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The chemical composition and CIELAB color parameters of oil from three aguaje

morphotypes (Mauritia flexuosa L.f.) extracted by supercritical carbon dioxide was

investigated. By chromatography (HPLC and GC), spectrometry (UV/vis), and digital

image colorimetry (digital camera), carotenoids, tocopherols, tocotrienols, fatty acids,

total polyphenols, and CIELAB color space were analyzed. These findings showed

that the oil obtained from morphotype 3 was superior in several analytes (carotenoids,

polyphenols, oleic acid, β-sitosterol, campesterol, and stigmasterol), while morphotype

2 and morphotype 1 showed very close profiles. The most similar chemical components

in the oils of the three morphotypes were stigmasterol (16.00 to 17.81%), β-sitosterol

(66.39 to 68.94%), palmitic acid (15.56 to 20.69%), and oleic acid (73.29 to 79.54%).

The chromatic parameters (L∗, a∗, b∗, and C∗
ab) were quite different except for the hue

angle (hab) (66.55 to 69.71U), which showed some similarity. Aguaje oil is an interesting

resource that stands out for its high content of carotenoids. All three morphotypes may

be suitable for potential commercial applications.

Keywords: aguaje oil, supercritical CO2, fatty acids, sterols, tocols, carotenoids, CIELAB color space

INTRODUCTION

Aguaje or buriti (Mauritia flexuosa L.f.) is a palm tree native to the Peruvian Amazon (Koolen
et al., 2018), a resource with great economic potential for the Amazon rainforest people. In Peru,M.
flexuosa grows mainly in the swamp forest known as “aguajales” (Endress et al., 2013). This native
species is also found in several Amazonian countries, such as Brazil, Colombia, Ecuador, Bolivia,
Venezuela, Suriname, Guyana, and French Guiana (Virapongse et al., 2017). Although in all these
countries M. flexuosa is found in the wild, in Peru, as a way of conservation, monoculture and
agroforestry systems have been established (CIMA, 2012a) to meet the growing market demand for
the aguaje fruit. Different parts of the plant, such as the leaves, flowers, fruits, stems, seeds, and roots
are used by man for the manufacture of toys (dice and spinning tops), handicrafts (bags, baskets,
hats, brooms, and hammock), and food products (soft drink “aguajina,” jam, aguaje pulp dough,
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porridge, ice cream, popsicles, and oil) (CIMA, 2012b; Mesa
Castellanos et al., 2017; USIL, 2018). Other products fortified
with M. flexuosa include cookies made with oil to improve the
vitamin A and lipid profiles (Aquino et al., 2016), and milk-based
beverage enriched with pulp lyophilized powder to increase the
carotenoid content and improve the chromatic profile (Best et al.,
2020). A recent study on the effect of buriti oil intake in the
diet of lambs improved the tenderness, flavor, and “goat” aroma
intensity in meat (de Sousa et al., 2022). Furthermore, it increases
intramuscular fat and fatty acids in subcutaneous fat (Parente
et al., 2020).

Several morphotypes have been described for the aguaje;
these characteristics are associated with the mesocarp color.
The yellowish-reddish color of the mesocarp is due to
the concentration of carotenoid pigments. According to the
mesocarp color, these are the following morphotypes: “amarillo”
or “posheco” (when the pulp is yellowish), “color” (when only the
superficial part is reddish), and “shambo” (whole pulp is reddish)
(Delgado et al., 2007; Vásquez-Ocmín et al., 2010; CIMA, 2012b;
Best et al., 2020). The use of aguaje fruit byproducts and pulp
has been documented in recent years. Oil and defatted bran
are obtained from pulp, whereas flour is acquired from exocarp
(shell) and endocarp. The aguaje byproduct flours are rich in
dietary fiber and phytochemical antioxidants (Resende et al.,
2019). Different chemical components have been found in the
aguaje pulp, including minerals, vitamins, phenolic compounds,
and saccharides (Candido et al., 2015; de Souza et al., 2020), while
aguaje oil is rich in fatty acids, sterols, carotenoids, and tocols
(Serra et al., 2019; Mesquita et al., 2020).

The aguaje oil is rich in several constituents and has shown
interesting biological properties, such as the antimicrobial and
antioxidant activities (Santos et al., 2018). It has recently
been reported that nanostructured lipid carriers composed of
interesterified aguaje oil improve the bioavailability and stability
of bioactive compounds, without showing any cytotoxic effects
on Caco-2 and HepG2 cell lines (Reis et al., 2020). Furthermore,
aguaje oil, especially its carotenoids (i.e., 13-cis-β-carotene, 9-
cis-β-carotene, and α-carotene) have shown interaction energies
against 2GTB peptidase. Therefore, these phytochemicals can
become potential candidates with enzymatic inhibitory action to
combat coronavirus disease (Costa et al., 2020). In another study,
this oil showed no toxicity to mononuclear phagocyte system
to human blood and increased the rate of cellular phagocytosis
against enteropathogenic Escherichia coli (Cruz et al., 2020).

Different extractive techniques that include conventional
(hydraulic pressing, expeller pressing, malaxing process, and
solvent extraction) and eco-friendly technologies (supercritical
fluid extraction, pressurized liquid extraction, microwave-
assisted extraction, ultrasonic-assisted extraction, and pulsed
electric fields extraction) have been used for the extraction
of vegetable oils (Aydar, 2018; Ramos-Escudero et al., 2019;
Veneziani et al., 2019; Zhang et al., 2019; Fomo et al., 2020).
Supercritical fluid has been used in several Amazon palm trees for
oil extraction (Orbignya phalerata, Oenocarpus distichus Mart.,
and Maximiliana maripa). The efficiency of supercritical fluid
CO2 extraction depends on the variation of solubility with
temperature (40 to 80◦C) and pressure (20 to 35 MPa) (Cunha
et al., 2019; de Oliveira et al., 2019; Barbi et al., 2020). This

technique has been used to evaluate the extraction performance,
the quality of lipids (fatty acids, sterols, tocols, terpenoids, and
volatile compounds), plant pigments (non-polar compounds),
and bioactive compounds (polar compounds), the latter using
co-solvents, such as methanol, ethanol, and water (Radzali et al.,
2020).

