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Modern plant cultivars often possess superior growth characteristics, but within a limited

range of environmental conditions. Due to climate change, crops will be exposed to

distressing abiotic conditions more often in the future, out of which heat stress is used

as example for this study. To support identification of tolerant germplasm and advance

screening techniques by a novel multivariate evaluation method, a diversity panel of

14 tomato genotypes, comprising Mediterranean landraces of Solanum lycopersicum,

the cultivar “Moneymaker” and Solanum pennellii LA0716, which served as internal

references, was assessed toward their tolerance against long-term heat stress. After

5 weeks of growth, young tomato plants were exposed to either control (22/18◦C) or

heat stress (35/25◦C) conditions for 2 weeks. Within this period, water consumption, leaf

angles and leaf color were determined. Additionally, gas exchange and leaf temperature

were investigated. Finally, biomass traits were recorded. The resulting multivariate

dataset on phenotypic plasticity was evaluated to test the hypothesis, that more

tolerant genotypes have less affected phenotypes upon stress adaptation. For this, a

cluster-analysis-based approach was developed that involved a principal component

analysis (PCA), dimension reduction and determination of Euclidean distances. These

distances served as measure for the phenotypic plasticity upon heat stress. Statistical

evaluation allowed the identification and classification of homogeneous groups consisting

each of four putative more or less heat stress tolerant genotypes. The resulting

classification of the internal references as “tolerant” highlights the applicability of our

proposed tolerance assessment model. PCA factor analysis on principal components

1–3 which covered 76.7% of variance within the phenotypic data, suggested that some

laborious measure such as the gas exchange might be replaced with the determination

of leaf temperature in larger heat stress screenings. Hence, the overall advantage

of the presented method is rooted in its suitability of both, planning and executing

screenings for abiotic stress tolerance using multivariate phenotypic data to overcome

the challenge of identifying abiotic stress tolerant plants from existing germplasms and

promote sustainable agriculture for the future.
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INTRODUCTION

During evolution, plants adapted to survive in fluctuating
environmental conditions.While each climatic region has its own
abiotic challenges for plants, adaptation to local environments
were observed within populations of different plant ecotypes
(North et al., 2009; Verslues and Juenger, 2011; Gehan et al.,
2015). These ecotypes or land races, in case of plant species that
are also locally cultivated, often are not only well-adapted to
their respective habitat but possess also a broad genetic diversity
(Tanksley and McCouch, 1997; Gehan et al., 2015; Alonge et al.,
2020). Within this genetic diversity there might be traits encoded
that confer tolerance or resistance to a certain abiotic or biotic
stress that has been lost in modern elite varieties (Harlan, 1975;
Tanksley andMcCouch, 1997; Fernie and Yan, 2019). Contrary to
biotic stress resistance, which often can be evaluated visually by
measuring the infected area (Majumdar et al., 2014), tolerance
toward abiotic stresses needs a more elaborate read out, since
a multitude of physiological processes is perturbed that often
cannot be described with a single observation (Mittler, 2006;
Quint et al., 2016; Zhu, 2016).

Abiotic stress occurs when an abiotic factor, such as water,
light, radiation, temperature, humidity, atmosphere, acidity and
soil exceeds or falls below its optimal range, resulting in adversely
affected physiological processes and impaired growth (Levitt,
1980; Lichtenthaler, 1998). The optimal range for an abiotic
factor can depend on the respective tissues or organ. Increased
temperatures for example can promote vegetative growth and
development of plants up to a certain level (Heuvelink, 1989),
while at the same stress range reproductive organs such as pollen
are already impaired or infertile (Ozores-Hampton et al., 2012;
Iovane and Aronne, 2021). This observations for example have
been considered in speed breeding programs. Consequently, they
apply a lower temperature during the period of reproductive
growth, while vegetative growth is performed at an increased
temperature (Ghosh et al., 2018).

When evaluating abiotic stress adaptation of crops and
screening them for tolerance, not only the different response of
plant organs but also the concept of different phases of stress
response should be recapitulated. Following Lichtenthaler (1998),
stresses cause a divergence from the physiological standard
of plants, which can end up in acute damage, if a phase
of reconstitution cannot be reached. Reconstitution might be
followed by a stage of hardening, which can climax to a
stage of maximal tolerance for a certain period of time. If
the stress remains, chronic damage of tissues might occur.
Upon timely removal of the stress however, a new physiological
standard might be reached. Therefore, experimental designs
should consider the period and intensity of a stress, and
differentiate the different phases of stress responses and
adaptation (Lichtenthaler, 1998; Miller et al., 2007).

Plenty studies that dealt with the identification of abiotic
stress tolerant genotypes utilized yield as indicator. Among the
earliest and most prominent yield-based indicators there are the
stress susceptibility index (Fischer and Maurer, 1978), the mean
productivity (Rosielle and Hamblin, 1981) and the geometric
mean productivity (Fernandez, 1992). These indices have been

used to identify tolerant genotypes for a variety of abiotic
stresses, such as drought, heat and salt stress (Bouslama and
Schapaugh, 1984; Dhanda andMunjal, 2006;Morton et al., 2019).
To compound the information obtained by single screening
indices which proved there usability in the past, toolkits such as
iPASTIC or other composite selection index have been developed
to enhance the detecting power of yield-based screenings (Pour-
Aboughadareh et al., 2019; Sabouri et al., 2022).

