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Climate-smart agriculture (CSA) is increasingly becoming important as a sustainable way

of increasing agricultural productivity and increasing the resilience of farming systems

to climate variability. Moreover, crop diversification strategy plays a vital role in creating

resilience against climate-related risks in farm production and enhancing resilience in

food systems. While crop diversification intensity acts as a proxy indication of climate

risk mitigation strategy, its successful implementation as a climate-smart agricultural

practice depends on the ability of the smallholder farmers to allocate the available farm

resources efficiently. The study evaluated the effect of crop diversification on variable

cost structure (land, labor, capital, fertilizer, and seeds) among smallholder farmers in

Western Kenya.We use primary data from 267 randomly selected respondents and apply

a translog cost function model to explore the effect of implementing crop diversification

strategy on variable cost structure among smallholder farmers. The results showed

that indeed practicing crop diversification affects the overall production cost structure.

The result showed that the Allen elasticity of substitution (AES) of all combinations of

inputs (land and capital, land and fertilizer, land and labor, fertilizer and capital, fertilizer

and labor, fertilizer and capital) are positive. These relationships imply that land, labor,

fertilizer, and capital substitute each other in crop production. The Morishima elasticities

of factor substitution (MES) reveal that the highest degree of substitutability in response

to price changes is between capital and fertilizer, land and fertilizer, and labor and

fertilizer, implying the intensive nature of crop diversity in terms of land, labor and capital

requirements. These findings demonstrate that despite the potential benefits of crop

diversification, the trade-off in the total cost of production does matter. Non-accounting

for such trade-offs is likely to over-estimate crop diversification benefits and limit its

successful practice by smallholder farmers.

Keywords: crop diversification, cost structure, climate-smart, resilience, translog cost function

INTRODUCTION

Agricultural diversification involves allocations of production resources to a wide range of
economic activities. Shahbaz et al. (2017) argued that crop diversification is one of the cost-
effective risk management strategies to mitigate the uncertainties at the farm level since it affects
smallholder farmers’ efficiency and economic returns. However, practicing crop diversification
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entails competition for resources among various crops produced
by the farmer that can ultimately positively or negatively affect
farm efficiency. Previous studies on crop diversification and
technical and allocative efficiency (Haji, 2007; Rahman, 2009;
Nandan et al., 2013; Shahbaz et al., 2017; Mzyece et al., 2018)
have shown contrasting results indicating that the effect of crop
diversification on farm efficiency and economic returns may be
country- as well as region-specific.Moreover,Mzyece et al. (2018)
results revealed that 1 unit of increase in crop diversification
index increases the technical efficiency 0.48 units while a 1-
unit increase in crop diversification index reduces variability in
income by 0.007 and 0.792 units.

The policy discussion on crop diversification as a climate-
smart agricultural practice in the recent past had been a point of
interest in the field of agriculture and climate change. In 2019,
through the World Bank, the Kenyan government launched a
project dubbed the Kenya Climate Smart Agriculture project
(KCSA-Project) to improve the agricultural productivity of
smallholder farmers through the production of climate-smart
crops such as cassava, millet, sorghum, and sweet potato. Despite
its main advantage of improving food security and resilience
for farmers in the face of climate variability, practicing crop
diversification comes with an additional cost of production
compared to the mono-cropping farming system (Nandan et al.,
2013).

The choice of crop diversification as one of the climate-smart
agricultural practices to study was motivated by the growing
interest among scientists, policymakers, inter-community
development agencies, as well as national government to
understand the trade-offs around this practice with resource
allocation efficiency and technical efficiency (Ogundari, 2013;
Ahmadzai, 2017; Khanal and Mishra, 2017; Mzyece et al.,
2018). Previous studies (Di Falco, 2014; Teklewold et al., 2018)
reported that adopting agricultural technologies like crop
diversification could increase farm revenue and food security
among smallholder farmers. Mulwa and Visser (2020) found
that a 1-unit increase in crop diversification increases household
dietary diversity score (HDDS) by 0.7 points, while it increases
monthly per capita expenditure by approximately N$78 in
Namibia. However, it can also create trade-offs between farm
inputs such as increased demand for labor, agrochemicals, seeds,
and other farm inputs. The result implies that the efforts aiming
at promoting crop diversification as a climate-smart agricultural
technique should evenly center on ways to minimize its effect on
the cost of production.