The aim of this study was to characterize the oil from
three aguaje morphotypes extracted by supercritical fluid with
CO2. The oils obtained through this green technology was
evaluated for its chemical composition, lipid quality, and
chromatic parameters.

MATERIALS AND METHODS

Chemicals
All reagents were of analytical, chromatographic, and
spectroscopic grade. Toluene, ethanol, 36% hydrochloric acid,
methanol, ethyl acetate, acetone, tetrahydrofuran, pyrogallol,
ammonium acetate, 2,2-diphenyl-1-picrylhydrazyl, and Folin–
Ciocalteu’s phenol reagent were purchased from Merck KGaA
(Darmstadt, Germany). The standards α-cholestanol, all-trans-
β-carotene, tocol standards, and gallic acid were supplied by
Merck KGaA (Darmstadt, Germany). All other chemicals used
were of the highest commercially available degree.

Raw Materials
The fruits of three morphotypes of aguaje that were used
in this study were acquired from the “Veinte de Enero”
Community (Iquitos, Loreto, Peru) in January 2019. The
chromatic characteristics described for the pulp lyophilized
powder of morphotypes of Mauritia flexuosa L.f. were L∗

(80.94, 80.86, and 76.96U), a∗ (3.70, −0.68, and 9.35U), and
b∗ (47.70, 69.04, and 76.14U) (Best et al., 2020). The pulp
lyophilized powder wasmilled using an E310 commercial blender
(Vitamix R©, OH, USA) (Figure 1). Subsequently, the powder
passed through an 800-µmmesh sieve. The material was vacuum
packaged, kept at freezing temperature, and protected from light
until extraction.

Supercritical CO2 Oil Extraction
Supercritical fluid extraction was carried out with a Multi-
solvent Extraction System (Top Industrie, Vaux-le-Pénil, France)
equipped with CO2 and co-solvent pumps. Oil was obtained
from aguaje pulp lyophilized powder via supercritical CO2

extraction under the conditions of 315.15K, 20-MPa pressure,
and CO2 mass flow was 42 g/min. Experiments were carried
out using the extraction procedures described by Corzzini et al.
(2017). The different morphotypes presented an oil content
that varied between 46 and 55% (solvent extraction) (Best
et al., 2020), the moisture in the samples was less than 6%,
and the size of the particles ranged between 250 and 800µm.
The oil was collected every 15min in 15-ml conical-bottom
glass tubes with screw caps; when the oil was depleted in the
matrix, each tube was filled with nitrogen in the headspace
and protected from light with an aluminum foil to prevent
oxidation. Sample oil was kept under refrigeration until the time
of analysis.
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FIGURE 1 | Pulp lyophilized powder of three aguaje morphotypes: (A) morphotype 1, (B) morphotype 2, and (C) morphotype 3.

Fatty Acid and Health-Promoting Index
Fatty acids were determined according to the method described
by Ichihara and Fukubayashi (2010). Each oil sample (1mg) was
dissolved in 200 µl of toluene. This lipid solution was derivatized
with a mixture of methanol (1.5ml) and 8% HCl (300 µl). Then,
the mixture was incubated at 45◦C for 16 h in a water bath.
After cooling to room temperature, 1ml of hexane was added for
the extraction of the fatty acid methyl esters. Fatty acid analysis
was conducted using a gas chromatography system (Varian CP-
3800, Walnut Creek, CA, USA). Separations were made on a
FAMEWAX R© WCOT fused silica capillary column (30m ×

0.25mm i.d.: 0.25µm film thickness, Restek Co.). The injector
and detector temperatures were 250 and 260◦C, respectively. The
oven was kept at 120◦C for 1min, programmed to 160◦C at a
rate of 30◦C/min, where it was maintained for 1min, and then
raised again to 240◦C, at a rate of 4◦C/min and then held constant
for 7min. Carrier gas flow rate (helium) was 1.0 ml/min, the
injection volume was 1 µl (splitless mode). The result of the fatty
acid content was expressed as a percentage of total fatty acids in
the aguaje oil. The health-promoting index (HPI) was calculated
as follows:

HPI =
ΣUFA

[C12:0+ (4 x C14:0)+ C16:0]

in which ΣUFA = the sum of unsaturated fatty acids, C12 : 0 =

lauric acid, C14 : 0=myristic acid, and C16 : 0= palmitic acid.

Tocopherols and Tocotrienols Analysis
Tocol analysis was carried out according to the IUPAC
standard method 2,432. A 10-mg quantity of oil was diluted
with 1ml of HPLC-grade hexane and directly injected into a
liquid chromatograph with a Shimadzu RF-10AXL fluorescence
detector. The separations were performed using a Si-column
(250 × 4.0mm i.d.; 4-µm particle size). The mobile phase used
consisted of a mixture of hexane:isopropyl alcohol (99:1, v/v) at
a flow rate of 1.0 ml/min, with an injection volume of 2 µl. The
excitation and emission wavelengths are described in Chasquibol
et al. (2016). Tocol standards were used for identification and
quantification; the results were expressed in mg/kg oil.

TABLE 1 | Fatty acid composition of oil from three aguaje morphotypes obtained

by supercritical fluid-CO2 extraction.