Further approaches that aimed to identify stress tolerant
genotypes utilized chlorophyll fluorescence parameters as
measure of tolerance (Sharma et al., 2015; Poudyal et al., 2018).
Additionally the reduction of tetrazolium triphenyl chloride or
electrolyte leakage have been used to test cell viability and stress
tolerance, respectively (Saadalla et al., 1990; Porter et al., 1995;
Dhanda and Munjal, 2006). As reviewed, there is a significant
amount of literature that relies on the interpretation of a single
traits for abiotic stress classification and the reproductive growth
phase, respectively, but the vegetative growth phase seems to be
underrepresented. For this reason, the presented study aims to
utilize multi-dimensional phenotypic information obtained from
heat stressed tomato plants during vegetative growth, to develop
an approach that classifies abiotic stress tolerance on the basis of
phenotypes variability under stressful conditions.

The expectation of increasingly high temperatures in the
future, as one example for an abiotic stress factor that is
predicted to increasingly influence crop production in the future
(Warszawski et al., 2021), highlights the importance of breeding
for tolerance (Fernie and Yan, 2019). Model based simulations
have shown that only a slightly increasing average temperature
results in a dramatic yield loss of numerous crop plants, such
as tomato (Ayankojo and Morgan, 2020). The complexity of
effects of heat stress is reviewed by Aleem et al. (2020), which in
correspondence with the miscellaneous molecular changes upon
heat stress (Mittler et al., 2012; Ding et al., 2020) allows the
expectation of diverse optimized coping mechanisms. Therefore,
harnessing landraces as genetic resource for yet undiscovered or
unutilized stress-tolerance mechanisms, might be a promising
advance and support breeding of future crops (Fernie and Yan,
2019; Ruggieri et al., 2019).

While numerous traits can be observed during experiments,
and each trait might have relevance on its own, it is challenging to
merge all gathered information without introducing a subjective
bias to downstream analysis. These biases might derive from
attributing different weights to individual traits, leaving out
traits that seem to be not relevant in the first place, or
losing information about absolute changes when using relative
performances for data evaluation. To diminish subjectivity and
foster objective evaluation of multivariate datasets principal
component analysis (PCA) can be used as a tool to compress
observed variability into a few calculated principal components
(PC) (Fisher, 1936; Jolliffe, 2002; Bro and Smilde, 2014; Jolliffe
and Cadima, 2016). While the number of PCs equals the number
of input dimensions and observed traits, respectively, the first
PCs usually contain more information on observed variations
than one input dimension would explain. This enrichment of
information is explained by so called eigenvalues. An eigenvalue
bigger than one indicates that the corresponding PC contains
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more information on variation than one of the input dimensions
and vice versa (Kaiser, 1960; Jolliffe and Cadima, 2016). Therefor
the Kaiser-Guttmann criterion suggested to only keep PCs with
an eigenvalue bigger than one, and thereby reduce dimensionality
of the dataset, while retaining the majority of observed variation
within the datasets (Kaiser, 1960). Additional to the Kaiser-
Guttmann criterion numerous approaches have been developed
to reduce dimensionality (Jolliffe, 2002). The dimensionality-
reduced data can serve as input for subsequent cluster analysis
approaches. Which shall be used to test the hypothesis, that
tolerant genotypes have more stable phenotypes. A suitable
measure that reflects the sum of observed phenotypic and
physiological changes can be the distances between the genotypes
and their respective treatment. These distances can be calculated
as Euclidean distances which are linear connections between
data points (Pandit and Gupta, 2011; Dokmanic et al., 2015).
Euclidean distances are frequently applied in supervised and
unsupervised machine learning algorithms for data classification
(Abdi andWilliams, 2010; Dokmanic et al., 2015; Camacho et al.,
2018). To expand our adapted tolerance-classification method,
two different statistical measures are tested within this study.
The developed easy-to-apply computational approach shall be
further discussed for its versatile application in both planning
and executing screenings of diversity panels for abiotic stress
tolerance using multivariate phenotypic datasets.

MATERIALS AND METHODS

Location
The experiment conducted for this study was performed in a
greenhouse located: 52◦20’55.0“N 13◦18’38.3”E. Plant cultivation
and treatments took place between the 17th of January and the
2nd of March 2021 as described hereafter.

Plant Material
Most tomato seeds of the 14 indeterminate genotypes were
provided by VEG-ADAPT (https://www.veg-adapt.unito.it/)
partners and were propagated at GAUTIER Semences (Eyragues,
France) except genotypes T56 and Tpe (Table 1). T56 was
known as tolerant cultivar from previous experiments and
was provided by Cluinaris (Rosdorf, Germany) while Tpe was
obtained from the Max Planck Institute of Molecular Plant
Physiology (Golm, Germany).