Although crop diversification plays a vital role in improving
food security, income generation, increasing soil fertility, and
risk management tool against weather variability, smallholder
farmers still face many challenges in producing food in a
sustainable and diversified farming system (Teklewold et al.,
2013). Possible explanations could be attributed to the lack
of farm inputs, high input price, frequent pest and disease
outbreaks, and climate variability risks and shocks resulting
in higher cost of production. Successful implementation of
CSA strategies such as crop diversification in rural developing
countries like Kenya requires a proper understanding of trade-
offs and their effect on production cost. Crop diversification

index was used to measure the extent of crop diversification
among smallholder farmers. In measuring the extent of crop
diversification, Simpson’s Index of diversification (SID) was
used. Simpson’s index of diversity (SID) was preferred to the
Herfindahl index (HI) and Ogive index (OI). This is because SID
is an area-based index and measures horizontal diversification
in terms of its being proportionate in computation, and it
works well when estimating crop diversification. Both HI
and OI were found unsuitable for this study since these
indices measure diversification in terms of revenue; hence,
they are suitable for estimating diversification among livestock
and integrated crop-livestock system (Asante et al., 2018).
Therefore, this study investigated the trade-offs associated with
crop diversification by particularly looking at its effect on
the variable cost structure of smallholder farmers in Kisumu
County, Kenya. Estimating the effect of crop diversification
on variable cost structure could provide critical insights on
the decision-making process in resource allocation faced by
smallholder farmers.

Furthermore, a better understanding of the role of crop
diversification on farm efficiency and resource allocation can also
inform policy interventions for practicing crop diversification as
part of climate-smart agricultural practice among smallholder
farmers. The rest of the paper is organized as follows: in the next
section, we present the methodology used to get data and the
analytical techniques. In section three we present and discuss the
study results, and finally in Section four, we make conclusions
and draw implications from the study results.

MATERIALS AND METHODS

Study Area
The study was conducted in five wards (West Kisumu, Central
Kisumu, Kisumu North, North West Kisumu, and South West
Kisumu) across Kisumu West Sub County in Kisumu County
(Figure 1). The sub-county has a total area of 212.90 km2

with a population of 131,246 people (Kenya National Bureau
of Statistics, 2010). The sub-county has a bimodal type of
rainfall pattern of long and short rains. The Sub-county lies
between longitude 34◦ 44′ and 34◦ 54′ East and Latitude 0◦

05′ and 0◦ 14′ North. The annual precipitation ranges between
1,200 and 1,300mm in different sectors (County Government
of Kisumu, 2015). The major crops grown in the region are
maize, beans, sweet potato, sorghum, and cassava under rain-
fed agriculture.

Data Sources and Sampling
The study was based on a cross-sectional research design
whereby primary data were collected using a structured
questionnaire comprising both open and closed-ended questions.
Following Anderson et al. (2007), a sample of 267 respondents
was randomly selected from all five wards to ensure even
representation of all farmers in the study area. The sample size
was distributed proportionately to the number of households per
ward in KisumuWest Sub-County, as presented in Table 1.
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FIGURE 1 | Map of the study area.

TABLE 1 | Proportionate sample size distribution per ward in the study area.

Wards No. of farm households Proportion (%) Sample size

South West Kisumu 4,901 17.21 46

Central Kisumu 8,525 29.95 80

Kisumu North 5,248 18.43 50

West Kisumu 4,904 17.22 46

North West Kisumu 4,896 17.19 45

Total 28,474 100.00 267

Methods
Translog cost function model was used to estimate the effect
of crop diversification on the variable cost structure. The cost
function was estimated jointly with the cost shares functions
using seemingly unrelated analysis. The variable input factors
used in the analysis are land, labor, capital, and fertilizer.
Consider a farmer whose objective is to produce output (Y) using
different combinations of inputs (X) and crop diversification
adaptation strategy (Z). Let w be a vector of input prices; is the
input price for= 1. . . n inputs. Themodel is chosen because of its

overall flexibility and limited a priori restriction on substitution
possibilities and scale economies (Obare et al., 2003). The cost
function in a translog form can be written as:

ln C(w,Y ,Z) = α0 +
∑

i

αi lnwi +
∑

i

βi lnYi

+ 0.5
∑

i

∑

j

γij lnwi lnwj

+ 0.5
∑

i

∑

j

δij lnYi lnYj +
∑

i

∑

j

φij lnwi lnYj

+
∑

i

ϕiZi + µ (1)

