NA NA 3.8–31 602–1,099.3 96–166.7 89.2–101.9 177 2.9–3.7 1.01–1.4

Thuo nao 56.4–64.9 38.9–42.8 3.2–25.2 4.7–7.9 33.6–40.3 NA NA 11.8 1,478 386 240 778 6.13 1.48

Meitauza 74.5 30.6–39.4 8.5–11.6 4.07–5.06 15.9–32.4 NA NA NA NA NA NA NA NA NA

Soy-dawadawa 11.4–25 43.2–47.4 19.9–26.7 3.5–5.0 16.2 4.5 NA NA 1,460 2,400 192 388 NA NA

Legume; non-soybean products

dawadawa 10.2 49.7 26.9 4.32 7.43 6.5 NA 1.67–2.0 1,322 637 136 375 3.17–3.76 112–119.8

Ugba 17.13–35.4 36.3–61.4 1.11–2.9 17.48 2.9–5.6 NA 4.25 11.04 20.9 33.5 29.1 0.9 NA

Kawal NA 24.32–30.2 2.95–4.12 18.16–20.04 16.86–25.89 19.3–21.8 221.59–

232.88

2.97–4.37 1,026–

1,543.6

2,114.7–

2,571

212.8–241.4 98.6–115 0.45–0.53 0.72–1.54

Okpehe 65–65.3 38.7–40.06 11.96–12.3 2.2–2.3 0.15–0.17 0.38–0.51 NA 58.8 303.8 68 63 540 10.1 1.8

Oso 40.3 16.9 16.9 1.03 10.02 6.45 NA 1.8 NA 129 NA 720 6.38 1.4

Non-legume products

Ogiri 27–31 21.4–22.9 20.8–22.3 3.07–3.47 15.2–21.4 5.2–6.4 NA 36–75 10 686–716 38–69 19–21

Furundu 28.7–39 21.8–24.6 5.5–7.7 16.9–22.8 14.4–14.7 NA 19,400–

21,210

1,290–1,300 68–74 144–122 552–599 8,560–

10,400

6,933–7,830 NA

Bikalga 8.2.4 26.47 23.19 9.03 13.7 NA NA 1.1–17.5 0.5–28 0.34–28.6 NA 0.15–1.7 0.09–9.1 0.2–1.9

Mbuja 3.9–5.95 12.9–31.9 1.8–2.3 13.2–32.4 NA 19.8 NA 128.3 418.6 NA 6.4 0.3

Maari 10.3–13.4 13.4–14.7 15.1–18.1 0.68–0.88 4.65–5.11 NA NA 0.55 0.77 0.57 NA 303 1.8 0.02

Owoh 46.6 13.6–28.6 15.3–42.8 1.25–6.1 13.7–15.7 NA NA 24.7 0.07 0.15 0.08 0.03 12.4 3.1

NA, Not available. All data on dry matter basis except for moisture.
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in the pasty texture of the by-product (Redondo-Cuenca et al.,
2008). The fiber, largely insoluble cellulose and hemicellulose,
form a more significant part of the dry matter content (40–
60%). Fermentation can increase the soluble fiber level in okara,
improving its nutritional quality and processibility (Sharma et al.,
2020). It also induces a significant decrease in lipid and lignin
contents in okara. These compositional changes have led to a
pleasant and delicate taste, as well as a smooth and rubbery
texture (Colletti et al., 2020).

