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The agricultural sector faces a food crisis and major challenges in green and sustainable

development, and digital technology is an important countermeasure. In this paper,

“digital technology” is used as a keyword to construct a regional digitalization level

indicator. China’s provincial panel data from 2013 to 2020 are adopted as samples to

explore the impact of regional digitalization levels on agricultural total factor productivity

and its mechanism. The study found the following: (1) Regional digitalization can

significantly raise agricultural total factor productivity. (2) Regional digitalization can

significantly raise agricultural total factor productivity in economically underdeveloped

areas but not in economically developed areas. (3) The mitigation of factor market

distortion and large-scale production can strengthen the role of regional digitalization

in raising agricultural total factor productivity.

Keywords: digitalization level, agricultural total factor productivity, factor market distortion, large-scale

production, heterogeneity

INTRODUCTION

In order to cope with the food security issue brought about by population growth, government,
and researchers have focused on the efficiency of agricultural production. Improving agricultural
total factor productivity not only is a key way to solve the problem of global food security but
also can advance the agricultural sector and the overall economy by adjusting the allocation of
labor (Cao and Birchenall, 2013; Ball et al., 2015). It is particularly important for the economic
growth of poor countries or regions (Fuglie, 2018). However, the agricultural production in
economically developed regions such as the United States and Europe is slowing down. Although
the growth rate of agricultural total factor productivity in developing countries such as China is
relatively high (Alston and Pardey, 2014), extensive growth impacts the ecological environment,
leading to issues such as excessive fertilization, forest destruction, and water pollution (Ju
et al., 2009; Schwarzenbach et al., 2010; Laurance et al., 2014). As such, the transformation
of the agricultural production model is imminent. The digital transformation of agriculture
reduces the use of chemical products, saves water resources, and increases per unit output and
environmental sustainability. It is another technological upgrade following agricultural mechanized
production. With the emergence of digital technology, global agriculture faces restructuring and
transformation. Digital technology is a strong driving force for environmentally friendly and
sustainable agricultural growth.
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Digitization is the social technological process of applying
digital innovation (Klerkx et al., 2019). Emerging technologies
such as big data, the Internet of Things, and artificial intelligence
not only have a great impact on the business economy (Chen
et al., 2012; Ng and Wakenshaw, 2017) but also will reshape
traditional agricultural production. Agricultural digitalization
is to integrate advanced digital technologies such as artificial
intelligence, big data, and robotics and connect these digital
technologies to agricultural production systems through the
Internet of things (Lioutas et al., 2021). In addition, digital
technology will also play a role in the entire agricultural
production chain (Shepherd et al., 2020). Digital technology
will gradually become a part of the agricultural production
infrastructure. Although it can have a positive effect on
agricultural production efficiency, high investment costs and the
digital divide between technology adaptors limit the widespread
adoption of agricultural digital technology (Benyam et al.,
2021). Under these circumstances, government investment in
digital construction not only helps popularize digital production
technology to farmers but also improves the digital and
intelligent levels of the external environment and promotes the
deep integration of digital technology with the agricultural real
economy. As a result, the agricultural production process and
the circulation of elements in the value chain will be optimized,
the “digital divide” will be narrowed, and the cost for laborers
to adapt to digital technology will be reduced, thereby increasing
the agricultural total factor productivity and ultimately pressing
ahead with agricultural green and sustainable production.

This study explores the impact of digitalization levels
on agricultural total factor productivity through the
establishment of a fixed-effect model of provincial samples,
and further determines the causal relationship between regional
digitalization levels and agricultural total factor productivity
through IV-GMM method. The study has found that the
overall digitalization of a region not only promotes the digital
transformation of agricultural production but also effectively
improves market information communication and value
chain element circulation, thereby increasing agricultural
total factor productivity. The heterogeneity test results show
that, in economically underdeveloped areas, digitalization can
significantly increase agricultural total factor productivity. In
addition, alleviated distortion of market factor allocation and
large-scale production can positively enhance the promotion
effect of regional digitalization level on agricultural total factor
productivity. We believe that digital development is an effective
means for countries to transform agricultural production and
improve agricultural production efficiency.

The theoretical contributions of this paper mainly include:
First, an indicator is developed to measure regional digitalization
levels based on the Internet big data search engine. To study the
effect of China’s digital construction, the level of digitalization
must be measured. However, the lack of measurement research
on this indicator hinders the development of related theories.
The paper measures regional digitalization levels based on the
number of keyword searches related to digital technology in
prefecture-level cities or municipalities in Baidu News, which
provides a reference for subsequent research on digitalization.

Second, the impact on agricultural total factor productivity
is analyzed from the overall perspective of regional digital
construction, breaking the shackles of the current research
framework. Previous empirical studies on agricultural total factor
productivity are often limited to the impact of input factors or
agricultural policies, including natural conditions (Liang et al.,
2017), farm size (Rada and Fuglie, 2019), R&D expenditure
(Fuglie, 2017), agricultural subsidy policy (Rizov et al., 2013),
and agricultural trade policy (Yoo et al., 2012), while this
paper incorporates the regional digital environment into the
analysis framework, with the focus on the overall environment
of agricultural production with government participation, which
contributes to the understanding of emerging production
technologies and factors affecting agricultural total factor
productivity, and enriches the literature on the effect of regional
digital development and studies on the growth factors of
agricultural total factor productivity.

At a practical level, the impact of digitalization levels
on agricultural total factor productivity is analyzed from
the perspectives of market factor allocation, large-scale
production, and the heterogeneous results caused by differences
in economic development levels. The analysis shows that
regional digitalization can significantly increase agricultural total
factor productivity, especially in regions with lower levels of
economic development. In addition, an increase in the efficiency
of factor allocation in the external market and a commitment
to large-scale production will strengthen the role of regional
digitalization in raising agricultural total factor productivity.
This provides useful empirical evidence for the government
to promote the deep integration of digital construction and
agricultural production.

The remaining part of this paper is structured as follows: The
second part is the research plan, which elaborates the mechanism
of the impact of regional digitalization on agricultural total factor
productivity, empirical model construction, data sources, and
variable selection and conducts a descriptive statistical analysis.
The third part contains the econometric test, endogenous
treatment, and robustness test of digitalization on agricultural
total factor productivity and analyzes the heterogeneity of the
economic development level and the adjustment mechanism of
factor configuration distortion and large-scale production. The
fourth part provides conclusions and recommendations.

RESEARCH PLAN

Research Hypothesis
Regional digitalization promotes the optimization of the entire
process of agricultural production through agricultural digital
technology, thereby increasing the agricultural total factor
productivity. Agricultural digital technologies such as big data
and the Internet of Things help control agricultural production
and improve agricultural efficiency (Wolfert et al., 2017).
Food traceability technology derived from blockchain and
Internet technology can manage food safety issues, improve
the transparency of supply chains, and advance sustainable
development (Creydt and Fischer, 2019; Kamble et al., 2020).
Information and communication technology can help increase
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the efficiency of resource use in food businesses as well
as the productivity of pesticides and fertilizers (Radoglou-
Grammatikis et al., 2020). Technologies such as artificial
intelligence, smart robots, and the Internet of Things form smart
water conservancy technologies that help the effective use of
agricultural water resources (Muangprathub et al., 2019). These
technological advances enable the effective use of resources and
the improvement of agricultural total factor productivity.