Plant Cultivation
Upon germination in the dark on wet filter paper (Carl
Roth GmbH+Co. KG, Karlsruhe, Germany) in petri dishes
(SARSTEDT AG & Co., Nümbrecht, Germany), seedlings were
transplanted into small planting pots (5 cm diameter; volume
of 150mL) filled with coarse sand (grain of 0.5–1mm, RIGK
GmbH,Wiesbaden, Germany). For each treatment and genotype,
four biological replicates, defined as distinct plants grown
from individual seeds, were grown and investigated. Seedlings
were cultivated at 22/18◦C day/night, 60/85% relative humidity
in a greenhouse. Twenty two days post-sowing, plants were
transplanted into bigger planting pots (13 cm diameter, volume
of 600mL) filled with coarse sand. Additional light with a PAR

TABLE 1 | Investigated tomato genotypes, denotation, and primary source.

Species Denoted Variety Primary provider

Solanum lycopersicum T01 Moneymaker INRAE

Solanum lycopersicum T09 Ramellet UIB

Solanum lycopersicum T12 Valldemossa (de) UIB

Solanum lycopersicum T14 Saccagno PSC-1 UNITO

Solanum lycopersicum T25 ATS-048/06 AUA

Solanum lycopersicum T27 Olympia AUA

Solanum lycopersicum T28 Chondrokatsari AUA

Solanum lycopersicum T29 Areti AUA

Solanum lycopersicum T40 Cherry VFNT (LA1221) INRAE

Solanum lycopersicum T48 VIR749 INRAE

Solanum lycopersicum T49 VIR135 INRAE

Solanum lycopersicum T50 LA1464 INRAE

Solanum lycopersicum T56 Primavera Cluinaris

Solanum pennellii Tpe LA0716 MPI

Seeds of the tomato diversity panel were provided by AUA (Agricultural University of

Athens, Greece), Cluinaris (Rosdorf, Germany), INRAE (Institut National de la Récherche

Agronomique Génétique et Amélioration des Fruits et Légumes, France), MPI (Max Planck

Institute of Molecular Plant Physiology, Germany), UIB (University of Balearic Islands,

Spain) and UNITO (University of Torino, Italy).

of 140 µmol/(m²∗s) at table level, was supplied by Philips IP65
lamps equipped with Master Agro 400W (Koninklijke Philips
N.V., Amsterdam, Netherlands) between 6 a.m. and 6 p.m.

Fertigation
During the first week upon the first transplanting of seedlings,
water was used for irrigation. Afterwards, fertigation of the
sand cultures was done with an adapted De Kreij nutrient
solution (De Kreij et al., 1997), pH = 5.5 and electric
conductivity of 1.5 dS∗m−1. Briefly, following nutrients were
provided: nitrate (10.75 mmol/L), ammonium (1.00 mmol/L),
potassium (6.5 mmol/L), phosphate (1.25 mmol/L), magnesium
(1 mmol/L), sulfate (1.5 mmol/L), calcium (2.75 mmol/L), iron
(15 µmol/L), manganese (10 µmol/L), zinc (4 µmol/L), boron
20 µmol/L), copper (0.75 µmol/L), molybdenum (0.5 µmol/L).
The pH was adjusted to 5.6. Fresh nutrient solution was added
up to twice a day into the trays of individual plants.

Treatments and Experimental Design
After transplanting of the plants on the 22nd day post-sowing,
four plants per genotype were distributed equally on tables
among two identical greenhouse cabins in a fully randomized
manner as suggested by Poorter et al. (2012a). Hereafter, plants
were shuffled twice a week until 4 days before sampling and
49 days after sowing, respectively. Following 1 day of heat
adaptation at 29/21◦C on the 34th day post-sowing, the day/night
temperature was set to 35/25◦C for the heat stress treatment on
the 35th day post-sowing. The control treatment maintained a
temperature regime of 22/18◦C. Both treatments were applied
over a period of 2 weeks and were terminated on day 49 post-
sowing. The mean temperature, photosynthetic active radiation
during that period of the stress application are plotted in
Supplementary Figures S1, S2.
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Procedure
During cultivation, no leaves or side branches were removed
from the plants. No further plant protection procedures
were applied.

Data Collection
This section describes the methods that were used to obtain
experimental data.

Fertigation per Day
To determine the volume of water or nutrient solution consumed
under control and heat stress conditions, all quantities supplied
to individual plants were recorded. In preparation for this,
potting material was fully soaked before the first fertigation.
Three additional pots per cabin were filled with coarse sand as
reference for water evaporation. At the end of the measuring
period, remaining water was measured. The sum of consumed
water was subtracted by the volume of evaporated water and then
divided by the number of days observed to obtain a value for the
volume of water consumed per day.