Morphotype 1 Morphotype 2 Morphotype 3

Fatty acid composition (%)

Oil yield 45.5 46.0 44.5

Palmitic (C16:0) 20.69 ± 0.07a 17.75 ± 0.39b 15.56 ± 0.04c

Palmitoleic (C16:1 ω7) 0.13 ± 0.01c 1.36 ± 0.04a 0.25 ± 0.00b

Stearic (C18:0) 1.89 ± 0.05a 0.95 ± 0.08c 1.50 ± 0.03b

Oleic (C18:1 ω9) 73.43 ± 0.13b 73.29 ± 0.46b 79.54 ± 0.07a

Isomer oleic (C18:1 ω7) 0.99 ± 0.07c 3.84 ± 0.07a 1.40 ± 0.04b

Linoleic (C18:2 ω6) 2.08 ± 0.04a 1.60 ± 0.10b 0.88 ± 0.05c

α-Linolenic (C18:3 ω3) 0.78 ± 0.04b 1.21 ± 0.01a 0.86 ± 0.06b

Saturated fatty acids

(SFAs)

22.58 18.70 17.06

Monounsaturated fatty

acids (MUFAs)

74.56 78.49 81.20

PUFAs 2.86 2.81 1.74

n – 6/n – 3 ratio 2.65 1.33 1.03

UFAs/SFAs 3.43 4.35 4.86

PUFAs/SFAs 0.13 0.15 0.10

Health-promoting index

(HPI)

3.74 4.58 5.33

Mean values in each row with different letters are significantly different between the oil

samples (Tukey test, p < 0.05).

Sterol Analysis
The sterol fraction was analyzed according to the methodology
proposed by the Commission Regulation 2568/91 (EU) (2019)
N◦ 2568/91. The oil sample (5 g) was placed in a 250-ml round-
bottomed glass flask. The hot saponification was started by
the incorporation of 50ml of potassium hydroxide ethanolic
solution (2N) and lasted for 1 h under reflux. The extraction
of the unsaponifiable matter was carried out in a 500-ml
glass separating funnel with 80ml of anhydrous diethyl ether
(three times). Supernatant was washed using distilled water
until complete neutralization. The diethyl ether phase was then
dried with anhydrous sodium sulfate, and the residue was
evaporated. Then 10ml of acetone was added and evaporated
again. The unsaponifiable matter was resuspended in 1.5ml
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TABLE 2 | Sterol, tocopherol, and tocotrienol contents of oil from three aguaje

morphotypes obtained by supercritical fluid-CO2 extraction.

Morphotype 1 Morphotype 2 Morphotype 3

Sterols (%)

Cholesterol 6.01 ± 0.09a 4.30 ± 0.05b 4.20 ± 0.08b

Brassicasterol 0.82 ± 0.06b 1.44 ± 0.10a 0.20 ± 0.03c

24-Methylene

cholesterol

0.89 ± 0.11 ND ND

Campesterol 5.61 ± 0.01b 5.43 ± 0.03b 5.97 ± 0.10a

Stigmasterol 16.00 ± 0.22b 17.21 ± 0.10a 17.81 ± 0.07a

D7-campesterol 0.62 ± 0.19ab 0.86 ± 0.05a 0.15 ± 0.03b

Chlerosterol 0.99 ± 0.02a 1.00 ± 0.01a 0.94 ± 0.05a

β-sitosterol 67.53 ± 0.56a 66.39 ± 1.73a 68.94 ± 0.08a

Sitostanol 0.93 ± 0.08a 0.57 ± 0.13a 0.55 ± 0.07a

D5-avenasterol 0.52 ± 0.04b 1.19 ± 0.04a 1.10 ± 0.04a

D5,24-stigmastadienol ND 0.30 ± 0.09a 0.16 ± 0.01b

D7-stigmastenol 0.14 ± 0.01a 0.13 ± 0.03a 0.28 ± 0.04a

D7-avenasterol 0.13 ± 0.02a 0.15 ± 0.01a 0.09 ± 0.02a

Total sterols (mg/kg) 835.35 ± 15.20 1,181.00 ± 18.53 850.40 ± 12.16

Tocopherols (mg/kg)

α-Tocopherol 57.26 ± 1.84b 62.15 ± 5.18b 167.12 ± 7.52a

β-Tocopherol 184.61 ± 0.98c 335.63 ± 3.05b 413.17 ± 2.01a

γ-Tocopherol 147.94 ± 1.98a ND 11.24 ± 0.80b

δ-Tocopherol 421.68 ± 0.90a 6.20 ± 0.42c 43.91 ± 0.83b

Total tocopherols

(mg/kg)

811.49 ± 5.70 403.97 ± 7.84 635.44 ± 5.54

Tocotrienols (mg/kg)

α-Tocotrienol 22.09 ± 0.05a 11.88 ± 1.85b 21.58 ± 0.76a

β-Tocotrienol 6.20 ± 0.01 ND ND

γ-Tocotrienol 1.79 ± 0.00 ND ND

δ-Tocotrienol 2.88 ± 0.01b 2.24 ± 0.13b 14.98 ± 0.55a

Total tocotrienol

(mg/kg)

32.96 ± 0.08 14.13 ± 1.97 36.56 ± 0.21

Total tocols 844.44 418.10 672.00

Mean values in each row with different letters are significantly different between the oil

samples (Tukey test, p < 0.05).

of ethyl acetate and the sterol fraction was separated by
thin layer chromatography using a hexane:diethyl ether (65:35,
v/v) mixture, and then revealed with a 2,7-dichlorofluorescein
solution, recovered, filtered, evaporated, and derivatized (350 µl
of a mixture of HMDS:TMCS:Pyridine, 3:1:9, v/v/v). GC analyses
were carried out using an Agilent 6890N gas chromatograph
(Agilent, Santa Clara, CA, USA) equipped with an SPB R©-5
capillary column (30m × 0.25mm i.d.: 0.2-µm film thickness,
Merck KGaA) and a flame ionization detector (FID). The oven
program for the sterol analysis was isothermal at 265◦C, with
a 1:50 split ratio. Analysis time was 30min, and flow rate was
1 ml/min, using hydrogen as the carrier gas. Identification and
quantification of individual sterols was carried out as described
in previous works (Fernandes et al., 2017).