The role of digitalization in raising agricultural total
factor productivity is also reflected in optimizing the external
market environment and improving agricultural policies. George
(George, 2014) pointed out that agricultural total factor
productivity in developing countries has increased through
investments in irrigation and machinery, but crop production
in these countries still lags behind in terms of the progress of
agronomy. The important reason behind this is that farmers
in developing countries who are poorly educated and risk-
averse prefer low-risk, low-return production methods. On top
of that, information asymmetry in product markets further locks
agricultural growth potential. The asymmetry of agricultural
market information leads to abnormal fluctuations in agricultural
product prices and sales, which may mislead farmers in planting
and production decisions, increase the probability of loss, and
affect agricultural output value, reducing agricultural total factor
productivity. Therefore, digital construction, mobile Internet,
and information sharing can reduce the information asymmetry
between agricultural producers and external markets (Lin et al.,
2013; Deichmann et al., 2016), thereby creating a low-risk,
high-return external market environment and securing stable or
predictable market prices and sales. In addition, Otsuka et al.
(2016) pointed out that improper agricultural policies have led
to distortions in the Japanese market, the loss of agricultural
comparative advantages, and reduced large-scale production
efficiency in farms. Big data, the Internet, cloud platforms, and
other technologies can improve government transparency and
public participation. This ensures a successful implementation
of policies, timely feedback, and an effective evaluation of
the effects of agricultural policies, thereby improving the
implementation effects of agricultural policies. In addition,
modern technologies such as big data, blockchain, and mobile
communications can improve regional digitalization levels and
effectively optimize the agricultural production value chain
system and the circulation of resource elements, thereby reducing
the distortion of market element allocation and promoting
agricultural innovation by drastically reducing transaction costs
(Deichmann et al., 2016). Based on the above analysis, the
following hypothesis is proposed:

Hypothesis 1 (H1). The regional digitalization level is
positively correlated with agricultural total factor productivity.

Generally speaking, the situation of regional agricultural
production is in line with the level of economic development.
Some studies have compared changes in agricultural production
efficiency in countries with different levels of development
(Alston and Pardey, 2014; Fuglie, 2018). The conclusion of these
studies is that the growth of agricultural total factor productivity
in economically developed areas is slowing down, while

agricultural total factor productivity in developing countries
increases relatively fast. These studies show that differences
in the level of economic development have an important
impact on the agricultural total factor productivity. Santangelo
(2018) analyzed foreign land investment in developed and
developing countries and found that governments and investors
in developed countries pay more attention to the sustainable
development of agriculture and the use of advanced technologies
to increase the food production of the investees. However, the
governments of developing countries usually require investors’
goals to be consistent with national interests and government
policies. Therefore, investors in developing countries make less
responsible investments, which leads to an excessive use of
water, pesticides, and fertilizers. This shows that differences in
the level of economic development directly affect the behavior
of governments and agricultural investors; for example, they
have completely different attitudes toward the use of digital
technology. The long-term imbalance of economic development
in China may mean that underdeveloped regions pay more
attention to the input of pesticides, fertilizers, and agricultural
machinery, while economically developed regions pay more
attention to green and sustainable digital technologies. In
addition, the degree of market information asymmetry in regions
with different levels of economic development also differs.
Information asymmetry in the agricultural market leads to
fluctuations in agricultural product prices and trading volumes,
which may mislead farmers in their production and planting
decisions, leading to losses and reducing agriculture production
value and agricultural total factor productivity. As the effect of a
rising regional digitalization level on the information asymmetry
in the agricultural market differs in regions with different
levels of economic development, the impact of rising regional
digitalization level on agricultural total factor productivity is
also different.

On the other hand, the efficiency of agricultural production in
economically developed regions is relatively high, and efficiency
growth may have reached a state of convergence. As a result,
regional digitalization has a weaker impact on agricultural total
factor productivity, or a higher digitalization level is needed to
significantly improve agricultural total factor productivity (which
means a higher threshold effect value). This means that the effect
of digital development on the improvement of agricultural total
factor productivity is insignificant temporarily (Zambon et al.,
2019). On the other hand, the agricultural production efficiency
in underdeveloped regions is relatively low and promises more
potential. Therefore, a rising regional digitalization level can
optimize the entire agricultural value chain, such as production,
market information, and factor circulation, thereby increasing
agricultural total factor productivity. Based on this, the following
hypothesis is proposed:

Hypothesis 2 (H2). Digitalization levels exert significantly
different impacts on agricultural total factor productivity in
regions with different levels of economic development.

Factor allocation efficiency is an important factor affecting
agricultural total factor productivity. Distortions in the allocation
of market factors caused by an underdeveloped market and
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lagging government supervision or factor market reforms exist
in China (Dai and Cheng, 2016). Research on the consequences
of market or economic distortions has shown that market
distortions lead to a waste of resources (Yin et al., 2018),
which means too much input, less output, and a less efficient
use of resources brought about by digital technology. Zhu
et al. (2011) proved that the distortion of factor allocation
significantly reduces the agricultural total factor productivity of
China. Reducing distortions in the allocation of market elements
can not only alleviates resource waste but also reduces resource
redistribution (Dai and Cheng, 2016). The redistribution of labor
resources usually means greater costs (Dower and Markevich,
2018). Therefore, reducing the redistribution of resources means
reducing the cost of resource allocation. The reduction in
resource costs can strengthen the role of digitalization in
increasing agricultural total factor productivity. At the same time,
the distortion of the labor market limits the ability of labor
forces to learn new skills, while digital technology particularly
requires the ability to learn and adapt (Kong et al., 2021).

Therefore, alleviating the distortion of labor factor allocation will
effectively improve the “digital divide” of labor force. In addition,

the information asymmetry in the supply chain distorts the
capacity allocation among retailers, leading to inefficient capacity
shortages and overpricing (Chen et al., 2014). As such, alleviating

the distortion of agricultural market factor allocation can also
optimize the agricultural production value chain by reducing
information asymmetry, thereby enhancing the role of regional

digitalization in increasing agricultural total factor productivity.
The scale of farmland also has a significant impact on

agricultural productivity. Previous studies have found that there

is often an inverse relationship between the scale of farmland and

land output or productivity (Feder, 1985; Barrett, 1996; Barrett
et al., 2010). The smaller the scale of farmland, the lower the

opportunity cost of labor and the cost of labor employment.
If agricultural production technology does not bring about
increasingly high returns to scale, farmers’ enthusiasm for
work will reduce, leading to an inverse relationship between
farm size and productivity (Barrett, 1996). Digital technologies

such as big data, cloud computing, and artificial intelligence
will “empower” the supply of raw materials, production, and
sales of traditional agriculture. For example, digital production

technologies such as intelligent irrigation, intelligent fertilization,
and intelligent pest control, as well as digital supply and sales
chain technologies such as intelligent logistics, intelligent storage,
and intelligent transportation, will greatly increase the return to
scale of farmland. On the other hand, large-scale operation can
reduce the unit cost of digital technology input, which facilities
the acquisition and analysis of big data in agricultural production
and the input and application of artificial intelligence technology.
Digital technologies such as digital soil maps and intelligent
robots can be mainly used for large farms that require substantial
investment (Deichmann et al., 2016). Based on this, the following
hypotheses is proposed:

Hypothesis 3a (H3a). The lower the degree of distortion in
market factor allocation, the greater the promotion effect of
digitalization on agricultural total factor productivity.

Hypothesis 3b (H3b). Large-scale production can strengthen
the role of digitalization in increasing agricultural total
factor productivity.

Research Model
Agricultural Total Factor Productivity Measurement
In this paper, stochastic frontier analysis (SFA) is used to measure
the agricultural total factor productivity in various regions of
China. Two main methods are used for measuring China’s
agricultural total factor productivity in the existing literature:
parametric and non-parametric methods. The commonly used
parametric method is data envelopment analysis (DEA) (Erdem
Demirtaş and Fidan Keçeci, 2020), while the widely applied
non-parametric method is stochastic frontier analysis (SFA)
(Shabanzadeh-Khoshrody et al., 2016). Compared with data
envelopment analysis, the advantage of stochastic frontier
analysis is that it can fully consider the impact of random factors
on the output through parameter estimation, which is more in
line with the essential characteristics of agricultural production,
and is less sensitive to outliers. Thus, it can reduce the difference
between estimated results and actual efficiency levels. Therefore,
based on the research of Aigner et al. (1977), Battese and Coelli
(1992), the specific form of the model is set as follows:

lnYit = lnf (Xit , t;β) + vit − uit , i = 1, 2, ...,N; t = 1, 2, ...,T

vit ∼ N
(

0, σ 2
)

, uit ∼ |N
(

u, σ 2
u

)

| (1)

In Model (1), Yit represents the output of the i-th decision-
making unit in period t; Xit represents the input of the i-th
decision-making unit in period t; t represents the time trend,
reflecting the time variation of technology; f (Xit , t;β) represents
a specific functional form, β is the input vector parameter to
be estimated; vit represents the influence of climate, natural
disasters, measurement errors, and other random factors on the
agricultural production frontier, and it is assumed to follow
a normal distribution; uit is a non-negative random variable,
representing the agricultural production efficiency loss of the
sample unit, and it is assumed to follow a truncated normal
distribution; the agricultural production technical efficiency of
the i-th decision-making unit in the t period is TEit = exp(–uit);
vit are uit independent of each other. See Appendix A for more
explanation of the SFA model.