Leaf Color Measurements
To determine the impact of heat stress on leaf color of tomato
plants photometric measurements were performed during the
late morning hours on day 45 after sowing. Measurements
were performed under control and heat stress conditions in
the respective greenhouse cabins. To calculate the mean leaf
color for single tomato plants, the first three leaflets from
the tip of the fifth leaf, counted from top, were analyzed
with a portable spectrophotometer CM700-d (Konica Minolta,
Inc., Tokyo, Japan) using a 3mm CM-A181 (Konica Minolta,
Inc., Tokyo, Japan) orifice plate. The spectrophotometer was
calibrated with the white calibration cap CM-A177 (Konica
Minolta, Inc., Tokyo, Japan) as described in the manufacturer’s
manual. Measurements of colors within a range of 400–700 nm
were made using the “Spectral Component Excluded” (SCE)
measure mode and 10◦/D65 light setting to obtain L∗a∗b colors
that are in accordance with the CIE (International Commission
on Illumination) standard. For better comparison of leaf colors,
L∗a∗b values were converted into L∗C∗h values. While L remains
unchanged, Equations (1) and (2) were used for conversion of a∗

and b∗ into C∗ and h◦.

C∗ =

√

a∗2 + b∗2 (1)

h◦ = atan2 (b∗, a∗) (2)

The hue value h was used for leaf color comparison, since it
has been previously described as a robust measure for leaf color
(Mizunuma et al., 2011).

Gas Exchange Measurements
To obtain information on the influence of heat stress on the
plant’s photosystem, two LI-6800 (LI-COR Biosciences, Lincoln,
Nebraska, USA) systems were used to conduct gas exchange
measurements on leaflets of the fifth developed leaf counted from
top. Both systems were used for simultaneous measurements
of heat and control-treated plants in the respective greenhouse

cabins. The LI-6800 systems were swapped in the middle of
the measurement, to avoid device dependent biases. All plants
were measured in a randomized manner within a timeframe of
∼2 h after heat stress was established during the late morning
hours on day 46 after sowing. The environmental settings for the
device’s measuring chambers were set as follows: Temperature
to either 35◦C (heat stress) or 20◦C (control), while relative
humidity was set to 60%, CO2 concentration to 400 ppm and
light intensity to 1,000 µmol/(m²∗s) for both treatments. Plants
were adapted to the light intensity for 120 s before measurements
were recorded. Net assimilation rate (A), stomatal conductance
to water vapor (gsw), transpiration (E), intrinsic water use
efficiency (WUEg) and the difference between leaf andmeasuring
cuvette temperature (dT) at 1,000µmol/(m²∗s) were further used
for analysis.

Leaf Angle Determination
In order to obtain information on differential epinastic
movement of tomato leaves upon heat stress treatment (Van
Zanten et al., 2010), digital photographs of whole plants were
taken alongside the gas exchange measurements. Photographs
were imported into ImageJ (Version 1.53e; National Institute
of Health, USA) for determination of leaf angles with the
“Angle tool.” Angles were determined between the stem and the
adaxial side of the first quarter of the petioli. At least three to
five measurements and leaf angles, respectively, were obtained
per picture to calculate a mean angle for each investigated
plant individually.

Biometric Measurements
At the end of the experiment and 49 days after sowing,
respectively, plant growth was determined by the produced fresh
biomass. At that time point some genotypes already developed
the first truss and entered the principal growth stage five
according to BBCH code, while the majority of plants was
still in principal growth stage two and continued side branch
formation (Feller et al., 1995; Meier, 2018). To do so, shoot
and leaves were separated and individually weighed with a
laboratory scale (Kern R© PCB3500-2, KERN & SOHN GmbH,
Balingen, Germany). Hereafter, coarse sand was washed off the
roots, residual water was removed, and root fresh weight was
determined with a laboratory scale.

Data Evaluation
Data evaluation was done using R and RStudio [RStudio Team
(2021)] as well as Microsoft Excel (Microsoft Corporation,
Redmond, WA, USA). The R code used for this study
as well as user instructions are stored at GitHub and
can be accessed via the following link: https://github.com/
BiermannIGZ/AbioticStressToleranceClassification. Briefly, raw
data was used as input, while conditional mean imputation was
used for missing data (Nelson et al., 1996; Austin et al., 2021).
Raw data consisted of data obtained for leaf angles, leaf color
(h), stomatal conductance (gsw), transpiration (E), assimilation
(A), intrinsic water use efficiency (WUEg), root, shoot and leave
total fresh weight, as well as the fertigation and leaf temperature
difference (dT) (Supplementary Table S1). For each treatment
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FIGURE 1 | Eigenvalue screen plot. Percentage of explained variance of the

dataset covered by the principle components. For each input variable, one PC

or dimension, respectively, is calculated. The percentage is derived from the

proportion of the respective eigenvalue to the number of input variables

(Supplementary Table S2).

and genotype, four biological replicates, defined as distinct plants
grown from individual seeds, were investigated. With roughly
ten-times more samples than input variables, prerequisites for
PCA were fulfilled (Shaukat et al., 2016). To suit the developed
script, data was sorted by genotype while the treatments were
ordered alternating. Hereafter a PCA was performed. Due to
the underlying PCA algorithm, coordinates of individuals for
the respective PCs were normalized and scaled during the
calculations. Upon application of the Kaiser-Guttmann criterion
(Kaiser, 1960) only PCs were retained that had an eigenvalue
bigger than one. Variable contribution to the observed variance
within the dataset was investigated, as well as the quality of
variable representation using the squared cosine (Abdi and
Williams, 2010). Hereafter, Euclidean distances were calculated
between the genotype data points according to the individuals
PC coordinates. Mean distance of individual control plant to all
individuals of the treated plants were calculated and checked
for variance homogeneity with a Levene’s test. Subsequently,
distances were z-score (z) normalized using formula (3), where
x is the value of interest, µ the population mean and σ is
the population standard deviation, to obtain standard normal
distributed distance measures.