Carotenoid Analysis
The saponification of the oil sample was carried out according
to the description of Cortés-Herrera et al. (2019) with some

modifications. A 50-mg quantity of oil was weighed and diluted
with 1.2ml of ethanol. Then 350 µl of potassium hydroxide (30
%) and 100 µl of pyrogallol (75 mg/ml) were added. Afterward,
the mixture was made to saponify at 80◦C for 2 h in a water bath.
The unsaponifiable lipids were extracted with 5ml of a mixture
of hexane-ethyl acetate (8:2, v/v) and 1ml of distilled water. The
organic phase was recovered and evaporated by drying with a
stream of nitrogen and then resuspended with 3ml of acetone.
This last phase was filtered through 0.45µm PTFE membrane
filter before HPLC analysis.

The analysis was performed with HPLC Hitachi LaChrom
Elite R© System equipped with a DAD. The software used for the
acquisition of the chromatographic separations was EZChrom
Elite 3.1.7. The analyte separations were conducted using a
LiChroCART C18 column (250 × 4.6mm i.d., 5-µm film
thickness, Merck KGaA). The temperature of the column was
maintained at 25◦C. Themobile phase was a mixture of methanol
HPLC (A), methanol-0.5N ammonium acetate buffer (80:20, v/v)
(B), and tetrahydrofuran (C), using the following gradient over a
total run time of 35 min: at 0min 100% B, at 5min 98% A and
2% C, at 17.2min 80% A and 20% C, at 25min 80% A and 20%
C, at 26min 98% A and 2% C, at 28min 100% B, and at 35min
100% B, with a flow rate of 1 ml/min and an injection volume
of 20 µl. Chromatograms were recorded at 450 nm. Carotenoid
quantification was performed using calibration curves for β-
carotene and all-trans-β-carotene; the results were expressed in
mg/kg of oil.

Total Polyphenols
The total phenolic content of oil samples was determined using
the Folin–Ciocalteu assay (Singleton et al., 1999). A 50-mg oil
sample of was diluted with 450 µl of toluene. Of the dilution,
100µl was mixed with 750µl of Folin–Ciocalteu’s phenol reagent
(0.2N), then the mixture was stirred for 5min using an LP vortex
mixer (Thermo Scientific, Waltham, MA, USA) at maximum
speed. The polar fraction was recovered after centrifugation at
2,500 rpm over 5min. Sodium carbonate (7.5%, 750 µl) was
added to the translucent fraction and then allowed to react for
1 h at 37◦C in a water bath. The developed blue color was
measured at 725 nm using an Orion AquaMate 8100 UV-visible
spectrophotometer (Thermo Scientific, Waltham, MA, USA).
The results were expressed as milligram gallic acid equivalent per
kg oil (mg GAE/kg).

Color Measurements
Color measurement of oil samples were carried out according
to the methodology described by Milanez and Pontes (2014).
Oil sample (1ml) was previously centrifuged at 10,000 × g for
5min in a 5418R micro-centrifuge (Eppendorf AG, Hamburg,
Germany). Then the supernatant was put in a Quartz Suprasil
pathlength 10 × 4-mm semi-micro cuvette (Hellma R© Analytics,
Müllheim, Germany). Image acquisition was obtained using a
digital camera (Canon, Power Shot SX60 HS, full HD 65X optical
zoom, Tokyo, Japan) with the Camera Connect App to transfer
images shot to an iphone X smartphone (Apple Inc., USA)
connected via wifi R©. The illumination in the box was performed
by using an OSRAM 17-W high power led lamp and a color
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FIGURE 2 | HPLC-DAD chromatogram of the carotenoid profile of the aguaje oil of morphotype 2 (A). UV-visible spectra for the individual carotenoids (B–E).
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TABLE 3 | Carotenoids and total polyphenol content of oil from three aguaje

morphotypes obtained by supercritical fluid-CO2 extraction.

Morphotype 1 Morphotype 2 Morphotype 3

mg/kg

Unknown 223.29 ± 0.55c 287.97 ± 3.78b 785.83 ± 6.13a

β-carotene 174.43 ± 1.33b 168.84 ± 8.78b 347.11 ± 3.63a

All-trans-β-carotene 846.04 ± 12.13c 1,548.45 ± 14.60b 3,962.65 ± 17.39a

9-Cis-β-carotene 447.98 ± 2.57c 685.19 ± 6.19b 1,529.14 ± 18.35a

13-Cis-β-carotene 440.18 ± 1.98c 749.21 ± 12.87b 1,777.84 ± 15.34a

Total carotenoids 2,131.93 ± 8.36 3,439.67 ± 46.22 8,402.56 ± 22.89

Total phenolics1 153.41 ± 2.73c 224.79 ± 4.58b 328.89 ± 4.72a

Mean values in each row with different letters are significantly different between the oil

samples (Tukey test, p < 0.05). 1mg GAE/kg.

temperature of 6,500K. Red, green, and blue (RGB) channels
were obtained using a digital image processing program (ImageJ
1.51j software, National Institutes of Health by Wayne Rasband,
USA). Color squares images were generated by converting RGB
values to lightness (L∗), redness (a∗), and yellowness (b∗) values
using the online software ColorHexa.com interface. The color
attributes for C∗

ab (chroma) and hab (hue angle) were calculated
as follows:

C∗
ab=

√

a
∗2+b

∗2

hab= atan
b∗

a∗

Statistical Analysis
All measurements were performed as follows: for
chromatographic assays (n = 2), for UV/vis spectrophotometric
assays (n= 3), and for digital image colorimetric assays (n= 10).
Data are expressed as mean ± standard deviation. The analysis
of variance (ANOVA) with Tukey’s multiple comparison test
was used to compare different aguaje morphotypes using the
STATISTICA version 8.0 software (StatSoft, Inc., Tulsa, OK,
USA) with significance set at p < 0.05. Clustered heatmaps
and the degree of association among the different variables
studied were verified using a Pearson’s correlation heatmap in
Metaboanalyst 5.0 (https://www.metaboanalyst.ca).