Labor (L), Fertilizer (F), Land (A), Capital (K), and Seeds (S)
where C is the total cost of production; α0,βi, γij, δij,φi, and ϕi

are unknown parameters to be estimated such that γij = γji
and δij = δji (a direct consequence of minimization behavior of
producers); wi is the factor price, Zi is the crop diversification
index, Y is the physical output, and µ is the random error term.
The cost function is linearly homogeneous and non-decreasing
in w. Satisfying the homogeneity condition requires that:

∑

αi =

1,
∑

γij = 0 and φij = 0, while the requirement of the
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TABLE 2 | Description of model variables for effect of crop diversification on

variable cost structure.

Variable Definition of variables and its measurements

Dependent variable

C Total production cost (KES)

SF Fertilizer cost share

SL Labor cost share

SA Land cost share

SC Capital cost share

Explanatory variables

Y Total output (kg)

Z Crop diversification index

PLabor (wL ) Wage rate (man-days/acre)

PFert (wF) Price of fertilizer (KES/kg)

PSeed (wS) Price of seed (KES/kg)

PLand (wA) Price of Land (Rental price-KES/acre)

PCapital (wK) Price of Capital (Rental Price-KES/acre)

Qmaize Quantity of maize (kg)

Qsorghum Quantity of sorghum (kg)

Qcassava Quantity of cassava (kg)

Qsweet potato Quantity of sweet potato (kg)

TABLE 3 | Summary statistics of key variables used in translog cost function

model.

Variable Mean

Size of land owned by the farmer in acres 1.71

Crop diversification index 0.42

Total cost of production in KES 22753.77

Quantity of maize in kg/acre 567.15

Quantity of sorghum in kg/acre 99.33

Quantity of cassava in kg/acre 1690.46

Quantity of sweet potato in kg/acre 270.22

homothetic condition is that
∑

βiY = 0. The translog cost
function is flexible because specific features of technology such as
returns to scale may be tested by examining the estimated model
parameters (Obare et al., 2003; Kumbhakar et al., 2015; Shikuku
et al., 2015).

Differentiating Equation (1) with respect to input prices yields
Shephard’s lemma

∂ lnC

∂ lnwi
=

wixi

Ci
= Si, i = L, F, A, K, S (2)

where Si is the cost share of the ith input factor. As a result, the
translog cost function yields a cost share equation as follows:

Si = αi +
∑

i

γij lnwi +
∑

j

φij lnYi +
∑

ϕiZi (3)

Allen partial elasticities of substitution (AES) between inputs
i and j were derived from the cost function as σij =
(

γij + Si.Sj
)

/Si.Sj, and σii =
(

γii + S2i − Si
)

/S2i . Following Obare
et al. (2003) and Shikuku et al. (2015), the respective own and

cross price elasticities of demand for individual inputs were
calculated as ηii = Si.σii and ηij = Sj.σij, respectively, where
σii and σij are the own and cross-price elasticity of demand,
respectively. Furthermore, Morishima elasticities of substitution
(MES) were also computed because AES do not indicate the
curvature ease of substitution as MES which also preserve the
significant features of the Hicksian concept in the multifactor
situation (Obare et al., 2003). MES also provides sufficient
statistics for assessing the effect of changes in the price or quantity
ratios on relative factor shares. The MES between factors i and j
and vice versa, respectively, are determined as Mij = ηij − ηii
and Mji = ηij − ηjj. The cost elasticity with respect to crop
diversification (κCZ) is computed as:

κCZ = ∂ ln(C,Y ,Z)