z = (x− µ) / σ (3)

Due to the number of calculated distances and z-scores, normal
distribution was check visually with a density and a Q-Q-plot.
Since z-scores followed a standard normal distribution, they
can be directly interpreted with a p-value that corresponds
to the respective sigma and standard deviation around the

mean (Marsaglia, 2004). Finally, significance was tested with
a Welch’s ANOVA and a p-value of 0.05. For the subsequent
Bonferroni post-hoc test however, a p-value of 0.15 was
allowed for the purpose of screening the small panel of 14
genotypes. More stringent p-values might be applied for bigger
screening populations.

RESULTS

By screening the tomato diversity panel, in terms of
ease to measure phenotypical and physiological traits,
considerable variance could be observed for single traits
(Supplementary Table S1). Hence, it is difficult to draw
clear conclusions that would allow assessment of tolerance
by hand from that kind of datasets, without introducing a
subjective bias. Therefore, efforts were taken to develop a
computational approach that allows to objectively examining
the sum of observed changes. The screen plot of the explained
variance by the PCs showed a point of inflection visible at
PC3 and a cumulative representation of 76.7% of variance
(Figure 1). As with eigenvalues of 5.36, 1.75, and 1.32
(Supplementary Table S2) PC1-3 also fulfilled the Kaiser-
Guttmann-criterion and were retained for further analysis, while
all remaining PCs were discarded.

To get insight, into the correlation and quality of
representation of traits within the PCs, two approaches were
used. First, input variables and traits, respectively, were visualized
on a factor map using PC1 and PC2 as abscissa and ordinate
axis. The distance between the center and the traits indicated the
squared cosine and the quality of representation, respectively,
which was good for the majority of traits, while assimilation (A),
leaf color (h), intrinsic water use efficiency (WUEg) and leaf
angles only had mediocre quality of representation (Figure 2).
Additionally, the graph suggested that there were mainly four
major directions of correlation within the dataset.

Second, a correlation plot was calculated that provided
information on the variable contribution to the first three
PCs and indicated the proportion of variable contribution to
the corresponding PC (Figure 3A). Visual evaluation of this
plot showed that PC1, which explained 48.7% of the variance
within the dataset, was almost equally determined by all input
variables except leaf angle and root fresh weight. Within PC2,
explaining 15.9% of variance, an over-proportional part of
variance correlated with the root fresh weight. Assimilation
rate, stomatal conductance and leaf angles were the major
contributing variables within PC3, which covered 12.0% of
variance. Overall, almost all traits contributed uniformly to
PC1-3, while again leaf color, intrinsic water use efficiency
and assimilation rate were represented clearly below average
(Figure 3B).

Plotting of genotypes and treatments using the group
centroids of PC1 and PC2 revealed a clear clustering of
treatments. Additionally, the separation of genotypes was
observed to be in an axis-of-symmetry-like manner (Figure 4).
To test the hypothesis, that tolerant genotypes might have a
more stable phenotype, and would thereby cluster closer together
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FIGURE 2 | Variable correlation and representation. Projection of input

variables on the factor map using PC1 and PC2. Distance from the center of

the cycle represents the squared cosine, a measure for variable representation

within the first two dimensions. Angle between variable vectors indicates

co-correlation. Projected traits are leaf angles, leaf color (h), stomatal

conductance (gsw), transpiration (E), assimilation (A), intrinsic water use

efficiency (WUEg), total fresh weight (FW) of root, shoot and leave, as well as

the fertigation and leaf temperature difference (dT).

upon PCA, Euclidean distances were determined. Indeed, the
calculated distances showed that the data point of the commercial
S. lycopersicum cv. “Moneymaker” (T01) and the wild related
species S. pennellii LA0716 (Tpe), followed by T56 and T49
clustered closer together, while landrace genotypes T40, T09,
T29, and T25 clustered further apart (Figure 4, Table 2). Upon
validation of normal distribution and inspection of variance
homogeneity, a Welch’s ANOVA (p < 0.05) was performed.
The subsequent Bonferroni post-hoc test (p < 0.15) resulted
in five homogeneous groups (a, ab, abc, bc, and c; Table 2).
The afore mentioned genotypes were found to belong to the
groups a, ab and bc, c, respectively. As additional evaluation
step, distance data was z-score normalized. Standard normal
distribution of z-scores was checked visually with a Q-Q-
plot and a density plot (Figure 5). As normal distribution was
observed, one-sided p-values were calculated for the z-scores.
Using a similar cut-off of p < 0.15, which was chosen for the
screening purpose, a second classification of the diversity panel
was obtained (Table 2). According to this threshold, some of the
aforementioned genotypes were sorted into groups of more and
less tolerant genotypes (Table 2).