RESULTS AND DISCUSSION

Fatty Acid Composition
The yield of aguaje lyophilized oil of pulp obtained through
supercritical fluid-CO2 extraction varied between 44 to 46%
(Table 1), while Lage et al. (2018) reported an oil content of
around 56% in aguaje pulp (or buriti) using solvent extraction.
Oil recovery percentages using supercritical fluid extraction
is subject to various factors such as temperature, pressure,
sample, and CO2 flow rate. Anjaneyulu et al. (2017) showed
remarkably similar oil yields between solvent extraction (57.2%)
and supercritical fluid extraction (57.0 %). However, the solvent-
extracted oil presented higher levels of free fatty acid, peroxide
value, and a high phosphorous content, compared with the

supercritical CO2-extracted oil. Several authors have reported
that supercritical fluid-extracted oils yield superior-quality oils
(Naz et al., 2019).

The fatty acids of oil from the three aguaje morphotypes
were palmitic (C16:0), palmitoleic (C16:1 ω7), stearic (C18:0),
oleic (C18:1 both ω9 and ω7 isomers), linoleic (C18:2 ω6), and
α-linolenic (C18:3 ω3) acids (Table 1). This is in accordance
with the description by de Souza et al. (2020). When all
morphotypes were considered, the main fatty acids showed the
following order: oleic acid (73.29 to 79.54%) > palmitic acid
(15.56 to 20.69%) > linoleic acid (0.88 to 2.08%) > stearic
acid (0.95 to 1.89%) > palmitoleic acid (0.13 to 1.36%). All
fatty acids presented significant differences (p < 0.05), with
morphotype 1 the one with the highest palmitic, stearic, and
linoleic acid contents of the three. Morphotype 2 was mainly
represented by palmitoleic, oleic, and linolenic acids, whereas
morphotype 3 was a good source of oleic acid, whose content
was 79.54%. Besides, monounsaturated fatty acids (MUFAs)
represented between 74.56 and 81.20% of the total fatty acid
content. These results are similar to the findings of Serra
et al. (2019). MUFAs, especially oleic acid, have shown several
beneficial effects on human health for the prevention of type
2 diabetes mellitus, reduces the systolic and diastolic blood
pressure, reduces triglycerides and low-density lipoprotein, and
inhibits the tumor necrosis factor α (TNFα) (Sales-Campos et al.,
2013; Granado-Casas and Mauricio, 2019). Precisely, the oleic
acid content in this oil is very similar to that of olive (70.1–
82.5%), almond (50.4–81.2%), hazelnut (76.3–86.5%), and pecan
nut (49.6–62.1%) oils (Ramos-Escudero et al., 2015; Fernandes
et al., 2017). Noteworthy, the proportion of saturated fatty acids
(SFAs) in this oil ranges from 17.06 to 22.58%. These values
are in agreement with the findings of Vásquez-Ocmín et al.
(2010), while this oil showed a low content of polyunsaturated
fatty acids (1.74 to 2.86%). Consequently, the PUFAs/SFAs
ratio was between 0.10 and 0.15, and the n – 6/n – 3 ratio
ranged from 1.03 to 2.65. Compared with aguaje oil, chia and
sacha inchi oils have higher PUFAs/SFAs ratios (7.46–8.03 and
9.45–13.57, respectively). These indexes are typically used to
assess the impact of the diet on cardiac wellbeing, cancer,
obesity, and inflammatory diseases (Simopoulos, 2016; Chen
and Liu, 2020). On the other hand, the health-promotion index
(HPI) in aguaje oil ranged from 3.74 to 5.33. Chen and Liu
(2020) reported HPI values for dairy products (butter, cheese,
cream, milk, and yogurt) in which they varied from 0.16 to
0.66. Food products with a high HPI value are healthier for
human health.

Sterol, Tocopherol, and Tocotrienol
Composition
Table 2 shows the sterol composition and total sterol contents
of the oils obtained from the lyophilized pulp of the aguaje
morphotypes. Among those, there was no significant difference
(p > 0.05) regarding the following sterol content: chlerosterol,
β-sitosterol, sitostanol, D7-stigmastenol, and D7-avenasterol.
Concerning the sterol composition, all aguaje oils of different
morphotypes showed the following order: β-sitosterol (66.39 to
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TABLE 4 | Chromatic properties of oil from three aguaje morphotypes obtained by supercritical fluid-CO2 extraction.