Dawadawa (Figure 3E) is the most important protein-
rich food condiment in West and Central African, primarily
used as a meat substitute or to enhance the organoleptic
qualities of traditional staple foods. Dawadawa is known by
different local names depending on the country of production;
dawadawa in Ghana, iru (Nigeria), nététu (Senegal), kinda (Sierra
Leone), afitin, iru, or sonru (Benin) and soumbala (Burkina
Faso). Varying nutritional composition have been reported for
dawadawa because a range of raw materials including locust
bean, bambara groundnuts [Vigna subterranean (L.) Verdc.], and
soybean serve as substrates for the fermentation (Achi, 2005). In
general, locust bean is inedible and could be toxic to humans
(Wang and Fung, 1996). However, a significant reduction in
the anti-nutrient content and enhanced amino acid profile has
been reported for alkaline fermented locust bean (Ijarotimi and
Keshinro, 2012). Generally, dawadawa produced from African
locust beans contain about 49.7% protein, 26.9% lipids, 4.3%
total ash, and 7.4% carbohydrates (Appiah et al., 2012). Alkaline
fermentation of African locust bean resulted in an increase
in total protein content and an improvement in the amino
acid profile (Urua et al., 2013). This increase in free amino
acids levels due to the proteolytic activities by the fermentative
microorganisms have been reported for dawadawa (Odunfa,
1981; Akabanda et al., 2018). Additionally, fermentation of locust
bean results in a 6-fold increase in thiamine and 3-fold increase
in riboflavin contents, but a reduction (30%) in niacin content.
Similar reduction in niacin content was reported for ugba,
fermented condiment fromAfrican oil bean seeds, corresponding
to progressive reduction in cyanide, phytate, tannin and oxalate
contents (Ogueke et al., 2013). Sulfur-containing amino acids
are generally limiting in locust bean dawadawa (Campbell-Platt,
1980) and ogiri produced by alkaline fermentation of melon
seeds, but these could be complemented through the consuming
the AFFs with cereal-based staples (Wang and Fung, 1996).
For soy-dawadawa, fermentation protein, carbohydrates and fat
contents are reported to be 43.2–47.4, 16.2, and 19.9–26.7%,
respectively (Table 2). The major biological changes occurring
during soy-dawadawa processing include hydrolyses of protein,
fat, and carbohydrate, with the fermentation leading to increased
contents of protein and amino acids such as lysine, arginine,
proline, phenylalanine, isoleucine, and leucine (Dakwa et al.,
2005; Terlabie et al., 2006).

In Congo and parts of central Africa, cassava (Manihot
esculenta Crantz) leaves are fermented to produce ntoba mbodi
(Louembe et al., 2003). Ntoba mbodi is relatively rich in
protein although a slight reduction in free nitrogen occurs
during fermentation, probably due to liberation of hydrogen
cyanide. Extensive cellulase activity, through fermentation,

further enhances the bioavailability of carbohydrates and
increases magnesium, calcium, and potassium contents in notba
nbodi compared to raw cassava leaves. However, methionine
and phenylalanine are the limiting amino acids in ntoba nbodi
(Mokemiabeka et al., 2011). Another product similar to ntoba
nbodi is kawal produced by the fermentation of sickle pod
[Senna obttusifolia (L.) H.S/Irwin & Barneby] leaves in Chad
and Sudan where it serves as meat substitute and flavoring agent
soups and stews (Dirar, 1984; Harper and Collins, 1992). While
Dirar (1984) reported a decrease in crude protein content of
after fermentation, Harper and Collins (1992) reported increased
crude protein content of kawal. Although about 50% protein
loss during the fermentation of kawal has been observed, the
loss is overshadowed by the substantial increase in digestibility
and palatability of the fermented product. Limiting amino acids
in kawal include cysteine, histidine, and threonine. However,
kawal is consumed with cereals foods which may provide
complementary proteins (Mbaiguinam et al., 2005).

HEALTH PROMOTING EFFECTS OF AFFs

Production of Vitamins
All vitamins are essential for human growth—meaning human
cannot synthesize adequate quantities of vitamins de novo, if at
all. Therefore, human diet must contain adequate quantities of
these vitamins in order to maintain normal growth and bodily
functions. These vitamins act as co-factors or pre-cursors to
important metabolic processes and enzymes in living organisms.
Fermentation is touted as a natural process for the in-situ
biosynthesis of vitamins in food materials (Odunfa, 1986). As
shown in Table 3, examples of vitamins whose levels have been
significantly increased after fermentation are Vitamin K and
the B-vitamins (e.g., thiamine (B1), riboflavin (B2), niacin (B3),
pantothenic acid (B5), pyridoxal (B6), biotin (B7), folate (B9),
and cobalamins (B12).