DISCUSSION

Among current breeding techniques, the investigation of diverse
phenotypic traits of screening populations became important,
to identify useful germplasm for breeding. While genome

wide association studies (GWAS) help to associate particular
traits with the presence or absence of genetic markers (Korte
and Farlow, 2013), other techniques such as the discovery of
quantitative trait loci (QTL) may also take heritability into
account (Stinchcombe and Hoekstra, 2008). Both of these
techniques rely on clustering of phenotypic data with the
investigated genotypes and can complement each other (Korte
and Farlow, 2013). Also, the obtained clusters and subsequent
calculations will eventually allow the identification of trait
correlations. As heritability remains a major interest in selective
trait breeding, techniques such as the determination of best linear
unbiased predictions (BLUPs) may accomplish the interpretation
of traits of interest to generate selection indices (Robinson, 1991;
Arnold et al., 2019). While the above mentioned methods have
been shown to be useful techniques for the identification of
trait specific markers or germplasm, the approach presented
in this study mainly aims to obtain a phenotype derived
tolerance trait, which may be used as additional input for the
aforementioned methods.

By performing a PCA on the dataset of phenotypic traits,
with subsequent dimension reduction, the majority of variance
within a given dataset is retained and compressed into a few PCs.
In the presented study, the PCs 1–3, which were retained after
dimension reduction, accounted for ∼76.7% of variation within
the datasets, which can be judged as a good representation of total
variance (Jolliffe and Cadima, 2016). To evaluate, which input
variables were most important for the classification process, it
is important to check variable contribution and correlation to
the individual PCs, while the number of total explained variation
of each PC has to be kept in mind. The percentage of variable
contribution to PCs indicated numerically as percentage in
Figure 3A combined with the variable correlation plot (Figure 2)
can be used to interpret the PCs meaning. Almost each of
the given input variables correlated equally well with PC1
(Figure 3A), that covered roughly 48.7% of the variability. The
exceptions from this were the root fresh weight and the leaf angle,
which were the most correlating variables for PC2 and PC3,
respectively. In addition to this PC3 also had a high correlation
with the assimilation rate and the stomatal conductance. For
interpretation, this means that almost all traits correlated in
a linear manner within PC1. The exceptions however, were
best represented in a linear manner within PC2 and PC3,
highlighting their importance for the observed phenotypes. The
nature of correlation, positive or negative, can be judged from the
correlation cycle (Figure 2).

To draw additional conclusions from PC evaluation and
formulate first advice on the selection of appropriate traits that
might be used for similar phenotypic screening experiments, an
interpretation of the variable correlation cycle (Figure 2) might
be helpful. As distances between the investigated traits visualized
as arrows in the correlation cycle contains information on the
trait correlation, and only four directions of trait correlation
were observed, some labor-intensive measurements might not be
necessary to capture the diversity and plasticity of phenotypes
properly. While the over proportional contribution of single
traits within PC2 and PC3, such as root fresh weight which
is indicated by an arrow pointing in a unique direction, a
first hint toward their relevance for evaluation of phenotypic
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FIGURE 3 | Variable contribution and correlation with PCs. (A) Correlation plot to evaluate variable contribution to single PCs with an eigenvalue bigger than one.

Variable contribution to PCs is indicated numerically as percentage and by color for easier pattern recognition. (B) Total contribution of variables to PC1-3. Expected

average contribution is indicated by a dashed red line. The depictured traits are leaf angles, leaf color (h), stomatal conductance (gsw), transpiration (E), assimilation (A),

intrinsic water use efficiency (WUEg), total fresh weight (FW) of root, shoot and leave, as well as the fertigation and leaf temperature difference (dT).

plasticity upon heat stress is given. Amongst the other three
out of four directions of trait correlation (Figure 2), there are
mainly variables that are well-represented in PC1 (Figures 2, 3A).
Therefore, it can be considered to discriminate single traits as
reasoned in the following section.

While the root fresh weight points in its own direction, leaf
and shoot fresh weight were found to intercorrelate well. The
production of shoot biomass seems to be slightly supported
by the data on assimilation rate, what does not wonder
since photosynthesis is the basic driver for growth. Recently,
maintenance of high net assimilation rate was observed in heat
tolerant tomato (Poudyal et al., 2018), which might explain the
intercorrelation between the traits. The low value for the squared
cosine might result from the diverse tolerance levels within the
screening population (Figure 2, Supplementary Table S1). Since
studies on the influence of net assimilation rate and relative
growth rate within a temperature range are an input measure
for computational models of plant growth (Boote et al., 2012),
it might be advisable to accompany direct measures of biomass
traits with indirect ones such as the net assimilation rate. The
interconnection between biomass allocation, photosynthesis and
further traits has been extensively reviewed by Poorter et al.
(2012b). While the overall biomass allocations is reported to be
dependent on the species and genotype, diverse abiotic stresses
can for example either promote (drought) or diminish (water