Input color value L* a* b* C*ab hab View

Morphotype 1 rgb 223 134 14 63.98 26.94 67.81 68.33 72.96

rgb 220 134 13 63.59 25.66 67.53 69.19 72.24

rgb 215 132 12 62.49 24.59 66.63 69.74 71.02

rgb 212 132 11 62.11 23.30 66.34 70.65 70.31

rgb 213 143 29 64.87 18.10 64.49 74.32 66.98

rgb 211 132 14 61.99 22.90 65.69 70.78 69.56

rgb 196 128 17 59.17 18.61 62.18 73.34 64.91

rgb 207 130 14 61.02 22.26 64.76 71.03 68.48

rgb 215 132 12 62.49 24.59 66.63 69.74 71.02

rgb 209 128 11 60.80 24.16 65.25 69.68 69.58

Morphotype 2 rgb 207 111 11 56.74 32.38 62.32 62.54 70.23

rgb 208 108 14 56.26 34.40 61.45 60.76 70.42

rgb 210 111 17 57.19 33.70 61.56 61.30 70.18

rgb 198 105 12 54.17 31.83 59.76 61.96 67.70

rgb 196 119 27 57.09 23.74 57.86 67.70 62.54

rgb 193 108 17 54.14 28.21 58.25 64.16 64.72

rgb 191 108 16 53.86 27.34 58.17 64.83 64.27

rgb 193 108 17 54.14 28.21 58.25 64.16 64.72

rgb 193 110 18 54.59 27.15 58.33 65.04 64.34

rgb 199 110 18 55.42 29.68 59.32 63.42 66.33

Morphotype 3 rgb 182 57 13 42.62 48.79 50.36 45.91 70.11

rgb 190 59 17 44.40 50.78 50.94 45.09 71.93

rgb 194 61 18 45.43 51.35 51.66 45.17 72.84

rgb 183 60 18 43.28 47.98 49.18 45.71 68.71

rgb 186 61 17 43.97 48.59 50.30 45.99 69.93

rgb 184 63 16 43.97 48.59 50.30 45.99 69.93

rgb 186 75 30 46.40 42.61 47.04 47.83 63.47

rgb 188 69 27 45.67 46.04 47.85 46.10 66.40

rgb 187 66 21 44.97 49.65 49.65 45.00 70.21

rgb 180 62 16 43.05 46.03 49.49 47.07 67.58

Morphotype 1 62.25 ± 1.66a 23.11 ± 2.84c 65.73 ± 1.66a 70.68 ± 1.85a 69.71 ± 2.42a

Morphotype 2 55.36 ± 1.34b 29.66 ± 3.36b 59.53 ± 1.67b 63.59 ± 2.06b 66.55 ± 2.90b

Morphotype 3 44.38 ± 1.23c 48.04 ± 2.58a 49.67 ± 1.39c 45.99 ± 0.89c 69.11 ± 2.73ab

Mean values in each column with different letters are significantly different between the oil samples (Tukey test, p < 0.05).

68.94%) > stigmasterol (16.00 to 17.81%) > campesterol (5.43
to 5.97%) > cholesterol (4.20 to 6.01%). Other sterols were
also present in concentrations below 1%, such as chlerosterol
(<0.98%), D5-avenasterol (<0.94%), brassicasterol (<0.83%),
sitostanol (<0.69%), D7-campesterol (<0.55%), D7-stigmastenol
(<0.19%), and D7-avenasterol (<0.14 %). In morphotypes 2
and 3, D5,24-stigmastadienol was found with a content of 0.30
and 0.16%, respectively, while in morphotype 1, 24-methylene
cholesterol was found with a value of 0.89%. Regarding total
sterol contents, morphotype 2 had the highest concentration
(1,181.00 mg/kg), whereas morphotypes 1 and 3 presented the
lowest contents (835.35 and 850.40 mg/kg, respectively). These
values are higher than those of other Arecaceae oils, such as
palm (656 to 660 mg/kg) (Hassanien, 2013) but comparable with
seje oil (Jessenia bataua) (985 to 1,551 mg/kg) (Navas Hernández
et al., 2009).

Four tocopherols (α, β, γ, and δ-tocopherols) were detected
(Table 2), although γ-tocopherol was not found in morphotype
2. When all morphotypes were considered, the α-tocopherol
content varied between 57.26 and 167.12 mg/kg, and β- and δ-
tocopherol ranged from 184.61 to 413.17 mg/kg, and from 6.20
to 421.68 mg/kg, respectively. Furthermore, δ-tocopherol was
present in morphotypes 1 (147.94 mg/kg) and 3 (11.24 mg/kg).
The content of individual tocopherols in aguaje (Mauritia
flexuosa L.f.) oil is highly variable in different studies (Santos
et al., 2013; Speranza et al., 2016; Freitas et al., 2017; Serra et al.,
2019). In our study, β-tocopherol was the main tocopherol in the
aguaje oils obtained from morphotypes 2 and 3. These results
are very similar to those found by Freitas et al. (2017) and
Serra et al. (2019). On the contrary, δ-tocopherol was reported
as the main tocopherol in morphotype 1. As seen in Table 2,
the aguaje oils of the different morphotypes presented a content
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FIGURE 3 | UV/vis spectra of oil from three aguaje morphotypes (Spectra were taken in glass cuvettes, 2-mm pathlength).

of total tocopherols ranging from 403.87 to 811.49 mg/kg. In
agreement with the values in the literature, it was found that total
tocopherols (1,040.14 to 2,364.10 mg/kg) were higher than those
reported in this study (Santos et al., 2013; Speranza et al., 2016;
Freitas et al., 2017; Serra et al., 2019). This variation is probably
due to the type of oil extraction system, pedoclimatic conditions,
morphotypes, and harvest maturity influence (Carvalho et al.,
2017; Nayab et al., 2020).

The tocotrienol composition of oil from the three aguaje
morphotypes studied in the present work is described in Table 2.
Tocotrienols (α, β, γ, and δ) were detected in morphotype
1, while in morphotypes 2 and 3 only α- and δ-tocopherol
were identified. α-Tocopherol was the most abundant one. The
three aguaje morphotypes differed in tocotrienol contents. α-
Tocotrienol ranged from 11.88 to 22.09 mg/kg of oil from three
aguaje morphotypes, while δ-tocotrienol ranged from 2.24 to
14.98 mg/kg, comparable with those described by Serra et al.
(2019) for buriti fruit oil extracted by cold pressing. The total
content of tocotrienols in oil of morphotypes of aguaje ranged
from 14.13 to 36.56 mg/kg. In addition, tocols contribute to the
quality of vegetable oils as well as their bioactivity and health-
promoting properties (Delgado et al., 2020).