The biosynthetic pathways for the production of vitamins
B2 (Burgess et al., 2009), B12 (Burgess et al., 2009), B9 (Rossi
et al., 2011), and other B-type vitamins have been widely reported
in lactic acid bacteria (LeBlanc et al., 2011). Among alkaline-
fermenting bacterial strains, B. subtilis (Bacher et al., 1980; Bretzel
et al., 1999; Li et al., 2013; Man et al., 2014), B. tequilensis
(Abdulla et al., 2016), B. abortus (García-Angulo, 2017), B.
amyloliquefaciens (Vitreschak et al., 2002), and B. halodurans
(Averianova et al., 2020) are the most studied species.

Most food-grade microorganisms, including those found
in alkaline fermented foods have the genetic wherewithal to
synthesize vitamins during growth on organic materials. The
class of genes needed for the biosynthetic of these vitamins
differ for each vitamin but can be intricately linked, as is
the case for vitamin B2, B9, and B12 (Gu and Li, 2016).
In B. subtilis, the production of Vitamin B2 begins with the
expression of ribA gene which encodes for the bifunctional
enzyme guanosine 5

′

-triphosphate (GTP) cyclohydrolase II/3,4-
dihydroxy-2-butanone 4-phosphate synthase responsible for
the conversion of GTP to 5-amino-6-ribityl-amino-2,4(1H,3H)
pyrimidinedione (ArP), and ribulose 5-phosphate (Ribu5P)
to 3,4-dihydroxy-2-butanone-4-phosphate (DHBP). ArP and
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TABLE 3 | Improvement in vitamin availability of some AFFs.

Product name Vitamin type References

Legume; soybean products

Chongkukjang (also

written as

Chungkukjang)

B12

Kwak et al., 2010

Doenjang B12, E
Kwak et al., 2010; Shin and

Jeong, 2015

Furu B12

Li et al., 2004

Gochujang/Kochujang C
Shin et al., 2012

Hawaijar B2, K
Khan et al., 2016

Kanjang B12

Lee et al., 1959

Kinema B complex
Tamang, 2012

Tempe B2, B3, B6, B9,

B12, E, Watanabe et al., 2014; Mani and

Ming, 2017

Thuo nao B12

Yongsmith et al., 2016

Tungrymbai K
Dihingia et al., 2018

Meju D
Ahn, 2018

Miso K
Tarvainen et al., 2019

Natto K
Tarvainen et al., 2019

Soy sauce K
Tarvainen et al., 2019

Legume; non-soybean products

Dawadawa B1, B2, B3, C,

B6, B9, B12, D,

E

Oguntoyinbo et al., 2016;

Termote et al., 2022

DHBP are the two substrates of riboflavin (Vitamin B2)
(Averianova et al., 2020). Plant-based food products whose
riboflavin levels have been significantly improved via alkaline
fermentation include dawadawa (Oguntoyinbo et al., 2016),
kinema (Sarkar et al., 1998), and tempe (Mani and Ming, 2017).

The production of folate also begins with GTP which
acts as a precursor for 6-hydroxymethyl-7,8-dihydropterin
pyrophosphate (DHPPP) through a series of four enzymatic
conversion steps. Another important substrate for folate
production is para-aminobenzoic acid (pABA)which is produced
from erythrose 4-phosphate and phosphoenolpyruvate through
the shikimate pathway (Bermingham and Derrick, 2002).
The coupling together of DHPP and pABA, and subsequent
glutamylation of the final product gives polyglutamate forms of
dihydrofolate (DHF), and tetrahydrofolate (THF) (Rossi et al.,
2011).

Cobalamin (Vitamin B12) has an intricate and complex
structure. It is no wonder that as many as 30 genes are required
for its biosynthesis (Gu and Li, 2016). One of the few Bacillus
species known to synthesis Vitamin B12 de novo is B. megaterium

where the synthesis occurs through an anaerobic route (Fang
et al., 2017). B. megaterium is considered a producer of Vitamin
12 at the industrial scale (Vary, 1994; Mohammed et al., 2014). In
this species, uroporphyrinogen III is first converted to precorrin-
2 and then subsequently to cobyric acid. The transformation
of precorrin-2 to cobyric acid occurs through a series of
reactions involving eight methylations, six amidations, insertions
of cobalt, and decarboxylation and contraction of the porphyrin
ring (Moore and Warren, 2012). Cobyric acid is converted to
cobinamide, and then to cobalamin.