logging) the root biomass allocation within a genotype. These
reasons might explain the observed discrepancy between root
and shoot biomass correlation. In some cases however, an
increased root-to-shoot ratio is an important measure for the
development of new breeding lines that should serve as rootstock
for grafting or foster stress tolerances (Colla et al., 2017; Singh
et al., 2017). Therefore, it might be advisable to investigate the
root weight and a biomass parameter for the shoot as minimal
input to obtain a sufficient representation of biomass production
and basic info on its allocation. Albeit fertigation points in
the same direction as the shoot biomass parameters, this trait
can be laborious. Thus, it might be applicable to discard this
measurement from the experimental design. Yet, the intrinsic
water use efficiency could be an important measure to assess the
potential water cost for carbon assimilation under a given stress
as it points in its own direction, respectively. Since climate change
will likely affect the scarcity of fresh water, development and
breeding of crop plants with a well-balanced water use efficiency
is continuously a focus of research and breeding (Morison et al.,
2008; Hatfield and Dold, 2019).

Independent of the gas exchange measurements, leaf color
and leaf angle provide additional information that might be
suitable to investigate different abiotic stresses (Kläring and
Zude, 2009; Junker and Ensminger, 2016; Junker-Frohn et al.,
2019). While leaf angle measurements might be the most
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FIGURE 4 | Plotted genotypes form treatment dependent clusters. Group centroids of the genotypes and their respective treatment were used for plotting. Group

centroids were calculated from the individual coordinates of each sample within PC1-3 (Supplementary Table S3). Treatment (color) and genotype (shape) were

used to visually examine the genotypes.

interesting to determine epinastic movement as response to
heat, light or changing levels of phytohormones (Van Zanten
et al., 2010), leaf color might be a suitable predictor for nutrient
stresses, as these often affect plant secondary and pigment
metabolism (Junker and Ensminger, 2016; Junker-Frohn et al.,
2019). Both those traits can be investigated posterior to the
experiment, provided suitable pictures have been taken. A
review on image analysis for high-throughput image based
plant phenotyping was published by Li et al. (2014). Of all
investigated photosynthetic traits, the variation of assimilation
rates was the least important and least best covered (Figures 2,
3), if judged by the squared cosine (Abdi and Williams, 2010).
This might be due to the observation that there was no clear
tendency of superior genotypes under control conditions, while
the assimilation rate under heat stress conditions follows a
trend that could be noticed, when the genotypes are sorted by
the respectively calculated distances. This seconds the observed
variable contribution to PC3 (Figure 3A) and highlight the
relevance of screening assimilation rates upon abiotic stress,
which is further supported by earlier findings (Poudyal et al.,
2018). The other results that were obtained from the gas
exchange measurements, as transpiration, stomatal conductance
and intrinsic water use efficiency, were well-represented within
PC1-2. The correlation between the transpiration rate and
the difference between leaf and measure-chamber temperature
suggests that the leaf transpiration rate is an indirect measure
for the cooling capacity of leaves. In order to alleviate the impact

of heat stress, this cooling mechanism is target of some research
(Deva et al., 2020). These observations suggest that for heat
stress experiment, it might be applicable to replace laborious
gas exchange measurements with the simple determination
of leaf temperature. To apply this to a scalable phenotyping
approach and big screening populations, respectively, infrared
pictures might be suitable to gain insight and cope with
the workload of a big screening population (Li et al., 2014;
Deva et al., 2020). Those kind of measurements are often
performed in modern phenotyping platforms, which further can
include artificial intelligence for picture analysis and options
for automatization (Li et al., 2014). Given that development,
it seems to be only a matter of screening, to discover
tolerant germplasms.

To summarize the findings on trait correlation, it can be
emphasize that careful selection of traits can be reasonable
to decrease the workload during the screening and that, in
analogy to the search for a maximized genetic diversity for
germplasm (van Heerwaarden et al., 2013), a PCA based
tool supporting identification of most relevant input might
be useful. Regardless the technique for trait selection, smaller
trials, such as the presented one with a maximum of around
100 plants, might be suitable to identify a set of relevant
traits for a stress of interest. The proposed selection of traits
might also be supported by further hierarchical clustering, as
used for the construction of crop core collections (Hu et al.,
2000).
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TABLE 2 | Evaluation of distance between the genotypes and the respective

treatment.

Genotype Mean euclidean

distance

ANOVA z-Score p-Value

T01 2.95 a −1.65 0.049

Tpe 3.40 ab −1.00 0.158

T56 3.57 ab −0.75 0.227

T49 3.60 ab −0.72 0.237

T27 3.64 abc −0.65 0.259

T14 3.80 abc −0.41 0.339

T12 3.90 abc −0.27 0.394

T48 3.95 abc −0.20 0.422

T50 4.00 abc −0.12 0.206

T28 4.65 abc 0.82 0.206

T40 4.75 bc 0.97 0.166

T09 4.79 bc 1.02 0.154

T29 4.80 bc 1.03 0.151

T25 5.42 c 1.94 0.026

Statistical evaluation of four Euclidean distances per genotype and their respective

treatment was done with Welch’s ANOVA (p < 0.05) followed by a Bonferroni post-hoc

test. Resulting significant groups (p < 0.15) are indicated with letters. Mean Euclidean

distances were transformed into z-scores for which the corresponding one-sided p-values

were calculated.

