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Editorial on the Research Topic

Greenhouse Gas Emissions Mitigation From Agricultural and Horticultural Systems

Global geopolitics were harmonized at COP26 when more than 150 countries pledged to the
Glasgow Climate Pact, resulting in unified aspirations to constrain global average temperature rise
to 1.5◦C and well below 2◦C by 2050 (UNFCCC, 2021). Achievement of this goal demands urgent,
deep and sustained reductions in global greenhouse gas (GHG) emissions, with threshold targets
of 45% by 2030 (relative to 2010) and net zero by mid-century (UNFCCC, 2021). With agriculture,
forestry and other land use (AFOLU) contributing 24% of global GHG emissions each year, AFOLU
represents the second largest contributor to global GHG emissions after the energy sector (IPCC,
2014).

Predominant GHG emissions from agri-food systems include methane (CH4), nitrous oxide
(N2O), and carbon dioxide (CO2) from livestock, savanna and crop residue burning, soil
respiration and cultivation, fertilizer and lime application, burning of electricity and fuel (Harrison
et al., 2016). Direct GHG emissions are generated from livestock enteric fermentation (48%)
and excreta (22%), crop production systems with nitrogen (N) fertilizers (10%), and rice paddy
cultivation (11.5%) (FAO, 2021). The magnitude of global AFOLU GHG emissions suggests that
the development of skills, practices, and technologies for GHG emissions mitigation must be
foremost priorities when proposing any systemic or transformational innovation for adaptation
to the climate crisis (Ho et al., 2014; Alcock et al., 2015; Chang-Fung-Martel et al., 2017). The
diversity of processes and GHGs per se from AFOLU does however provide significant latitude for
GHG mitigation through manifold avenues, including carbon dioxide removal (CDR), enhanced
reduction, avoidance, and/or displacement (Smith et al., 2008).

This Research Topic documents scientific advances in measurement protocols for field or
greenhouse gas experimentation, together with improved modeling that allows upscaling and
extrapolation of field measurements. Three papers focus on milk production in dairy systems
(housed or grazing), five papers examine plant production systems, and one paper reviews the
literature, synthesizing opportunities for strategic GHG emissions mitigation in grazing systems.
For example, Häfner et al. fastidiously distinguish between organic-N and ammonium-N as
potential N sources for denitrification in the field, while Prangbang et al. measure and model
the regional applicability of alternate wetting and drying (AWD) of rice paddies as prospective
pathways for methane mitigation. Sokolov et al. quantify the effects caused by acidifying manure
inoculum on the CH4, N2O, and ammonia (NH3) emissions from stored dairy manure by targeting
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Methyl Coenzyme M Reductase A genes, as well as bacterial
abundance using real-time qPCR. Finally, March et al. compute
the carbon footprints of milk production systems using Life
Cycle Assessments (LCA). They demonstrate the importance of
allocation method, livestock genetics and management in the
attribution of GHG emissions. The same authors also examined
the effects of nutritional quality on the carbon footprint of
novel and conventional dairy systems. Differential allocation
methods resulted in GHG emissions ranging from 0.95 to
3.79 kg CO2e/kg fat and protein corrected milk, indicating the
importance of quantifying footprints using multiple metrics,
similar to work shown for cattle and sheep production systems
elsewhere (Harrison et al., 2014; Alcock et al., 2015).

Durango Morales et al. demonstrate a clear need for
development of site-specific N2O emission factors (EF), as
opposed to the more generic and granular Tier 1 EF used by
the IPCC. They show that EFs can be reduced by decreasing
urine deposits, by limiting N inputs to pastures. More strategic
planning of nitrogenous fertilizer type (urea, green urea, slow
release etc.), timing, rate and placement shown in other dairy
studies (Christie et al., 2018, 2020) has similarly shown that
improved use of N fertilizer reduces urea N in the milk.