Kwak et al. (2008) reported the Vitamin B12 contents
of traditionally fermented Doenjang and Chungkookjang, two
Korean soybean-based fermented foods, and found levels of
1.85 mg/100 g and 0.69 mg/100 g, respectively. These levels were
significantly higher than those found in factory-made versions
of the products which had 0.04–0.86 mg/100 g and 0.06–0.15
mg/100 g, respectively. The high levels of Vitamin B12 in the
traditional fermentation process could be due to the fact that the
traditional process to prepare Doenjang and Chungkookjang is
relatively long (∼ about 10months) and uses “wild-type”multiple
microorganisms found in nature (Kwak et al., 2010).

Vitamin B12 production to levels of about 91.43 mg/100 dw in
in fermented soybean, Thua nao (Figure 3F) using mixed culture
fermentation using mixed cultures of B. amyloliquefaciens. and
Klebsiella spp. have been reported (Yongsmith et al., 2016).
The levels of Vitamin B12 in tempeh (i.e., 0.7–8.0 mg/100 g),
(Watanabe et al., 2014). The levels of Vitamin B12 in natto has
been reported to be over five times that in cooked soybeans
(Wang and Fung, 1996).

The fact that the aforementioned vitamins are abundant in
alkaline fermented plant-based foods suggest that fermentation
can be considered as suitable chemical-free production route for
these vitamins, for use in supplements and food fortification
programs (Gu and Li, 2016). Further, in some cases (such
as in riboflavin synthesis) production of these vitamins via
fermentation leads to products with higher chemical purity,
compared with chemically synthesized alternatives (Bretzel et al.,
1999).

Improved Digestibility
In general, plant-based foods are comparatively less digestible
than animal-based foods, when subjected to the human digestive
system. The low digestibility of plant materials is due to factors
such as the presence of cellulose cell wall that decrease access by
enzymes to target molecules (Holland et al., 2020), the inability of
human gastro intestinal enzymes to digest cellulose (Cummings,
1984), restrictive structural features of target molecules (e.g.,
hydrophobicity and folding patterns of plant proteins), presence
of “antinutritive” compounds or secondary metabolites that
inhibit human gastric enzyme activities (Sarwar Gilani et al.,
2012), complexation of target molecules with other compound
(e.g., starch-lipid conjugates) (Qin et al., 2019), among others.
All of these aforementioned phenomena decrease the digestion,
bioaccessibility, and bioavailability of nutrients in plant-based
foods. The ability of alkaline fermentation to improve the
digestibility of plant foods therefore strongly depends largely on
microbial metabolic processes that affects one or more of the
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above-mentioned factors. The description (with examples) of two
pathways through which fermentation increases the digestibility
of certain alkaline-fermented foods is given below.

Partial Hydrolysis and Release of
Hydrolytic Products and Their Metabolites
The action of alkaline fermentation leads to the generation
of a host of factors that directly or indirectly causes partial
hydrolysis or softening of plant matrix. For example, microbial
enzymes produced in situ during fermentation can utilize
biomolecules in plant matrices as substrates, leading to the
generation of partially-hydrolysed plant microstructures and
release of hydrolysis products. Case in point, proteolysis is
considered the most important metabolic activity in alkaline
fermentation (Parkouda et al., 2009), and increased protease
activity during alkaline fermentation is well-reported (Ouoba
et al., 2003; Owusu-Kwarteng et al., 2020). Proteolysis is mostly
caused by Bacillus spp. (Ouoba et al., 2003), and this biochemical
process leading to the formation of peptides and free amino acids
that improve the nutritional qualities of the fermented product.
The levels of essential amino acids such as methionine, cysteine,
leucine, tyrosine, phenylalanine, and lysine have been reported
to increase after alkaline fermentation (Ouoba et al., 2003;
Owusu-Kwarteng et al., 2020). The released free amino acids
are further metabolized by the microorganisms to ammonia,
giving rise to the characteristic pungent “ammonia-like” odors of
some traditional fermented foods such as dawadawa (Parkouda
et al., 2009). High pH is known to degrade cellulose and
lignocellulose (Glaus and Van Loon, 2008). Therefore, the
production of ammonia and accompanying high pH during
alkaline fermentation can be expected to indirectly “soften” plant
compounds, making them more susceptible to the actions of
subsequent food processing and gastrointestinal enzymes.