In the choice of the form of specific function f (Xit , t;β), a
translog production function, which is more flexible than the C-
D production function (Coelli and Perelman, 2000), was used.
It is widely used in the calculation of agricultural production
efficiency. The specific form is as follows:

lnYit = β0 +
∑

j

βjlnXijt + βtt +
∑

j

βjttlnXijt

+
1

2

∑

j

∑

l

βjllnXijt lnXilt +
1

2
βttt

2 + vit − uit (2)

In Model (2), Yit represents the total agricultural output value of
province i in period t, Xit is the factor input, and j and l represent
the jth and lth factor inputs, respectively.Wemainly selected land
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(S), labor (L), capital (K), and intermediate product input (M) as
input indicators.

The Influence of Digitalization Level on Agricultural

Total Factor Productivity
The core issue studied in this paper is the impact of digitalization
levels in various regions of China on the agricultural total factor
productivity. The fixed-effect regression model of the provincial
samples is constructed as follows:

TFPit = α0 + α1lnDIGit + α2Controlit + γt + δi + εit (3)

Model (3) is the main regression model of this paper, and the
explained variable TFPit represents the agricultural total factor
productivity of the province i in the period t, which is calculated
by Model (2); the explanatory variable DIGit is the digitalization
level of province i in period t; Controlit is the control variables
of the model, including the installed capacity of hydropower
stations, labor quality, effective irrigation area, the share of
financial support for agriculture in fiscal expenditure, and per
capita GDP; γt is the time effect; εit is the individual fixed effect
and the random error term of the model; the coefficient α1 is the
core parameter that this paper focuses on and is expected to be
positive. This is to say, digitalization can promote agricultural
total factor productivity.

Data Sources, Variable Selection, and
Descriptive Analysis
Data Sources
In 2012, the Chinese government proposed to adhere to the
road to informatization and agricultural modernization, promote
the deep integration of informatization and industrialization,
and realize smart governance by using modern science and
technology. Since then, various regions in China have been
advancing digitalization. The data used in this paper are from
2013 to 2020, and the sample objects are 31 provinces or
municipalities in China. The research data come from the China
Statistical Yearbook and China Rural Statistical Yearbook. Some
data are missing. Since China’s agricultural development has been
in a state of steady growth (Cao and Birchenall, 2013), we used the
average growth rate method to supplement the missing data.

Variable Selection and Descriptive Statistics
(1) Explained variable (TFP). First, with regard to the calculation

of agricultural total factor productivity, we selected the total
output value of agriculture, forestry, animal husbandry, and
fishery as the output index Y. In terms of factor input,
the sown area of crops at the end of the year (S) is used
in this paper as the index of land input, and the number
of employees in the primary industry (L) is used as the
index of labor input. In view of the availability of data and
reference to the previous literature (Quan, 2009), the total
power of agricultural machinery (K) and the consumption
of chemical fertilizers (M) are used as alternative input
indicators for agricultural capital and intermediate input,
respectively. At the same time, in order to avoid the
multicollinearity between the high-order terms (quadratic

terms and interaction terms) and the low-order terms (first-
order terms) in the translog production function as much
as possible, as well as the impact of differences in their
dimensions, the input and output indexes are standardized
in this paper.

(2) Core explanatory variable (DIG). The core explanatory

variable in this paper is the digital technology level of 31
provinces or municipalities in Mainland China (excluding
Taiwan, Hong Kong, and Macau). The quantitative

evaluation of this indicator is a frontier issue that has not
yet been involved in the academic community. This paper

draws on the practice of Han et al. (2017) to use keywords
to count the cumulative number of corresponding industrial
policy documents in various provinces and cities as an
indicator of industrial policy intensity, and at the same time

refers to the idea of Li et al. (2020) to use crawler technology
to construct the financial technology development level
index based on the number of Baidu news search results.

Web crawler technology is used to count the digital-related
news volume in prefecture-level cities and above in China
to arrive at the digitalization level index of each province
and city. Most of the digital construction activities are

monitored in various regions of China. The more digital

construction activities there are, the greater the amount of
relevant news reports. Therefore, the number of relevant
news reports represents the digitalization level in each
region to a certain extent. News reports on Baidu, the
world’s largest and most comprehensive Chinese search
engine, can be accurately searched by keywords. Therefore,
we used Baidu to search for relevant news. Specifically,
this paper refers to the “White Paper on China’s Digital
Economy Development (2020)”, “2020 Digital Trends
Report,” and other research reports, as well as the “14th
Five-Year Plan” report, the report of the 19th CPC National
Congress, relevant policy documents and news reports
of various local governments, and classic literature on
Chinese digitization research (Wu et al., 2021) and extracts
keywords related to digitization through Python’s Jieba word
segmentation function. We matched these keywords with
prefecture-level cities or municipalities in China, searched
for prefecture-level cities or municipalities + keywords,
such as “Guangzhou + Big Data” in the Baidu news search,
and used web crawler technology to count the search results.
The total search volume was obtained by summing up the
search volume of all keywords in a prefecture-level city
or municipality. Because this kind of data has a typical
“right-biased” characteristic, we conducted logarithmic
processing to obtain the digitalization level (DIG) index.
Table 1 shows the characteristic words related to the
digitalization level.

As can be seen in Table 1, a series of high-frequency vocabulary

is filtered out through the Python-based Jieba Chinese word
segmentation function. These digital technology keywords can
be roughly divided into big data technology, Internet, Internet
of Things technology, smart technology, cloud, cloud computing
technology, information technology, and blockchain technology,
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TABLE 1 | Keywords related to the digitalization level.

Big data technology Big data, digital technology, digital finance, digital terminal, digital intelligence, digital marketing, digital information,

digital communication, digital control, digital image, digital network, credit investigation

Internet, Internet of Things technology Internet of Things, Internet, Industrial Internet, Internet Platform, Internet+, Mobile Internet, Internet Finance, B2B,

B2C, O2O, C2B, 5G, 5GtoB, Integrative Network, Internet Application, Industrial Internet, E-commerce, Mobile

Payment, NFC Payment

Intelligent technology Artificial intelligence, intelligence, machine learning, smart robots, smart manufacturing, smart transportation, smart

logistics, smart grid, smart warehousing, smart healthcare, smart environmental protection, smart production, business

intelligence, mobile intelligence, smart factory, smart management, smart customer service, intelligent network,

intelligent terminal, intelligent agriculture, intelligent water conservancy, AI, ERP, MES, deep learning, image recognition,

virtual reality, VR, AR, face recognition, autonomous driving, voice recognition

Cloud, cloud computing technology Cloud platform, cloud service, industrial cloud, cloud ecology, cloud supercomputing, cloud digital intelligence, secure

multi-party computation, EB-level storage, cognitive computing, green computing, brain-like computing,

cyber-physical systems, stream computing, graph computing

Informatization Information technology, information sharing, information network, information system, two informatizations (digital

industrialization and industry digitization), three informatizations (digital industrialization, industry digitization, and digital

governance), four informatizations (digital industrialization, industry digitization, digital governance, and data valuation)

Blockchain technology Blockchain, distributed computing, digital currency

which is in line with the current understanding of digitization on
mainstream literature (Klerkx et al., 2019; Lioutas et al., 2021).