=
∑

i=1

γi lnwi + ϕYZ lnY + ψZ (4)

where κCZ measures the productivity effect of crop
diversification via adjustment in factor demand. The factor
adjustment effect is measured by the elasticity of factor shares
with respect to crop diversification that is ∂Si/∂ lnZ, which
is equivalent to the parameter γiZ of the cost share function.
Therefore, the elasticity demand for inputs with respect to crop
diversification is given as

κiZ =
∂(ln xi)

∂ lnZ
=
γiZ

Si
+ κCZ (5)

for all i; i 6= j.
The value of κiZ obtained in Equation (5) can be positive

or negative depending on whether crop diversification practice
results into increased or decreased demand for the ith input in
crop production.

In order to assess the effect of crop diversification on demand
for land, labor, fertilizer, and capital, Equations (1) and (3) were
jointly estimated using a seemingly unrelated regression model
(SUR). Four outputs were considered: maize, sorghum, cassava,
and sweet potato, while the price of seed input was used to
normalize all the input prices and the total cost of production,
that is, the prices were expressed as relative to maintain linear
homogeneity of the cost function. The analysis focused on five
variable inputs: land, labor, fertilizer, capital, and seeds. However,
to satisfy the adding up condition and maintain the linear
homogeneity, the seeds share equation was dropped, and only n-
1 equations were linearly independent due to the homogeneity
restriction imposed in the model.

The following independent variables were included in the
cost-share functions: Labor price (lnwL), Fertilizer price (lnwF),
Land price (lnwA), Capital price (lnwK); quantity of maize
(lnQmz), the quantity of cassava (lnQCsv), the quantity of
sorghum (lnQsgm), and quantity of sweet potato (lnQswpt). All
prices and quantities are expressed in natural logarithms. The
crop diversification index (SID) was included in the model to
capture the effect of crop diversification on the cost shares.
Moreover, the cost function also included the interaction between
input prices (e.g. lnwL x lnwF), output quantities (e.g. lnQmz x

Frontiers in Sustainable Food Systems | www.frontiersin.org 4 March 2022 | Volume 6 | Article 842987

https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org
https://www.frontiersin.org/journals/sustainable-food-systems#articles


Awiti et al. Cost Structure of Climate-Smart Crop Diversification

lnQsgm), as well as the input prices and output quantities (e.g.
lnQmz x lnwL). The outcome variables were defined as follows:

• Labcostshare is the cost of labor divided by the total cost
of production.

• Fertcostshare is the cost of fertilizer divided by the total cost
of production.

• Landcostshare is the cost of land divided by the total cost
of production.

• Capitalcostshare is the cost of capital divided by production.

The outcome variable in the cost function is lncost, and it is
the total cost of producing maize, sorghum, cassava, and sweet
potato, and it is expressed in the natural log form.

Description of Variables Used in the
Econometric Analysis
In Table 2, the effect of crop diversification on the cost structure
variables are presented and subsequently, the postulated casual
relationship discussed.

Input Prices
Variable costs are essential factors to consider when making farm
decisions. Input prices such as land, labor, capital, seeds, and
fertilizer are vital factors in practicing crop diversification. It was
hypothesized that high input prices negatively influence farm
diversification due to high capital requirements.

Crop Diversification Index
This variable shows the extent of crop diversification among the
smallholder farmers. It was captured in the model to indicate
the effect of practicing crop diversification on the variable cost
of production. The study postulated that the larger the extent of
crop diversification, the higher the cost of production.

The Total Cost of Production
The variable was included in the translog cost function as a
dependent variable. However, it was expected to be influenced
by the decision to diversify crop production. The study also
postulated that it would affect the variable cost structure of
the farm household since crop diversification practice requires
additional capital investment.

Labor Cost-Share
This variable was used as the dependent variable in the labor cost
share equation. It shows the total cost of labor share in the total
cost of production.

Fertilizer Cost-Share
This variable was used as the dependent variable in the fertilizer
cost-share equation. It shows the total cost of fertilizer share in
the total cost of production.

Land Cost-Share
This variable was used as the dependent variable in the land cost-
share equation. It shows the total cost of a land share in the total
cost of production.