Reduction in Levels of Antinutritional
Factors and Flatus-Forming
Oligosaccharides
Plant materials are rich in antinutritional factors such as
lectins, tannins, saponins, protease inhibitors, oxalic acid,
cyanogenic glycosides, and phytic acid. These antinutritional
factors can reduce the bioavailability of key nutrients (such
as vitamins and minerals), or interfere with the activities
of gastro-intestinal digestion. Some antinutritional compounds
(e.g., hydrocyanic acid released from cyanogenic glycosides) can
be toxic to humans.

The seeds of African locust bean (Parkia biglobosa), used
in the preparation of dawadawa contains antinutrients such
as nitrates, tannins, cyanide, phytates, and oxalates (Termote
et al., 2022). Urua et al. (2013), in their work on the effect of
processing on three accessions of African locust bean reported
that fermentation reduced the levels of phytic acid and oxalates
respectively by up to 44.4 and 50.9% each; whereas boiling
reduced the levels of these antinutrient by up to 33.3 and
4.4%, respectively. The oxalate contents in two of the accessions
actually increased by 140.8 and 78.1%, respectively (Urua et al.,
2013). In another study, trypsin inhibitor activity, tannins,

and phytic acids in African locust bean seed were reduced
significantly by 89.0, 59.8, and 62.5%, respectively after 72 h
of alkaline fermentation (Esenwah and Ikenebomeh, 2008). In
other reports, alkaline fermentation of soy beans into kinema has
been shown to reduce the levels of tannins, phytic acids, trypsin
inhibitor activity, and haemagglutinating activity by 100, 61, 71,
and 100%, respectively (Sharma et al., 2015). Kobawila et al.
(2005) have demonstrated that the cyanogenic glycoside content
reduced significantly by 70–75% during alkaline fermentation
of cassava leaves (Kobawila et al., 2005). These examples
demonstrate that alkaline fermentation degrades antinutritional
compounds, thereby reducing or eliminating them from the
fermented food.

Improved Health Benefits via the Actions
of Probiotics and Post-biotics
Many of the Bacillus strains predominant in alkaline fermented
foods are also used commercially as probiotics. Some of these
strains include B. cereus, B. clausii, B. coagulans, B. licheniformis,
B. polyfermenticus, B. pumilus, and B. subtilis—all of which
exhibit probiotic activities in both spores and vegetative forms
(Lee et al., 2019). Compared to probiotic lactic acid bacteria,
Bacillus probiotic strains have better survival rates and stability to
processing conditions such heat, cold, moisture, dehydration, as
well as gastric conditions (Lee et al., 2019). This feature of Bacillus
probiotics is largely due to their ability to form spores (Nicholson
et al., 2000). In fact, the ability of Bacillus spores to germinate
and grow in the gastro-intestinal tract has been reported (Hoa
et al., 2000). This means that fermented pant-based foods could
be used as carriers for the delivery of Bacillus probiotics into the
mammalian digestive systems.

The influence of probiotics on human gut microbiome is
well-reported (Thursby and Juge, 2017; Kawai et al., 2018), but
the focus of has mostly been on lactic acid bacteria probiotics.
Whereas, the impact of individual Bacillus strains on gut
microbiome of some animal model (e.g., chicken and pigs) have
been studied (Poulsen et al., 2018; Jacquier et al., 2019), little is
known on how specific Bacillus strains influence the human gut
microbiome. It is however known that, as probiotics, Bacillus
strains stimulate antimicrobial, anticancer, antihypertensive,
antioxidant, fibrinolytic, and immunomodulating activities in
vitro and in vivo (Lee et al., 2019). These biological properties
can be stimulated by the metabolic process of probiotics and
post-biotics in alkaline fermenting foods.