(3) Control variables. According to the existing literature and
the actual situation (Quan, 2009; Fuglie, 2018; Zhang et al.,
2019), the control variables of this paper consider the two
aspects of agricultural production conditions and the socio-
economic environment. Agricultural production conditions
directly affect the growth and changes of agricultural
total factor productivity. Agricultural production conditions
generally adapt to the socio-economic environment and can
affect agricultural total factor productivity. Specifically, the
installed capacity of hydropower stations (Elect), the labor
quality (Labqua), and the effective irrigation area (Irrigation)
are used to control agricultural production conditions. The
social and economic environment is controlled by the share
of financial support for agriculture in fiscal expenditure
(Finsup) and the level of regional economic development
(GDP). At the same time, in order to eliminate the problem
of heteroscedasticity, the data are processed logarithmically.
The definitions of the input and output variables, dependent
variables, independent variables, and control variables of the
benchmark model are shown in Table 2.

Descriptive Statistical Analysis
Descriptive statistical analysis of the variables included in the
agricultural total factor productivity measurement model and the
benchmark regression model is performed, and the results are
shown in Table 3.

Among the descriptive statistical results in Table 3, the input
and output indexes are statistically described in the form of raw
data, but they are logarithmically processed and standardized in
the subsequent model calculation process.

The descriptive statistical results show that there is a large
difference between the minimum and maximum values and the
mean values of various input and output indexes. For example,
the minimum value of the total output value of agriculture,
forestry, animal husbandry, and fishery (Toutput) among output

indexes is about 12.8 billion yuan, the maximum value is about
1.0191 trillion yuan, and the mean value is about 356.5 billion
yuan. The minimum value (S) of land input among input
indexes is 88.6 thousand hectares, the maximum value is 14910.1
thousand hectares, and the mean value is 5535.025 thousand
hectares. This means that there are substantial differences
between agricultural output and agricultural input in various
regions in China. These differences are mainly due to unbalanced
regional economic development and the heterogeneity of the
population and industrial structure. For example, compared
with other provinces, fewer laborers engage in the primary
industry in Shanghai, as there is less arable land, the level of
economic development is high, and the tertiary industry is the
main industry. Meanwhile, more laborers engage in the primary
industry in Guangxi Province, as there is more arable land,
and the level of economic development is low. In addition,
the maximum values of the independent variable agricultural
total factor productivity (TFP) and the core explanatory variable
digital technology level (DIG) are 0.978 and 10.448, and the
minimum values are 0.274 and 3.714, respectively, indicating that
there are substantial differences between the agricultural total
factor productivity and digitalization levels in various regions in
China. Such differences include differences in regional natural
conditions, agricultural production infrastructure, labor quality,
and financial input, exerting an impact on agricultural total
factor productivity.

ECONOMETRIC TEST OF DIGITALIZATION
LEVEL ON AGRICULTURAL TOTAL
FACTOR PRODUCTIVITY

The Calculation of Agricultural Total Factor
Productivity
Table 4 shows the maximum likelihood estimation results of
the stochastic frontier production function model (2). It can
be seen that the parameter estimation results of the four main
input items of land (S), labor (L), mechanical power (K), and
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TABLE 2 | Variable names and definitions.

Variable name Variable definition

Output index Total output value of agriculture,

forestry, animal husbandry, and

fishery (Toutput)

The total production value of agriculture, forestry, animal husbandry, and fishery at the end of the

year (100 million yuan), taking the natural logarithm

Input index Land input (S) Sown area of crops at the end of the year (thousand hectares), taking the natural logarithm

Labor input (L) Number of employees in the primary industry at the end of the year (10,000 people), taking the

natural logarithm

Capital input (K) The total power of agricultural machinery at the end of the year (10,000 kilowatts), taking the natural

logarithm

Intermediate product input (M) Consumption of chemical fertilizers at the end of the year (10,000 tons), taking the natural logarithm

Dependent variable Agricultural total factor

productivity (TFP)

The stochastic frontier analysis function and agricultural total factor productivity estimated with the

“one-step method”

Independent variable Digitalization level (DIG) The digitalization level of each region, taking the logarithm

Control variable Installed capacity of hydropower

stations (Elect)

Installed capacity of hydropower stations at the end of the year (10,000 kilowatts), taking the natural

logarithm

Labor quality (Labqua) Population that has received education in a rural high school (including technical secondary school)

or more/Number of employees in the primary industry

Effective irrigation area (Irrigation) Effective irrigation area at the end of the year (thousand hectares), taking the natural logarithm

Share of financial support for

agriculture in fiscal

expenditure (Finsup)

Share of financial support for agriculture in fiscal expenditure at the end of the year (100 million

yuan)/Total fiscal expenditure (100 million yuan)

Level of regional economic

development (GDP)

Per capita GDP at the end of the year (ten thousand yuan/person)

TABLE 3 | Descriptive statistics of variables.

Variable N Mean sd Min p50 Max

Output index Toutput 248 3564.637 2483.635 127.997 3277.467 10,190.578

Input index S 248 5359.025 3885.271 88.600 5476.250 14,910.100

L 248 874.130 615.047 39.400 765.445 2652.000

K 248 3340.191 2910.901 94.000 2548.900 13,353.000

M 248 185.794 146.838 4.400 202.850 716.10

Dependent variable TFP 248 0.693 0.190 0.274 0.669 0.978

Independent variable DIG 248 7.168 1.462 3.714 7.220 10.448

Control variable Finsup 248 0.119 0.036 0.041 0.118 0.244

Elect 248 4.355 1.867 0.405 4.667 7.153

Irrigation 248 7.231 1.089 4.694 7.397 8.729

GDP 248 5.727 2.821 2.283 4.870 16.489

Labqua 248 0.388 0.382 0.090 0.271 2.587

fertilizer (M) are all significant at the 1% level, and most of the
remaining parameters have also passed the T test. Among them,
the coefficient of γ is 0.986 and passes the T test at a significance
level of 1%. The γ value is very close to 1, which shows that
technical inefficiency is the main component of the joint random
disturbance term, accounting for 98.6%, while the influence of
the random error term on the inefficiency is only 1.4%, indicating
that it is appropriate to use the stochastic frontier production
function model in this paper.

Table 4 shows that the input parameters of land, mechanical
power, and fertilizer are significantly positive, indicating that, for
every 1% increase in the sown area of crops, the agricultural
output will increase by 0.5291%. For every 1% increase in

agricultural machinery input, agricultural output will increase by
0.1382%. For every 1% increase in fertilizer input, agricultural
output will increase by 0.5067%. This result is consistent with
the fact that large-scale, mechanized, and scientific agricultural
production in China brings high yields and high returns. The
labor input coefficient is significantly negative, indicating that
the increase in labor input actually reduces agricultural output.
The result is the same as the study by Zhang et al. (2019). The
negative correlation between labor input and agricultural output
is mainly due to the fact that labor income is much higher than
agricultural income, which leads to the transfer of rural labor. At
the same time, agricultural machinery has a substitution effect on
labor (Otsuka et al., 2016). At the moment, China’s agriculture
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TABLE 4 | Estimated result of stochastic frontier production function.

Coefficient Standard-error t-Ratio

Constant term 0.3908*** 0.0511 7.6496

lnS 0.5291*** 0.1111 4.7638

lnL −0.3378*** 0.0851 −3.9693

lnK 0.1382*** 0.0464 2.9802

lnM 0.5067*** 0.1135 4.4642

t −0.0024 0.0077 −0.3047

lnS*lnL 0.0382 0.2852 0.1341

lnS*lnK −0.1372 0.4135 −0.3319

lnS*lnM −2.7771*** 0.4443 −6.2500

lnL*lnK 0.0039 0.2650 0.0147

lnL*lnM 0.8673*** 0.3355 2.5852

lnK*lnM 0.2540 0.3737 0.6797

t*lnS −0.0450*** 0.0109 −4.1179

t*lnL 0.0543*** 0.0068 7.9225

t*lnK 0.0002 0.0064 0.0341

t*lnM −0.0166* 0.0088 −1.8910

(lnS)2 1.2337*** 0.2914 4.2337

(lnL)2 −0.3795** 0.1942 −1.9539

(lnK)2 0.0321 0.1471 0.2184

(lnM)2 0.6077*** 0.1954 3.1096

t2 0.0108*** 0.0016 6.8639

σ2 0.1793 0.1213 1.4786

γ 0.9860*** 0.0097 101.5146

Likelihood 307.0211

LR 578.2407

Observations 248

*, **, and *** indicate significance at the levels of 10, 5, and 1%, respectively.

is currently transforming into large-scale and mechanized
production. According to the data released by the Ministry of
Agriculture and Rural Affairs in the 2020 press conference, the
comprehensivemechanization level of the cultivation and harvest
of China’s main crops has exceeded 70% since the 13th Five-
Year Plan. In the limited accommodating space, agricultural
machinery replaces a substantial amount of manpower. As such,
too much manpower input will cause labor redundancy, which
will negatively affect large-scale and mechanized agricultural
production. In addition, with the increase in labor costs, excessive
labor input will reduce the profit rate of agricultural production.
Therefore, labor input and agricultural output are negatively
correlated, but this does not negate the benefits brought by
high-quality agricultural labor input.