Emissions of CH4, N2O, and NH3 from liquid manure
storages can be substantially reduced (>70%) by acidifying
manure, however this usually comes with high financial costs
(Sommer et al., 2017). Sokolov et al. propose acidification of
only manure inoculum. To determine the feasibility of this idea,
they elicit functional mechanisms by measuring methanogenic
activity and abundance using Methyl Coenzyme M Reductase A
(mcrA), a gene and transcript which encodes a subunit of the key
enzyme that catalyzes the final step of methanogenesis. Sokolov
et al. (2020) also used quantitative real-time PCR to quantify
bacterial abundance using the 16S rRNA gene. They found that
the 38–77% mitigation of CH4 was caused by disruption of
the mcrA gene and transcript abundance, while NH3 and N2O
emissions were reduced by 33–73% by acidyfing inoculum. The
authors concluded that future studies should test lower acid rates
and less frequent acidification to further lower financial costs in
commercial settings.

In a review of CH4 and N2O emissions from animal manure,
Rivera and Chará converse that emissions depend on multiple
factors and are highly variable, implying that “one size fits
all” solutions are problematic at best, similar to observations
by Durango Morales et al. Rivera and Chará found that
promising options for reducing emissions from livestock manure
include manipulation of livestock diet nutritional quality,
[where practical] implementation of silvopastoral systems, use
of nitrogen fixing plants, and management approaches for
improving soil health, carbon storage and seasonal ground cover.

It is well-known that synthetic nitrogenous fertilizers in
intensive agricultural and horticultural production systems are
a key source of GHG emissions (Christie et al., 2018, 2020).
Of the studies we are aware of, Karlowsky et al. is the first to
measure howN fertilizers impact N2O in hydroponic greenhouse
production. They showed that N2O emissions from tomato and
cucumber account for 2.3 and 1.5 kg ha−1 yr−1, respectively,
lower than previously measured in laboratory experiments
(Daum and Schenk, 1996). Kitamura et al. show that organic

fertilizers (viz. manure and digestive fluid) had both positive
effects on soil carbon stocks and caused greater reduction in
N2O relative to synthetic N fertilizer. By using organic fertilizers
from legume-based crops grown for green N and incorporating
the material into the soil, Singh et al. report that (i) post-
cultivation N2O emissions can be greater from non-legume green
N crops compared with legume green N crops due to greater
biomass productivity of the former, and (ii) emissions of N2O
could be mitigated by removing biomass of the green N crop
for use as forage. Häfner et al. find that digestate application
mainly resulted in N2O emissions derived from existing soil
N stocks, rather than N applied. Collectively, these findings
suggest that comprehensive consideration of all plant genetic,
environmental and management factors is necessary to help
guide the development of best management practices regarding
fertilizer use.

Water management is another tactical tool allowing reduction
of GHG emissions from irrigated cropping systems. Alternate
wetting and drying (AWD) was proposed by Prangbang et al. as
a management approach that would enable both water savings
and methane mitigation from rice paddy fields. However, future
studies of this type should also examine the implications of trade-
offs and co-benefits associated with GHG mitigation options
(Harrison et al., 2011). Using AWD can result in greater rice
biomass production and this requires greater N fertilization,
ensuing increase in N2O emissions (Christie et al., 2014). Such
N2O increases may well offset any mitigation caused by reduced
CH4 emissions, underscoring the need to holistically explore
multiple GHG emissions in a closed systems, using multiple
metrics (Harrison et al., 2012, 2021).

This Research Topic provides several promising avenues
for sustained—and in some cases, substantial—reduction of
GHG emissions, in line with aspirations posed in the Glasgow
Climate Pact. However, to achieve deep cuts in emissions without
adversely impacting productivity or agricultural economic
prosperity, we call for more studies that transcend disciplinary
boundaries. Such studies should focus on not just GHG
emissions, but multiple sustainability metrics (environmental,
social, economic, institutional) and across scales (plot, field,
region, continent, global) allowing more comprehensively
evaluation of the wider co-benefits and trade-offs associated with
GHG emissions mitigation (Harrison et al., 2021).
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