Carotenoids and Total Phenolic Contents
Figure 2A showed an HPLC-DAD chromatogram of the
carotenoid profile of the aguaje oil of morphotype 2. Carotenoid
compounds eluted at 20.73, 25.15, 25.71, 26.08, and 26.57min
were unknown, β-carotene, all-trans-β-carotene, 9-cis-β-
carotene, and 13-cis-β-carotene with λmax of 428, 454; 452,
477; 446, 471; and 444, 469 nm (Figures 2B–E). Five carotenoid

compounds were identified and quantified as described in detail
in Table 3. However, Santos et al. (2015) have identified 10
carotenoid compounds in buriti oil, namely, luteoxanthin, lutein,
cis lutein, 5,8 epoxy β-carotene, cis γ-carotene, γ-carotene, cis
α-carotene, α-carotene, cis β-carotene, and β-carotene. The
content of individual carotenoids showed the following trend
in aguaje morphotypes: morphotype 3 > morphotype 2 >

morphotype 1. All-trans-β-carotene are mainly contributing
to the total carotenoid content. The content of all-trans-β-
carotene in the aguaje oils of different morphotypes varied from
846 to 3,962.65 mg/kg. On the contrary, β-carotene has been
reported as the main carotenoid with a content of ∼295 mg/kg
of oil (Santos et al., 2015) compared with the oil from three
aguaje morphotypes that showed more or less similar contents
(174.43 to 347.11 mg/kg). Other significant carotenoids were
9-cis-β-carotene and 13-cis-β-carotene, whose concentrations
ranged from 447.98 to 1,529.14 mg/kg, and 440.18 to 1,777.84
mg/kg, respectively. The total carotenoid levels in the oils from
three aguaje morphotypes were higher than those reported by
Santos et al. (2015) and Serra et al. (2019). Olive (21.50 mg/kg),
sunflower (6.30 mg/kg), and palm (500–800 mg/kg) (Choudhary
and Grover, 2019) oils had lower total carotenoid contents than
the three aguaje morphotypes.

The total phenolic contents of aguaje oil samples are shown in
Table 3. Statistical differences were found between the samples
(p < 0.05). The oil obtained from morphotype 3 showed
higher content of total polyphenols followed by morphotypes 2
and 1. According to our results, the aguaje oil obtained from
these morphotypes ranged from 153.41 to 328.89 mg/kg and
was much higher than the value (107.0mg GAE/kg) reported
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FIGURE 4 | Heatmap plot of the correlation of the chemical compounds and chromatic parameters of oil from three aguaje morphotypes. The correlation coefficients

are color coded from deep green (−1) to deep red (1).

previously by Speranza et al. (2016). The polyphenol content
of aguaje oil is higher than those of other vegetable oils,
such as palm (31.20 to 70.18 mg/kg), linseed (61.76 to 85.24
mg/kg), and sacha inchi (17.75 to 62.0 mg/kg) (Kaur et al.,
2017; Abdullah et al., 2018; Ramos-Escudero et al., 2021) and is
comparable with that of olive oil (86.90 to 367.60mg/kg) (Ramos-
Escudero et al., 2015). Vegetable oils possess a wide range of
polyphenolic compounds including simple phenols, phenolic
acids, tannins, phenylethanoids, esters of hydroxycinnamic acids,

coumarins and chromans, stilbenes, flavonoids, lignans, and
secoiridoids (Ramos-Escudero et al., 2021; Zeb, 2021). These
antioxidant compounds are present in edible oils providing
several activities (antioxidant, anti-inflammatory, anticancer,
cytoprotective, and hypocholesterolemic). On the other hand,
aguaje oil can become an excellent resource for the enrichment
of vegetable oils and consequently used to improve the oxidative
stability and shelf life due to its content of polyphenols
and carotenoids.
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FIGURE 5 | Hierarchical clustering and heatmap visualization of chemical compounds of oil from three aguaje morphotypes. Heatmap has a color scale from −1.5 to

1.5. The bottom side is represented by the green color (low content), while the upper side is represented by the red color (high content).

Aguaje Oil Color
The results of the chromatic parameters are summarized in
Table 4. The L∗ values of the oils from three aguaje morphotypes
analyzed varied from 44.38 to 62.25U, with morphotype 3 the
one that showed the lowest L∗ values (42.62 to 46.40) compared
with morphotype 2 (53.86 to 57.19) and morphotype 1 (59.17
to 64.87). Analysis of variance showed significant differences (p
< 0.05) among morphotypes. The L∗ value of aguaje oil was
higher than that of crude palm oil (30.57 to 31.05U), while
higher values were observed in virgin olive oil (78.76U), virgin
sunflower oil (83.21U), virgin sacha inchi oil (91 to near 100U),

and refined sunflower oil (83.52U) (Ramos-Escudero et al., 2019;
Corbu et al., 2020). The high L∗ values may be observed in light-
colored oil; this value may decrease due to the vegetable pigments
in the edible oils. The chroma (C∗

ab) values varied from 45.00 to
74.32U.Moreover, it is interesting to point out that theC∗

ab values
were close to the color component (b∗) (47.04 to 67.81U). This
has also been observed in palm oil (C∗

ab = 24.77 to 25.14U; and
b∗ = 20.05 to 21.13U). However, in sacha inchi oil and olive oil,
these values are virtually identical. These differences are probably
due to the higher content of carotenoids in aguaje oil compared
with other vegetable oils (refined palm oil, refined palm olein,
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FIGURE 6 | Ternary classification of the relative content of the chemical components that best characterize the oil from three aguaje morphotypes. Morphotype 1:

24-methylene cholesterol (10), γ-tocopherol (23), δ-tocopherol (24), β-tocotrienol (26), and γ-tocotrienol (27). Morphotype 2: palmitoleic (2), isomer oleic (5),

brassicasterol (9), D7-campesterol (13), and D5,24-stigmastadienol (18). Morphotype 3: α-tocopherol (21), δ-tocotrienol (28), all-trans-β-carotene (31),