Benchmark Regression Results
In order to verify Hypothesis 1 (H1), Benchmark Model (3)
is first used to study the overall impact of digitalization levels
on agricultural total factor productivity. Column (1) of Table 5
is the case where no control variables are added to study
the basic relationship between the digitalization levels and
the total factor productivity of agriculture. Column (2) is the
regression result after adding various core control variables

TABLE 5 | Benchmark regression results for full samples and sub samples.

(1) (2) (3) (4)

Full sample Full sample Develop = 1 Develop = 0

DIG 0.0123***

(4.54)

0.0098***

(3.30)

−0.0044

(−0.85)

0.0142***

(3.93)

Finsup 0.1203***

(2.62)

0.4889***

(8.47)

−0.0101

(−0.29)

Elect −0.0242**

(−2.42)

−0.0387***

(−3.29)

−0.0173

(−1.14)

Irrigation −0.0327*

(−1.76)

0.0056

(0.28)

−0.0391

(−1.53)

GDP −0.0073***

(−5.02)

−0.0025

(−1.46)

−0.0113***

(−5.41)

Labqua 0.0184*

(1.86)

0.0006

(0.06)

−0.0280

(−1.29)

_cons 0.6051***

(31.28)

0.9854***

(6.43)

0.9014***

(5.03)

0.9349***

(4.59)

Year YES YES YES YES

Province YES YES YES YES

N 248 248 125 122

Adj-R2 0.9985 0.9989 0.9990 0.9992

*, **, and ***indicate significance at the levels of 10, 5, and 1%, respectively, and the value

in parentheses is the t value; there is a single case in the economically developed area

(Develop = 1), and it is eliminated in the regression.

to control the interference of other important factors on the
research conclusion.

At the same time, in order to verify Hypothesis 2 (H2), that
is, to explore the heterogeneous results produced by differences
in regional economic development levels, per capita GDP is used
to measure regional economic development levels and constructs
a dummy variable for economic development. If the per capita
GDP of a region is greater than the annual mean value, then
it is an economically developed area, that is, Developed = 1;
otherwise, it is an economically underdeveloped area, that is,
Developed= 0.

Table 5 shows that, regardless of whether the control
variables are considered, regional digitalization can significantly
increase agricultural total factor productivity (both are positively
correlated at the 1% significance level). Thus, Hypothesis 1
is verified. Specifically, improving the digitalization level can
greatly boost the upgrading of agricultural technology, and the
use of modern production technology can effectively improve
agricultural total factor productivity; on the other hand, regional
digital development can further optimize the external conditions
of agricultural production including information elements and
capital elements, alleviate the adverse effects of asymmetric
market supply and demand caused by factors such as distorted
resource allocation and information communication failure,
thereby improving agricultural total factor productivity. After
various control variables are added, the coefficient of the core
explanatory variable DIG drops slightly, which shows that
the control variables considered in Benchmark Model (3) in
this paper are reasonable. Specifically, the Finsup parameter is
estimated to be significantly positive at the level of 1%, indicating
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that financial support for agriculture has achieved good results.
For developing countries, backward agricultural production
equipment is an important factor restricting agricultural
production efficiency. Providing farmers with funds to purchase
mechanical and digital equipment helps popularize mechanized
and digital production equipment, while financial subsidies
can stimulate farmers’ enthusiasm for production and alleviate
the decline in working-age population in rural areas. To sum
up, financial support for agriculture can significantly improve
agricultural total factor productivity. In addition, labor quality
(Labqua) and agricultural total factor productivity are positively
correlated at a significance level of 10%, which indicates that
the improvement of labor quality can significantly improve
agricultural total factor productivity. The reason may be that
agricultural labor forces cannot use agricultural machinery
and equipment, digital equipment and other agricultural input
factors, or acquire and understand market information without
certain knowledge. Labor forces with higher quality can better
adapt to digital technology, better use the “digital dividend” and
timely access to market information with the help of digital
platforms. As the improvement of labor quality can effectively
alleviate the “digital divide” problem, labor quality is positively
correlated with agricultural total factor productivity. This result
is also consistent with the reality.

However, the installed capacity of hydropower stations (Elect)
and the effective irrigation area (Irrigation) are significantly
negatively correlated with agricultural total factor productivity.
This is mainly due to the fact that hydropower is not the main
source of electricity in China and is closely related to geographical
conditions, and China’s power supply situation also varies greatly
with regional characteristics. The effective irrigation area is
related to the area of arable land. The arable land area in
China is unevenly distributed, and the arable land area and the
effective irrigation area are significantly smaller in economically
developed areas. For example, in economically developed areas
such as Beijing and Shanghai, there is less hydropower, electric
power is mainly used for the tertiary industry and residents’ lives,
and the effective irrigation area is relatively small. However, a
high labor quality, high mechanical power input, and a high
digitalization level can also ensure high agricultural total factor
productivity. At the same time, the effective irrigation area is
related to the scale of farmland, and previous studies have
found that there is an inverse relationship between the scale
of farmland and land productivity (Feder, 1985; Barrett, 1996;
Barrett et al., 2010). The results of this paper are similar to those
of previous studies. On top of that, the level of regional economic
development (GDP) and agricultural total factor productivity are
also negatively correlated at a significance level of 1%, which
reflects the inherent characteristics of economically developed
regions; that is, economically developed regions are mainly
driven by the tertiary industry, and the more developed the
economy, the smaller the proportion of agricultural production.
Compared with the primary industry, the tertiary industry can
bring higher added value and economic transmission effects.
Therefore, the main goal of agricultural production in these
regions is to maintain the food supply security line and meet

the basic needs of the people in the region. This is in line with
China’s reality.

Columns (3) and (4) of Table 5 are the heterogeneous results
caused by differences in economic development levels. It can
be seen that, under the sub samples of economically developed
regions, the estimated coefficient of the digitalization level is
negative but not significant, which shows that digitalization
has no significant effect on the agricultural total factor
productivity of economically developed regions. In the sub
samples of economically underdeveloped regions, the regression
coefficient of digitalization level is positive at the 1% significance
level, indicating that digitalization can significantly improve
the agricultural total factor productivity in economically
underdeveloped regions. The reason may be that a high labor
quality, infrastructure construction, and agricultural subsidies
in economically developed regions lead to high agricultural
production efficiency benchmarks. Moreover, efficiency growth
in economically developed regions may have reached a state of
convergence. As a result, a higher digitalization level is needed
to significantly improve agricultural total factor productivity
(which means a higher threshold effect value). In other words,
digital development cannot significantly promote agricultural
total factor productivity in a short period of time, which makes
it impossible for us to clarify the promotion effect of digital
development on agricultural total factor productivity at the
moment. In addition, the fact that the focus of economically
developed areas is not on the primary industry, the decline
in agricultural labor forces and the loss of farmland lead to
a skewed allocation of resources, so currently the radiation
effect of the digitalization level may act more on secondary
or tertiary industries, and the agricultural sector can hardly be
promoted by the digitalization. In economically underdeveloped
regions, many laborers engage in the primary industry, the labor
quality is poor, the infrastructure is underdeveloped (Gorelick
and Walmsley, 2020), agricultural subsidies are lacking, and
agricultural production is still growing. Therefore, a rising
regional digitalization level in economically underdeveloped
regions can optimize the entire agricultural value chain, such
as production, market information, and factor circulation,
making up for the deficiency of insufficient investment in
related facilities, and significantly improving the agricultural total
factor productivity.