Capital Cost-Share
This variable was used as the dependent variable in the capital
cost-share equation. It shows the total cost of a capital share in
the total cost of production.

Quantity Produced
This variable was used as a dependent variable in this study’s
translog cost function model. It was used as the amount of output
per crop.

RESULTS AND DISCUSSION

Descriptive Results
The descriptive statistics of the variables used in this study are
presented in Table 3.

The results in Table 3 show that the average farm size among
the respondents interviewed is 1.71 acres. The results show
that most of the farm households hold small pieces of land.
However, Rahman (2009) and Amare et al. (2018) reported
that successful practice of crop diversification requires more
land. The Simpsons’ index value of crop diversification on
average is 0.42, indicating that the level of crop diversification
through the production of climate-smart crops is still low among
smallholder farmers in the study area. Asante et al. (2018)
reported that a crop diversification index above 0.5 shows
that the farmers are relatively doing well in terms of crop
diversity. On average, farmers incurred about 22,753/= as total
production while the average maize production per acre was
567.15 kg. Most of the farmers attributed this low productivity
to variation in weather patterns and pest and disease incidences.
The production of climate-smart crops such as sorghum, cassava,
and sweet potato is still low, with average yields of 99, 1,690,
and 270 kg per acre. The low production can be attributed to
inadequate land to produce the crops in large quantities in
addition to a low adoption rate. Additionally, most smallholder
farmers mainly farm cassava, sweet potato, and sorghum for
subsistence purposes.

Empirical Results
To meet the price homogeneity condition of the translog
cost function model, seed prize was used to normalize the
total cost of production, land, labor, fertilizer, and capital
prices. The F-statistic (Prob > F = 0.000) was highly
significant at a 1% significance level, showing that the model
satisfies the price homogeneity conditions by construction. All
the constraints (homotheticity, symmetry, non-negativity, and
concavity) imposed were satisfied.

The results showed that the coefficient of crop
diversification index is significant in the cost
function and labor cost share function. The estimated
parameters of the homogeneous cost functions using
seemingly unrelated regression analysis are presented
in Table 4.

The results show that six out of nine coefficients (labor
price, capital price, land price, maize quantity, cassava quantity,
and crop diversification) significantly influences the labor cost
share function at p ≤ 0.05. Five out of nine coefficients
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TABLE 4 | Results of the seemingly unrelated regression model for demand estimation.

Variable Total cost of production Labor cost share Fertilizer cost share Land cost share Capital cost share

Labor price 1.1627(0.000)*** 0.2243 (0.010)** 0.0008 (0.991) −0.1196 (0.000)*** −0.0791 (0.000)***

Fertilizer price −0.3875 (0.001)*** 0.0007 (0.991) −0.1199 (0.071)* 0.0678 (0.002)** 0.0457 (0.002)**

Capital price 0.0531 (0.302) −0.0791 (0.000)*** 0.0457 (0.002)** −0.320 (0.001)*** 0.0710 (0.000)***

Land price 0.0144(0.832) −0.1196 (0.000)*** 0.0678 (0.002)** 0.0930 (0.000)*** −0.0320 (0.001)***

Labor price*Labor price 0.2243 (0.010)** - -

Fertilizer price*Fertilizer price −0.1199 (0.071)* - -

Capital price*Capital price −0.0710 (0.000)*** - -

Land price*Land price 0.0929 (0.000)*** - -

Labor price*Fertilizer price 0.0007 (0.991) - -

Labor price*Capital price −0.0791 (0.000)*** - -

Labor price*Land price −0.1196 (0.000)*** - -

Fertilizer price*Capital price 0.0457 (0.0002)** - -

Fertilizer price*Land price 0.0678 (0.002)** - -

Capital price*Land price −0.0320 (0.001)*** - -

Maize quantity 0.3081 (0.179) −0.3560 (0.000)*** 0.0252 (0.000)*** 0.0100 (0.016)** 0.070 (0.009)*

Sorghum quantity 0.4114 (0.088)* −0.0008 (00.900) −0.0038 (0.471) 0.0035 (0.293) 0.0009 (0.677)