Post-biotics are the bioactive soluble by-products released
following either through the metabolic processes of probiotics
or through lysis of probiotics (Wegh et al., 2019). A technical
definition of post-biotics, as proposed by The International
Scientific Association of Probiotics and Pre-biotics (ISAPP)
is “preparation of inanimate microorganisms and/or their
components that confers a health benefit on the host” (Salminen
et al., 2021).

There is a growing number of studies reporting the health
properties of post-biotics (Wegh et al., 2019; Zółkiewicz
et al., 2020; Salminen et al., 2021) but these studies do not
discriminate the source of these post-biotics, i.e., whether
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FIGURE 4 | Impact of alkaline fermentation on plant-based foods.

from acid or alkaline fermentation. However, examples of
post-biotics that can be expected to be produced following
alkaline fermentation of plant-based foods are soluble proteins,
protein hydrolysates, bacteriocins, free amino acids, vitamins,
soluble dietary fiber, exopolysaccharides, non-viable cells, and
cell fragments. As presented earlier (see Sections Nutritional and
Dietary Value of Plant-Based AFFs), alkaline fermentation leads
to the production of several probiotics-derived biomolecules,
many of which can be expected to have bioactive properties.
Some of the mechanisms through which post-biotics mediate
health in hosts includes mediating growth and metabolic
activities of gut microbiota, modulating systemic metabolism,
mediating signaling in nervous system, enhancing epithelial
barrier function, modulating immune responses, triggering
bioactive properties such as anti-adhesion, anti-biofilm,
antidiabetic, antiviral, immunomodulatory, antihypertensive,
hypocholesterolemic, and antioxidant effects (Tangyu et al.,
2019; Wegh et al., 2019; Nataraj et al., 2020; Zółkiewicz et al.,
2020; Salminen et al., 2021). A schematic of the nutrition and
health impact of alkaline fermentation on plant-based foods is
shown in Figure 4.

CONCLUSION AND FUTURE OUTLOOK

As shown in the preceding discussion, alkaline fermentation
of plant-based foods offers several sensorial, nutritional,
and health benefits. For example, guided selection of starter
cultures and probiotic strains could be used to stimulate
the in situ biofortification of plant-based foods through
alkaline fermentation as a strategy to prevent deficiencies
in nutrients such as vitamins, minerals, and proteins.
However, as demonstrated in this review, the scientific
underpinnings of the microbial metabolic factors and health-
promoting effects of AFFs are not as well-studied as other
fermented foods produced via lactic acid fermentation. For

example, a careful search of the literature shows that only
a few Bacillus species have been studied for their vitamin
production potential, with B. subtilis being the most studied.
Even then, most of the fundamental scientific studies on
vitamin-producing alkaline fermenters were performed at
laboratory scale using genetically modified strains, and
in chemically defined media. The production of vitamins
by alkaline fermenters in situ in plant-based foods needs
more investigation.

Moreover, perspectives for improving the traditional
production processes of AFFs to ensure consistency in safety and
quality should be researched. Research is needed to unravel the
genome sequences of microorganisms in AFFs. This will help
with proper identification and taxonomic classification of species
responsible for the generation of desired properties. Genomic
sequences of microbiota in AFFs will also allow the selection of
genes that can be targeted and altered by metabolic engineering
strategies, to improve desired traits such as the production
of post-biotics (e.g., enzymes, vitamins, bacteriocins, and
exopolysaccharides), or to isolate and exclude genes responsible
for the production of biogenic amines and antibiotic resistance
genes. Another important area that needs attention is the
generation of clinical evidence on how the composite microbial
species in AFFs alter human gut microbiome. For reasons such
as relatively low cost of production and the aforementioned
nutritional and health promoting benefits, AFFs are expected
to play a huge role in meeting the food, dietary, and health
requirements of consumers, going forward.
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