Endogenous Treatment and Robustness
Test
Endogenous Treatment
In this paper, there is no reverse causality between the
digitalization level at the provincial level and the agricultural
total factor productivity, but there may still be errors in
the results due to missing variables and measurement errors,
resulting in endogenous problems. Compared with the two-
stage least squares method (2SLS), the generalized method
of moments (GMM) can better deal with the autocorrelation
and heteroscedasticity of the data (Lin and Du, 2018). Thus,
the instrumental variable-generalized method of moments
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(IV-GMM) is adopted to test BenchmarkModel (3) and eliminate
the possible impact of endogeneity.

Specifically, considering that there may be a certain lag in
the effect of digitalization at the regional level on agricultural
production, this paper refers to the practice of Chong et al.
(2013) of choosing a digitalization level lagging by one stage
and the mean value index of digitalization level (DIG_IV) of
provinces with similar economic development levels in the same
year as the instrumental variable and to test Model (3) with
IV-GMM. As far as the relevance of the instrumental variable
is concerned, scientific research, infrastructure construction,
and practical applications of regional digital technology require
financial support, which means that the regional digitalization
level is largely affected by the level of economic development.
That is to say, regions with similar economic development
levels have similar levels of technological development (Li et al.,
2020), and the corresponding inputs differ little, so the digital
technology levels are also similar. This instrumental variable is
relevant. In addition, due to the geographical difference, it is
difficult for the digitalization level of each region to affect the
agricultural production of other provinces. This is consistent
with the exogenous nature of the instrumental variables. Table 6
reports the IV-GMM regression results.

Column (1) of Table 6 is the regression results of the first
stage. It can be seen that the estimated coefficients of the
selected instrumental variables are positively correlated with
the digitalization level DIG at the significance levels of 1 and
5%, which proves that the instrumental variables are in line
with the correlation condition. In addition, the F statistic of
the first stage estimation result is >10, indicating that there
is no weak instrumental variable problem. The results of the
second stage show that, after dealing with the endogenous
problem, the digitalization level and agricultural total factor
productivity are positively correlated at a significance level of
1%, and the estimated coefficient has risen from 0.0098 to 0.03.
This indicates that some endogeneity factors previously reduced
the coefficient of explanatory variables, and the estimated
parameters of explanatory variables in this paper are revised
after overcoming certain endogeneity factors. At the same time,
underidentification and over-identification tests are carried out.
The test results show that there is no underidentification or
over-identification of instrumental variables, so the selection of
instrumental variables is reasonable.

Robustness Test
(1) The PSM-DID method. The core conclusion of this paper

is that digitalization has significantly promoted agricultural
total factor productivity. In 2016, the National Development
and Reform Commission approved the establishment of
national big data comprehensive pilot zones in eight regions
of 10 provinces or municipalities directly under the Central
Government. To further verify the validity of this conclusion,
considering that the regional digital development policy
is an excellent quasi-natural experiment, the PSM-DID
method is used to investigate the impact of regional digital
construction on agricultural total factor productivity. The
PSM-DID method can effectively correct the selective bias

TABLE 6 | IV-GMM test results.

(1) (2)

First stage Second stage

DIG TFP

L.DIG 0.3463***

(4.39)

DIG_IV 0.1335**

(2.20)

DIG 0.0300***

(3.33)

Finsup 0.3847

(0.45)

0.0838**

(1.98)

Elect 0.3194

(1.42)

−0.0312**

(−2.65)

Irrigation 0.6804

(1.58)

−0.0655**

(−2.17)

GDP −0.0046

(−0.16)

−0.0057***

(−3.06)

Labqua −0.6659***

(−3.45)

0.0300*

(1.95)

_cons −2.1824

(−0.70)

1.0271***

(5.30)

Year YES YES

Province YES YES

F Value 13.57***

[0.0000]

Kleibergen-Paap rk LM statistic

(Underidentification test)

20.08

[0.0000]

Hansen J 0.032

[0.8585]

N 217 217

Centered R2 0.9989

*, **, and ***Indicate significance at the levels of 10, 5, and 1%, respectively, and the value

in parentheses is the t value; the number in square brackets is the p value of the test result.

problem through propensity score matching (PSM), alleviate
the endogeneity problem through difference in differences
(DID), and reduce the omitted variable bias to a certain
extent (Wu et al., 2021). This means the conclusions of this
paper are robust.

The establishment of national big data comprehensive pilot zones
is a reform policy proposed by the State Council to press ahead
with regional digital construction and better integrate digital
technology with economic production. The impact of changes
in regional digital technology levels on agricultural total factor
productivity before and after the implementation of the policy
can prove the core conjectures of this paper to a certain extent.

The economic level and agricultural production were
specifically selected for the following covariates: the per capita
GDP, the share of financial support for agriculture in fiscal
expenditure, the effective irrigation rate, the total power of
agricultural machinery (taking the natural logarithm), and the
number of employees in the primary industry (taking the natural
logarithm). The entropy matching method does not need to
set the specific form of the model and can perform high-order
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matching without losing samples. In view of the sample size in
this study, it is an efficient matching method (Yang and Hou,
2020) and fits this situation well. Thus, the entropy matching
method is used for matching. The entropy matching results are
shown in Table 7.

Table 7 shows that the p value of each covariate before
matching is <0.01, which indicates that there is a significant
difference between the experimental group and the control
group. After entropymatching, the absolute value of the standard
deviation of each covariate is 0%, there is no significant
difference, and the deviation is reduced by 100%. This shows
that the variables selected in this study are appropriate. It
also shows that PSM regression has made the experimental
group and the control group roughly similar, and the model
is robust. In addition, the dummy variable yeardummy was set
before the implementation of the policy and was cross-multiplied
with the experimental group or the control group (Treat ×

yeardummy) after it was incorporated into Model (4) for the
equilibrium tendency test. The test results are shown in Table A1

of Appendix A. The test results show that the coefficient of the
cross-product term (Treat × yeardummy) are not significant,
indicating that the experimental group and the control group
meet the equilibrium tendency before the implementation of the
policy.

The regions approved for the construction of national big data
comprehensive pilot zones in 2016 are Guizhou, Beijing, Tianjin,
Hebei, Guangdong, Shanghai, Henan, Chongqing, Liaoning, and
Inner Mongolia. These regions are included in the experimental
group, and the remaining regions are in the control group. The
difference-in-differences model is adopted on the experimental
group and the control group before and after the implementation
of the digital development policy to effectively eliminate the
internal differences between individuals and the bias caused by
the time trend unrelated to the experimental group and obtain
the “net effect” of the digital development policy on agricultural
total factor productivity. The measurement model constructed is

TFP = α0 + α1Treat × Post + α2Controlit + θi + τt + εit (4)

In model (4), when a sample is in the experimental group,
Treat is 1, and when a sample is in the control group, Treat
is 0. When the year is ≥2016, Post is 1; otherwise, it is 0. The
coefficient of cross-product term α1 of Treat and Post reflects
the change in agricultural total factor productivity before and
after the implementation of the digital development policy in
a region and is a key parameter to be evaluated in the model.
Controlit represents other control variables, and the specific
meaning remains unchanged. θi is an individual fixed effect of
the model. τt is the time fixed effect, and εit is the random error
term of the model. The regression results are shown in Column
(1) of Table 8.

(2) The time lag effect. Taking into account that digital
technology may have a certain time lag effect on agricultural
production, the core explanatory variables and explained
variables are further treated with a one-period lag and a
one-period lead, respectively. The test results are shown in
Columns (2) and (3) of Table 8.

(3) GMM dynamic panel analysis. The agricultural total factor
productivity has a certain degree of sustainability, that is,
serial correlation. To solve this problem, dynamic panel data
are further constructed, the lag term of the explained variable
is used to control the influence of initial conditions on
the agricultural total factor productivity, and the first-order
difference generalized method of moments (FD-GMM) is
adopted to perform regression. The regression results are
shown in Column (4) of Table 8.