Cassava quantity 0.1709 (0.655) 0.0126 (0.064)* −0.0048 (0.407) −0.0047 (0.180) −0.0027 (0.241)

Sweet potato quantity 0.0489 (0.685) −0.0015 (0.818) 0.0026 (0.657) 0.0003 (0.934) −0.0009 (0.672)

Maize quantity* Maize quantity 0.1933 (0.000)*** - - - -

Sorghum quantity*Sorghum quantity 0.1185 (0.005)** - - - -

Cassava quantity* Cassava quantity −0.0021 (0.968) - - - -

Sweet potato quantity* Sweet potato quantity 0.0450 (0.328) - - - -

Maize quantity* Labor price −0.0358 (0.000)*** - - - -

Sorghum quantity* Labor price −0.0007 (0.900) - - - -

Cassava quantity* Labor price 0.0126 (0.064)* - - - -

Sweet potato quantity* Labor price −0.0015 (0.818) - - - -

Maize quantity* Fertilizer price 0.0252 (0.000)*** - - - -

Sorghum quantity* Fertilizer price −0.0038 (0.471) - - - -

Cassava quantity* Fertilizer price −0.0048 (0.407) - - - -

Sweet potato quantity* Fertilizer price 0.0026 (0.637) - - - -

Maize quantity* Capital price 0.0070 (0.009)* - - - -

Sorghum quantity* Capital price _ - - - -

Cassava quantity* Capital price _ - - - -

Sweet potato quantity* Capital price _ - - - -

Maize quantity* Land price 0.0100 (0.016)** - - - -

Sorghum quantity* Land price 0.0035 (0.293) - - - -

Cassava quantity* Land price −0.0047 (0.180) - - - -

Sweet potato quantity* Land price −0.0003 (0.934) - - - -

Maize quantity* Sorghum Quantity −0.2631 (0.000)*** - - - -

Maize quantity* Cassava Quantity −0.0795 (0.182) - - - -

Maize quantity* Sweet potato Quantity −0.1295 (0.013)** - - – -

Sorghum quantity* Cassava Quantity −0.0017 (0.960) - - - -

Sorghum quantity* Sweet potato quantity −0.0175 (0.650) - - - -

Cassava quantity* Sweet potato quantity 0.0533 (0.123) - - - -

Crop diversification 0.9484 (0.000)*** 0.0806 (0.015)** −0.0125 (0.658) −0.0157 (0.372) −0.0048 (0.674)

Constant −0.3312(0.809) 1.1628 (0.000)*** −0.3875 (0.001)*** 0.0144 (0.832) 0.0531 (0.302)

The figures in parenthesis () are p-values.

*Significant at p < 0.10.

**Significant at p < 0.05.

***Significant at p < 0.01.
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TABLE 5 | Allen’s partial elasticity of substitution (Mean values).

Variable Labor Fertilizer Land Capital

Labor −0.02 16.84 9.75 15.97

Fertilizer 16.84 −0.13 74.15 113.66

Land 9.75 74.15 −0.23 69.14

Capital 15.97 113.66 69.14 −0.16

Source: Authors’ calculation.

TABLE 6 | Morishima price elasticities of factor substitution.

Variable Labor Fertilizer Land Capital

Labor 0 10.29 5.97 9.76

Fertilizer 1.77 0 7.36 11.21

Land 1.67 11.21 0 10.47

Capital 1.67 10.91 6.70 0

Source: Authors’ calculation.

TABLE 7 | Derived price elasticities of demand for inputs.

Variable Labor Fertilizer Land Capital

Labor −0.02 10.26 5.94 9.73

Fertilizer 1.64 −0.13 7.23 11.08

Land 1.44 10.98 −0.23 10.24

Capital 1.51 10.75 6.54 −0.16

Source: Authors’ calculation.

(labor price, capital price, land price, capital price, and maize
quantity) significantly influence the land cost share and capital
cost share function at p ≤ 0.05. Furthermore, the crop
diversification effect coefficient on production cost (0.0806, p
≤ 0.05) significantly influences the labor cost share function
only. A possible explanation is that more labor is required
in a diversified farming system, hence crop diversification’s
effect on production costs. Similarly, Chhatre et al. (2016)
found that including horticultural crops in crop portfolios
among smallholder farmers increases both labor and capital
requirement resulting in increased cost of production in
India.