The obtained scatter plot that depictures the genotypes
position in PC1 and PC2 shows the formation of two distinct
clusters for each treatment (Figure 4). This indicates that the heat
stress treatment indeed affected the measured phenotypic traits
within the screening population. Further, the prominent axis-
of-symmetry might be an indicator for the different phenotypic
characteristics of the investigated diversity panel, that derived
from different trait characteristics (Fisher, 1936), which can also
be seen by eye from the pictures used for leaf angle determination
(Supplementary Figure S3). The z-score normalized distances
between the genotypes and the respective treatment followed a
standard Gaussian distribution (Figure 5). Since there also was
a good correlation between the observed significant groups the
ANOVA (Groups a, ab, bc and c; Table 2) and the respective
sigma and p-value of mean derived z-scores, we proposed
that the z-score can be a first measure for the statistical
relevance of observed plasticity and tolerance levels. Thus,
mean distances between group centroids might be suitable for
evaluation with z-scores too. In order to allow some room for
the classification of tolerant and susceptible genotypes in small
screening populations, we used a less-stringent p-value of 0.15 as
appropriate statistical threshold which is close to the one-sided
p-value for observations outside the one sigma area around the
mean (z-score> −1∨> 1). However, amore stringent threshold
might be chosen to evaluate big diversity panels. Out of the 14
genotypes assessed, eight genotypes were found to be statistically
more relevant (Groups a, ab, bc and c; Table 2) and were close to
or outside of the one sigma area around the mean. The genotypes
T40, T09, T29, and T25 seem to be most influenced by the heat
stress treatment and therefore might be classified as the most
heat susceptible genotypes of the small diversity panel. The most

FIGURE 5 | Visual investigation of normal distribution of z-score transformed

distances. (A) Observed z-scores were plotted against the theoretical

distribution. The theoretical ideal normal distribution is indicated as straight

line, while the gray shading indicates a confidence interval. (B) Density plot

results in a bell shaped curve, indicating a normal distribution. Z-scores of

individual observations are indicated by the rug. The dashed black line shows

the mean of all samples.

tolerant genotypes according to this classification were T01 and
Tpe out of which Tpe (S. pennellii) served as internal control for
tolerant genotypes, as it has often been described as tolerant for
diverse abiotic stresses including heat stress (Tal and Shannon,
1983; Bolger et al., 2014; Egea et al., 2018). It is surprising that
the formerly in greenhouse production used commercial cultivar
Moneymaker (T01) is fairly heat stress tolerant and well-adapted,
according to the presented model, since no better genotype could
be identified.

Similar to the calculation of BLUPs, which are investigated
to assess phenotypic plasticity and screening of single traits
(Robinson, 1991; Husby et al., 2010; Arnold et al., 2019),
the calculated z-scores derived upon clustering of multivariate
datasets might serve as measure for phenotype plasticity and
stability under abiotic stress, respectively. In contrast to BLUPs,
which can be used to assess individual traits using a random
regression mixed model, the presented method aims to identify
genotypes that have a stable phenotype upon stress, which might
only be observable due to synergistic changes of the phenotype.
Since the idea behind this comparative tolerance screening
approach is based on the sum of observed changes and aims
to identify genotypes that remained unchanged upon changing
abiotic factors, it expands the toolset for plant breeding and
allows the implementation of modern automated phenotyping
methods. Divergent from field trials, green house experiments
offer the opportunity to control most abiotic factors, like
temperature, humidity, light and fertigation (Poorter et al.,
2012a). This allows to test the performance of a screening
population under a relative controlled environment that
ultimately should mimic stressful field-like conditions. In order
to avoid influence of soil microbiota, which have been shown to
influence stress tolerance (Ashraf et al., 2004; Mendes et al., 2013;
Yuan et al., 2022), and thereby increase reproducibility, the use
of a hydroponic systems is recommended. Amongst those, sand
cultures as used in this study can find application for relative
small plants, such as young tomatoes. The small pot volume
allowed efficient usage of green house space, determination of
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individual water consumption and frequent plant randomization
and shuffling (Poorter et al., 2012a). Considering increased root
biomass at late developmental stages, other hydroponic systems,
such as nutrient film technique based ones, might be advisable.

The charm of the presented method is, that there are no
limitations in input variables, plant species and genotypes
as well as stresses of interest. The time that is needed for
stress acclimatization and establishment of a stress phenotype,
however, can be seen as a constraint. Therefore, extreme stresses,
which are often used in molecular studies of short term stress
response, might not be suitable to be investigated with the
presented approach, as the stress intensity might limit the plants
ability to develop a stressed phenotype before acute damage
is caused by the stress (Lichtenthaler, 1998). Additionally,
a direct measure for tolerance classification is provided by
the z-scores, allowing a rapid interpretation of the statistical
relevance of observations. While other screening methods may
rely on big populations or a fixed set of input variables,
we developed an evaluation method in which experimental
design can be both adapted to the limitations in resources and
capacity, as well as to the already known influences of certain
abiotic stresses.
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