Column (1) of Table 8 is the regression result of PSM-DID. It
can be found that the regression coefficient of treat × post is
significantly positive at the level of 5%, which indicates that,
after the implementation of the digital development strategy, the
regional digitalization level was promoted, and the agricultural
total factor productivity significantly increased. Columns (2) and
(3) are the test results after considering the time lag effect. It can
be seen that the digitalization level and agricultural total factor
productivity are still positively correlated at a significance level of
1%. This shows that the promotion effect of the digitalization on
agricultural total factor productivity has not decayed over time,
but this reflects that the development of digital technology in
various regions can exert a duplicate effect on agricultural total
factor productivity in a longer time series. This further proves the
correctness of the core viewpoints of this paper.

Column (4) is the regression result of the GMM dynamic
panel. The p value of AR(1) test is close to 0, and the p value
of AR(2) test is 0.648, which means that the model has a first-
order serial correlation but no second-order serial correlation.
This satisfies the moment condition of GMM estimation. At the
same time, p values in Sangan’s test and the Hansen J test are
>0.1, which shows that the model is effective. The regression
coefficient of the digitalization level (DIG) is still significantly
positive at the 1% level, indicating that, after considering the
characteristics of agricultural total factor productivity serial
correlation (controlling the explanatory variable lagging one
period and the resulting endogenity), regional digitalization can
significantly promote agricultural total factor productivity.

The Influence Mechanism of the
Digitalization Level on Agricultural Total
Factor Productivity
In order to verify Hypothesis 3a (H3a), that is the adjustment
mechanism of factor allocation distortion, this paper refers to
the research of Hsieh and Klenow (2009), Zhu et al. (2011), and
Gai et al. (2015). In this paper, factor distortion is defined as the
comparison between factor return and actual return. If the factor
distortion index is <1, the factor return is less than the actual
price, and the factor price is positively distorted. Otherwise, it
is negatively distorted. First, under the CD production function
equation, that is, Y = ASαLβKγMδ , where Y represents
total output, S, L, K, and M represent land, labor, capital, and
intermediate product inputs, respectively, and α, β , γ , and δ

represent the output elasticity of each input, respectively, A is
the total factor productivity, which also indicates technological
progress. Since the input of the intermediate products can be
adjusted freely and does not face flow limitations (Wang and
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TABLE 7 | Entropy matching quality result.

Variable Unmatched

matched

Mean %Bias %Reduct |Bias| t-Test

Treated Control t p > |t|

Finsup U 0.0957 0.1295 −98.1 100.0 −7.65 0.000

M 0.0957 0.0957 −0.0 −0.00 1.000

Irrigation U 6.9126 7.3822 −41.9 100.0 −3.23 0.001

M 6.9126 6.9126 −0.0 −0.00 1.000

GDP U 7.1160 5.0660 69.9 100.0 5.68 0.000

M 7.1160 7.1160 0.0 0.00 1.000

lnK U 7.2986 7.8049 −41.3 100.0 −3.35 0.001

M 7.2986 7.2986 −0.0 −0.00 1.000

lnL U 6.1121 6.4698 −29.4 100.0 −2.38 0.018

M 6.1121 6.1121 −0.0 −0.00 1.000

TABLE 8 | Robustness test.

(1) (2) (3) (4)

PSM-DID F.TFP TFP FD-GMM

Treat × Post 0.0119**

(2.49)

DIG 0.0090***

(3.10)

0.0013***

(3.17)

L.DIG 0.0110 ***

(3.86)

L.TFP 0.9947***

(203.38)

Finsup 0.2137***

(3.01)

0.1188**

(2.57)

0.1077**

(2.56)

0.0007

(0.39)

Elect −0.0379***

(−3.07)

−0.0178*

(−1.92)

−0.0215**

(−2.13)

0.0007**

(2.22)

Irrigation 0.0078

(0.38)

−0.0203

(−1.29)

−0.0426*

(−1.84)

−0.0006

(−0.47)

GDP −0.0025

(−1.37)

−0.0081***

(−6.16)

−0.0062***

(−3.82)

0.0001

(1.37)

Labqua 0.0058

(0.57)

0.0262***

(2.89)

0.0106

(0.92)

0.0009**

(2.72)

_cons 0.8895***

(4.76)

0.8792***

(6.82)

1.0423

(5.60)

Year/Province YES YES YES YES

N 248 217 217 186

Adj-R2 0.9995 0.9992 0.9991

AR(1) p value 0.037

AR(2) p value 0.648

Hansen J p-value 0.656

Sargan p value 0.659

*, **, and *** indicate significance at the levels of 10, 5, and 1%, respectively, and the value

in brackets is the t value; differential GMM deletes the constant term and does not report

R-squared, which does not affect the regression results of the model.

Li, 2021), it is assumed that there is no distortion in the
input of intermediate products. At the same time, based on
the actual situation of agricultural production, it is generally
believed that land use is free (Zhu et al., 2011). Therefore, this

paper only considers the distortions of the capital and labor
markets. The marginal outputs of capital and labor are expressed
as follows:

MRPK = AγSαLβKγ−1Mδ =
γY

K
(5)

MRPL = AβSαLβ−1KγMδ =
βY

L
(6)

Assuming that the capital price is the benchmark loan
interest rate R and the labor price is the average wage
W, the degree of distortion in the capital and labor
markets and the overall degree of distortion in the market
are, respectively,

DisK =
MRPK

R
(7)

DisL =
MRPL

W
(8)

DisT = DisK
γ

γ+β DisL
β

γ+β (9)

This paper establishes a panel data model to estimate the element
elasticity of each region:

lnYit = αlnSit + βlnLit + γlnKit + δlnMit + θt + ρi + εit

(10)

Here, Y is the total output value of the primary industry, S,
L, K, and M are again, respectively, land, labor, capital, and
intermediate product inputs, θt represents the fixed effect of
controlling time, ρi represents the individual effect of controlling
province, and εit is the random error term of the model. After
estimating the elasticity of factors in each region from Model
(10), the overall distortion of the market can be estimated by
model (7)–(9). After the overall market distortion degree (DisT)
is obtained, the cross-product term (DIG×DisT) between it and
the explanatory variable DIG is added to Benchmark Model (3).
The coefficient of the cross-product term is the adjustment effect
of the distortion of market factor allocation. The test results are
shown in Table 9.
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TABLE 9 | The influence mechanism of the digitalization level on agricultural total

factor productivity.

(1) (2)

TFP TFP

DIG 0.1212***

(4.16)

0.0074**

(2.37)

DIG × DisT −2.7068**

(−2.19)

DIG × Scale 0.0011**

(2.17)

Finsup 0.1022**

(2.11)

0.1269***

(3.00)

Elect −0.0310***

(−2.81)

−0.0242**

(−2.49)

Irrigation −0.0347*

(−1.89)

−0.0438**

(−2.36)

GDP −0.0066***

(−4.37)

−0.0065***

(−4.38)

Labqua 0.0128

(1.25)

0.0147

(1.50)

_cons 1.0265***

(6.72)

1.0647***

(6.96)

N 248 248

Adj-R2 0.9989 0.9989

*, **, and ***Indicate significance at the levels of 10, 5, and 1%, respectively, and the value

in brackets is the t value.

In addition, in order to verify Hypothesis 3b (H3b), that is,
the adjustment mechanism of scale, this paper defines large-
scale production (Scale) as the ratio of the sown area of crops
to the number of laborers, that is, the average sown area of
labor (taking the logarithm to ease measurement errors and
heteroscedasticity issues), and adds its cross-product term with
the digital technology level (DIG) to Benchmark Model (3).
The coefficient of the cross-product term DIG × Scale is the
adjustment effect of large-scale production. The test results are
shown in Table 9.