9-cis-β-carotene (32), 13-cis-β-carotene (33).

refined palm stearin, olive oil, and sacha inchi oil) (Almeida et al.,
2019; Ramos-Escudero et al., 2019). Regarding the a∗ chromatic
coordinate, it was observed that the aguaje oil samples showed the
following order: morphotype 1 (18.10 to 26.94U), morphotype 2
(27.15 to 34.40U), and morphotype 3 (42.61 to 51.35U). Taking
into consideration the three morphotypes, the coordinate a∗

showed an average of 33.60U. Some vegetable oils that show
positive values are crude palm oil, corn oil, and crude soybean oil,
while oils with negative values include sunflower, olive, canola,
grapeseed, sacha inchi, and refined oils (Almeida et al., 2019;
Ramos-Escudero et al., 2019). Giacomelli et al. (2006) have
reported that more positive a∗ values are related to yellowish,
orange, and reddish colors. These colors are related to the content
of carotenoids since in aguaje oil, the absorption of light occurs
between 400 and 500 nm. The oil obtained from morphotype 3
shows higher absorbance than morphotype 2 and morphotype
1 (Figure 3). The hab readings obtained in the oil from three
aguaje morphotypes varied from 62.54◦ to 72.96◦. These results

are higher when compared with crude palm oil, which ranged
from 54.03◦ to 57.19◦ (Almeida et al., 2019). The observed hab
values in the aguaje oils correspond to a visual orange tone, while
the values that fluctuate between 20 to 40 correspond to a visual
red color.

Correlations
As Figure 4 shows, the value of L∗ shows a high correlation
(r > 0.7) with b∗ and C∗

ab, while little if any correlation
is observed with a∗ and hab. In addition, the values of a∗

and hab showed a low correlation (r = −0.5 to 0.5) for all
variables. These results agree with Abdelaali et al. (2018) that
reported low correlations (a∗ values) with phytoene, lycopene, β-
cryptoxanthin, zeaxanthin, antheraxanthin, (all-E) -violaxanthin,
(9Z) -violaxanthin, β-carotene, and lutein (r = −0.287 to
0.156). In this study, the L∗, b∗, and C∗

ab values had a
negative correlation with β-carotene, all-trans-β-carotene, 9-cis-
β-carotene, and 13-cis-β-carotene in the aguaje oil samples. In
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addition, L∗, b∗, and C∗
ab were significantly positively related to

the D7-avenasterol, linoleic, and palmitic (r > 0.8). Interestingly,
the carotenoids, δ-tocotrienol, α-tocopherol, β-tocopherol, D7-
stigmastenol, stigmasterol, campesterol, total phenolics, and oleic
acid showed a high correlation (r > 0.7).

The applied HCA on the datasets (Figure 5) showed two
clusters: cluster 1 consisted of β-carotene, all-trans-β-carotene,
9-cis-β-carotene, 13-cis-β-carotene, total phenolics (TPC), δ-
tocotrienol, α-tocopherol, β-tocopherol, oleic acid, stigmasterol,
D5-avenasterol, D5,24-stigmastadiene, campesterol, beta-
sitosterol, and D7-stigmastenol. Cluster 2 consisted of
palmitoleic, isomer oleic, α-linolenic, stearic, palmitic, linoleic,
chlerosterol, D7-avenasterol, brassicasterol, D7-campesterol,
sitostanol, cholesterol, 24-methylene cholesterol, α-tocotrienol,
β-tocotrienol, γ-tocotrienol, γ-tocopherol, and δ-tocopherol.
These results show that the analytes with the highest abundance
for each chemical compound are grouped in cluster 1, while
those with the lowest relative abundance are listed in cluster 2.
Besides, morphotype 1 and morphotype 2 are closely clustered,
compared with morphotype 3, which is markedly separated.

Ternary phase diagram for morphotypes 1, 2, and 3 are
presented in Figure 6. In general, morphotype 1 oil exhibited a
higher mean value for 24-methylene cholesterol, γ-tocopherol,
δ-tocopherol, β-tocotrienol, and γ-tocotrienol. In addition, a
higher concentration of palmitoleic, isomer oleic, brassicasterol,
D7-campesterol, and D5,24-stigmastadienol were observed in
morphotype 2 oil. Furthermore, it was observed that the
morphotype 3 oil presented a higher content of α-tocopherol,
δ-tocotrienol, all-trans-β-carotene, 9-cis-β-carotene, and 13-cis-
β-carotene.

CONCLUSIONS

This study provides an analysis of the chemical composition
and chromatic properties of oil from three aguaje morphotypes
(Mauritia flexuosa L.f.) extracted by supercritical carbon dioxide.
The results show important differences between morphotypes
in relation to their chemical composition and CIELAB color
parameters. The most relevant chemical components in aguaje
oils (different morphotypes) were palmitoleic and w7 oleic

acids, brassicasterol, 24-methylene cholesterol, campesterol,
stigmasterol, D7-campesterol, D5,24-stigmastadienol,

α-tocopherol, γ-tocopherol, δ-tocopherol, β-tocotrienol, γ-
tocotrienol, δ-tocotrienol, all-trans-β-carotene, 9-cis-β-carotene,
and 13-cis-β-carotene. The oil obtained from morphotype 3
presented higher content of carotenoids, polyphenols, oleic acid,
β-sitosterol, campesterol, and stigmasterol, while morphotype 2
and morphotype 1 showed close similarity. The oils from three
aguaje morphotypes provide an excellent source of bioactive
components, especially carotenoids that can be used in the
cosmetic, pharmaceutical, and food industries. In addition, it can
be used as a replacement to improve the shelf stability of highly
polyunsaturated oils due to its high concentration of oleic acid
and considerable natural antioxidant content.
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