The elasticities of substitution were calculated at mean
levels of input shares because of the variation in input
share levels. Allen elasticities of substitution are shown
in Table 5.

The AES between all combinations of inputs [Labor and
Fertilizer (16.84), Labor and Land (9.75), Labor and Capital
(15.97), Land and Fertilizer (74.15), Fertilizer and Capital
(113.66), and Capital and Land (69.14)] are all positive as
postulated. The result suggests that labor, land, fertilizer, and
capital substitute each other in crop production.

The Morishima elasticities of factor substitution (MES) are
presented in Table 6.

TABLE 8 | Factor demand elasticities with respect to crop diversification.

Variable Elasticity

Labor 11.89

Fertilizer −76.61

Land −60.51

Capital −197.63

Source: Authors’ calculation.

The study findings reveal that the highest degree of
substitutability is in response to price changes between fertilizer
and capital (11.21), land and fertilizer (11.21), and labor and
fertilizer (10.29). The study results imply that an increase in
a unit price of land, labor, capital, and fertilizer results into
substitution between these inputs. Moreover, the substitution
effect varies across individual farm households which practice
crop diversification at different levels with different crop mix
portfolios. The MES of Labor by land (5.97) is higher than
the MES of Land by labor (1.67), which confirms that to
improve the extent of crop diversification, as a climate-smart
agricultural practice among smallholder farmers, more land is
needed (Rahman, 2009). This study finding corroborates the
results of Amare et al. (2018) who found that the probability of
practicing crop diversification through production of climate-
smart crops increases with an increase in farm size. More land
is required to enable smallholder farmers to produce crops such
as cassava and sweet potatoes on different portions to improve
productivity. This is because these crops cannot be intercropped
with other crops. Besides, additional land will require more labor;
Branca et al. (2021) found that high investment costs mainly
hinder smallholder farmers’ practice of climate-smart agriculture,
more so labor due to increase on-farm workforce requirements.

Furthermore, Senyolo et al. (2018) argue that the requirement
of more labor and the initial cost of investment coupled
with the intensity of management associated with CSA may
reduce the likelihood of smallholder farmers adopting these
practices as a mitigation strategy for climate variability. To
improve the uptake and upscale practice of CSA, Branca et al.
(2021) suggested that investment programs for climate-smart
agriculture should encourage youth participation in agriculture.
Moreover, the MES of Land by Fertilizer (11.21) is higher than
that of Fertilizer by Land (7.36) due to production of maize
crop all season round in the study area that have resulted in soil
fertility depletion.

The derived price elasticities of factor demand are shown in
Table 7.

The results show that own-price elasticity labor (−0.02),
fertilizer (−0.13), land (−0.23), and capital (−0.16) are
negative while cross-price elasticity Labor-fertilizer (10.26),
Labor-Land (5.94), Labor-Capital (9.73) Fertilizer-Labor (1.64),
Fertilizer-Land (7.23), Fertilizer-Capital (11.08), Land-Labor
(1.44), Land-Capital (10.24), Land-Fertilizer (10.98), Capital-
Labor (1.51), Capital-Land (6.54), and Capital-Fertilizer (10.75)
are positive as expected and are in line with the economic
theory. The positive cross-price elasticities imply that as the
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extent of crop diversification increases across individual farm
households, the demand for land, labor, capital, and fertilizer
increases proportionately.