Column (1) of Table 9 is the regression result of the
adjustment effect of the distortion of market factor allocation.
The coefficient of the interaction term between the digitalization
level and the distortion of market factor allocation (DIG×DisT)
is significantly negative at the 5% level, indicating that, when
the market factor allocation is distorted, or the market factor
allocation is not efficient, the promotion effect of digitalization
on agricultural total factor productivity will be significantly
weakened. On the other hand, when the efficiency of market
factor allocation is improved, that is, after the distortion of
market factor allocation is improved, the promotion effect
of digitalization on agricultural total factor productivity will
be significantly strengthened. Hypothesis 2 is thus verified.
The mechanism of action may be as follows: Resources tend
to be input in urban enterprises rather than the agricultural
sector due to market distortions (Au and Henderson, 2006),
which aggravates the negative consequences brought by the
decline in agricultural labor forces and the loss of farmland,
seriously hindering the improvement of agricultural production

efficiency. Alleviating market distortions will effectively improve
resource input bias and guide resources to enter the agricultural
sector, thereby enhancing the role of digitalization in promoting
agricultural total factor productivity. Specifically, alleviating price
distortions in the agricultural market can help correct the profits
of the agricultural sector, stimulate the enthusiasm of producers,
and effectively enhance the promotion effect of digital technology
on agricultural total factor productivity; alleviating the distortion
of capital allocation can reduce the ineffective allocation of
capital, increase the capital inflow to the agricultural sector,
provide financial support for agricultural digital equipment
and offer labor forces with the opportunity to learn digital
technology, thereby enhancing the promotion effect of digital
technology on agricultural total factor productivity. At the same
time, after the distortion of the allocation of labor factors in
the market is alleviated, wages of the agricultural sector will
be raised to introduce high-quality talents (Li and Ma, 2021),
thereby improving the adaptability of agricultural labors to digital
technology, easing the “digital divide” problem in the agricultural
sector, and further enhancing the role of regional digitalization
in promoting agricultural total factor productivity. In addition,
the reduction in the degree of market distortion indicates an
improvement in resource allocation efficiency, whether it is a
capital element or a labor element. Improving the allocation
efficiency can further enhance the role of digital technology in
promoting agricultural total factor productivity and optimizing
the agricultural production value chain.

Column (2) of Table 9 is the regression result of the
adjustment effect of large-scale production. The coefficient of the
cross-product term DIG × Scale is significantly positive at the
5% level, indicating that large-scale production has significantly
enhanced the role of digitalization in promoting agricultural
total factor productivity. That is, the larger the scale of farmland
production, the greater the promotion effect of digitalization
on agricultural total factor productivity. Hypothesis 3 is thus
verified. The reasons for this may be as follows: First, in terms
of technology input cost, large-scale production is conducive to
reducing the unit input cost of digital technology. Cost reduction
contributes to the application of digital production technology
in the agricultural sector both in depth and in breadth, and
wider application and more advanced digital technology means
a greater improvement in agricultural total factor productivity.
Second, at the level of technological adaptation, the application
of agricultural digital technology is more suitable for large-scale
production of land. Agriculture land fragmentation limits the
application of digital technology, and satellite imagery, smart
water conservancy and other technologies are more suitable
for large-scale production, so large-scale farmland and digital
technology have better synergistic effects. Third, large-scale
production is conducive to the acquisition of digital information
for agricultural production, and these digital information
will become agricultural digital information assets, providing
a reference for subsequent agricultural production-related
decisions. Based on the above reasons, large-scale agricultural
production can positively enhance the promotion effect of
regional digitalization on agricultural total factor productivity.
Previous studies have found that there may be an inverse relation
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between farm scale and production efficiency, and the results
of this study may also indicate that digital technology is an
important support condition for large-scale production, that is,
the expansion of farmland production on the basis of improving
regional digitalization level can significantly promote the growth
of agricultural total factor productivity. Digital technology
and agricultural machinery have the same labor substitution
effect, ensuring better results for large-scale production. This
conclusion provides empirical evidence for the policy guidance
of large-scale production.

CONCLUSIONS AND
RECOMMENDATIONS

As populations grow, slowdowns in agricultural productivity
growth and the extensive development of agriculture lead to
unsustainable development in some parts of the world. Under
the circumstance, food security is challenged, and agricultural
transformation is imminent. This paper uses data from 30
provinces or municipalities in Mainland China from 2013 to
2020, identifies keywords related to digitization, adopts the
number of Internet searches using “prefecture-level cities or
municipalities + keywords related to digital technology” to
measure regional digitalization levels, discusses the impact
of regional digitalization levels on agricultural total factor
productivity and the heterogeneity of economic development
level, and further analyzes the adjustment mechanism of market
factor distortion and large-scale production. The following
conclusions can be drawn:

First, regional digitalization can significantly increase
agricultural total factor productivity. Digital technology can
make agricultural production, the supply of consumables, the
transportation and sales of finished products, and other value
chains more efficient (Wolfert et al., 2017; Creydt and Fischer,
2019). Regional digital construction can alleviate the shortage
of agricultural digital technology input and the “digital divide”
of laborers, which are important reasons behind inefficient
agricultural production (Benyam et al., 2021).

Second, the impact of regional digitalization levels on
agricultural total factor productivity is heterogeneous. Regional
digitalization can significantly raise agricultural total factor
productivity in economically underdeveloped regions but not
in economically developed regions. However, the fact that
digitalization does not have a significant effect on agricultural
total factor productivity in economically developed regions does
not mean that these regions should pay less attention to digital
construction. On the contrary, since digital technology is still not
widely applied in agricultural production and external markets,
these regions should continue to develop digital technology
in order to break the threshold for the actual utility of
digital technology. This study points out that an important
means of improving agricultural total factor productivity in
economically underdeveloped regions or developing countries is
the promotion of regional digitalization. It is also an important
route to green and sustainable agricultural growth.

Third, the distortion of market factors and large-scale
production have a significant regulatory effect. The lower the
degree of market factor distortion, the greater the effect of
digitalization in promoting agricultural total factor productivity;
the larger the scale of farmland production, the greater the
role of digitalization in promoting agricultural total factor
productivity. The inefficient allocation of market elements
indicates high information asymmetry between the supply and
demand parties. Invalid allocation further causes a waste of
resources, hinders market development, and affects agricultural
production. Alleviating the distortion of market factor rationing
will help digital technology to better promote the connection
between supply and demand in the agricultural market and
will further strengthen the role of digitalization in promoting
agricultural total factor productivity. At the same time, this is
an important foundation for creating a low-risk, high-return
market. Some studies have found that farm scale and production
efficiency are often inversely related (Feder, 1985; Barrett, 1996).
However, with the development of agricultural production
technology, the adaptation scenarios of these studies have
changed greatly. For example, Otsuka et al. (2016) found that, as
machinery replaces a large number of labors in Asia, farm scale
and production efficiency have shown a positive correlation. This
research reflects that the application of agricultural machinery
technology has changed the current agricultural production
scene. This paper is based on China’s digital construction, which
may mean that digital construction is also an important support
condition for large-scale agricultural production in developing
countries. Developing countries can popularize agricultural
machinery while improving the level of regional digitalization,
and bottlenecks in digital technology investment costs proposed
by Benyam et al. (2021) can also be alleviated in large-
scale production. This will have a more significant promotion
effect on agricultural total factor productivity. In short, our
empirical evidence shows that large-scale production and digital
technology complement each other.

Based on the above conclusions, the following
recommendations are put forward: First, governments should
work hard to promote digitalization as a way to increase
agricultural total factor productivity. Digital construction in
economically developed regions is the subsequent growth
driver for agricultural production, while digital construction
is an opportunity for economically underdeveloped regions
to turn to green and sustainable development. At the same
time, it is necessary to work hard to solve the “digital divide”
of laborers and the problem of digital technology adaptation,
to strengthen the practical application of digital technology,
to achieve industry–university–research cooperation, and to
popularize digital technology education in order to improve the
labor quality and promote the transformation of the workforce.
Second, government regulatory agencies should establish an
information exchange platform for the supply and demand
parties of the agricultural market through digital technology
to optimize the external environment of the market and the
efficiency of factor allocation and to reduce the waste of
resources caused by ineffective allocation. In addition, it is
necessary to improve government transparency and citizen
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participation and to obtain effective feedback on policy effects,
thereby solving the problem of market distortion caused by
ineffective policies.
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