Using the estimated parameters of the translog cost model,
the demand elasticity of labor (11.89) was positive while that
of fertilizer (−76.61), land (−60.51), and capital (−197.63) was
negative (Table 8). This result suggests that as a farm household
increases the extent of crop diversification through production
of climate-smart crops (sorghum, cassava, and sweet potato),
the labor demand increases proportionately (i.e., positive value).
This confirms the labor-intensive nature of crop diversification.
Similarly, Zerssa et al. (2021) found that inadequate labor supply,
lack of technical knowhow, and shortage of funds are the major
factors influencing the adoption of climate-smart agricultural
practices, the mitigation strategy to climate variability in
Ethiopia. On the other hand, the demand elasticity of land and
capital were negative implying that as farm households increase
the intensity of crop diversity, the demand for land, capital,
and fertilizer decreases. A possible explanation could be that
due to intercropping of crops such as maize and sorghum, the
demand for land and capital decreases. Furthermore, the demand
elasticity of fertilizer decreases with a unit increase in extent
of crop diversification due to variation in soil type and fertility
level. Moreover, in line with the demand elasticity of fertilizer,
Ogundari (2013) analyzed crop diversification and technical
efficiency in food crop production in Nigeria and found that the
demand elasticity of fertilizer was positive, implying that fertilizer
use is region-specific.

A clear implication of the study findings is that promoting
crop diversification as a climate-smart agricultural practice to
climate risks among smallholder farmers in Western Kenya
results in additional production costs among the resource-
constrained farmers. Therefore, to improve crop diversification
among the farmers, the government and developmental
organizations should improve credit access through low-
interest loans and grants to enhance the financial stability of
the farmers. Similar results were reported by Shikuku et al.
(2015), who argued that increased demand for extra cost
hinders the uptake of CSA practices such as mulching and
crop diversification. Moreover, these findings demonstrate
that despite the potential benefits of crop diversification,
the trade-off in the total cost of production does matter.
Non-accounting for such trade-offs is likely to over-estimate
crop diversification benefits and limit its successful practice
by smallholder farmers. However, the long-term solutions
to improve its practice will call for its practice along with
complementary practices such as minimum or zero tillage to
reduce the increased production cost that comes with the uptake
of crop diversification.

CONCLUSION AND POLICY
IMPLICATIONS

We used cross-sectional data to evaluate smallholder
farmers’ climate-smart crop diversification cost structure

in Western Kenya. The research question was motivated
by the difficulties faced by policymakers in promoting crop
diversification as a climate-smart agricultural practice due
to its effect on the production cost structure. However, the
successful adoption of any CSA practice requires adequate
knowledge and understanding of the trade-off and effect of
each option.

The study result showed that, indeed, practicing crop
diversification as a climate-smart agricultural practice
increases the cost of production due to additional land,
labor, and capital required relative to production of maize
only under mono-cropping farming system. Furthermore,
the study finding implies that farmers who diversified their
farming system by producing all four crops (maize, sorghum,
cassava, and sweet potatoes) need to incur an additional
cost of production. These additional costs of production
involve cost of hiring land, labor costs, fertilizer costs,
and cost of seeds. Although the cost of seed was found to
have little impact on increment of cost of production, due
to climate change, most of the smallholder farmers were
found changing to certified and drought-tolerant maize
varieties compared to local varieties. The additional cost of
production prevents most of the smallholder farmers from
up-scaling the practice of crop diversification as a climate-smart
agricultural practice.

Although crop diversification has the potential of
improving resiliency in food systems, its effect on cost
of production needs to be weighed against its potential
benefits. Therefore, ignoring such trade-offs in implementing
crop diversification might not only overestimate its
benefits as climate-smart strategy but can also limit its
successful adoption and up-scaling among the resource-
constrained smallholder farmers. Based on the study
results, a clear policy implication is that there is need
for the Kenyan government to divert more agricultural

resources in promoting crop diversification as climate-
smart agricultural practice for reduced climate variability

effect and improved resilience in agri-food systems among

smallholder farmers. Moreover, policymakers should consider

formulating policies that reduce farmers’ financial burdens
in implementing crop diversification adaptation strategy.
Therefore, policies aimed at increasing farmers’ financial

liquidity level are highly recommended to cater for the increased
production cost.

Finally, any efforts aiming to promote a wide-scale
practice of crop diversification should equally focus
on ways to minimize its effect on the total cost of
production. Therefore, farm households practicing crop
diversification should consider choosing crop mix combinations
that reduce the total cost of production and effect of
climate risks. Moreover, policies should also address
labor constraints associated with crop diversification; for
example, participation in groups to increase social capital
and boost collective action among smallholder farmers
is recommended.
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