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This study analyses the quality of six regression algorithms in forecasting the monthly

price of maize in its primary international trading market, using publicly available data of

agricultural production at a regional scale. The forecasting process is done between one

and twelve months ahead, using six different forecasting techniques. Three (CART, RF,

and GBM) are tree-based machine learning techniques that capture the relative influence

of maize-producing regions on global maize price variations. Additionally, we consider

two types of linear models—standardmultiple linear regression and vector autoregressive

(VAR) model. Finally, TBATS serves as an advanced time-series model that holds the

advantages of several commonly used time-series algorithms. The predictive capabilities

of these six methods are compared by cross-validation. We find RF and GBM have

superior forecasting abilities relative to the linear models. At the same time, TBATS ismore

accurate for short time forecasts when the time horizon is shorter than three months. On

top of that, all models are trained to assess the marginal contribution of each producing

region to the most extreme price shocks that occurred through the past 60 years of

data in both positive and negative directions, using Shapley decompositions. Our results

reveal a strong influence of North-American yield variation on the global price, except for

the last months preceding the new-crop season.

Keywords: food-security, maize, price forecasting, regional production, machine learning

1. INTRODUCTION

The prices of food and agricultural products are of interest to many stakeholders, including
policymakers, traders, and consumers. Moreover, these prices have a high impact on businesses
and people who depend on agricultural products. Therefore, predicting the prices of agricultural
commodities is a highly strategic issue (Barrett, 2002; Bellemare et al., 2013).

Price forecasters commonly use the prediction methods depending on the target time horizon.
For example, Partial-equilibrium (PE) and General equilibriummodels (GEM) are common (Valin
et al., 2014) for long-term predictions because long-term price changes (i.e., over several years or
decades) are primarily the results of political or climatic changes and long-run market structures
and demographic dynamics. Therefore, such predictions are relevant in the context of the need for
ahead-of-time adaptation and long-term strategy, particularly for policymakers.

Short-time agricultural price changes are relevant for traders who sell or buy agricultural
commodities hourly or daily. At this time frame, price fluctuations depending on the short-
term balance between supply and demand and the commodity market dynamics (Piot-Lepetit
and M’Barek, 2011). Therefore, short-term predictions usually use standard time series analysis
techniques such as smoothing methods or ARIMA models.
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This paper focuses on medium-time fluctuations, i.e., over
periods of up to one year. Those fluctuations mainly affect
domesticmarkets but sometimes spill over into the globalmarket,
depending on their level, the crop in question, and region
which had been affected (Headey and Fan, 2010). The United
States Department of Agriculture (USDA) (ERS-USDA, 2021)
publishes monthly price forecasts based on a model named
World Agricultural Supply and Demand Estimates (WASDE),
to provide USDA staff and policymakers with price forecasts
monthly and for up to 16 months ahead (Hoffman et al., 2015).
However, the methodology used in WASDE is considered as
complex (Hoffman et al., 2018) and is not fully accessible.
Furthermore, Warr (1990), Hoffman (2011), Hoffman et al.
(2015), and Lusk (2016) have criticized it for its lack of accuracy.

Here, we focus on maize, a major agricultural commodity
used worldwide. Maize plays a crucial role in global food security
(directly or through livestock feed) and energy crops. For many
years, most of the price shocks in the global maize market have
been the result of the USA’s originated changes (Henneberry
and Kargbo, 1986; Natanelov et al., 2013). However, it is not
clear whether it is still the case. Although still the leading maize
producer, the USA’s market share dropped from 45% in the early
1960s to about 31% in 2020. Moreover, its share in the world
export quantity decreased during this period from 53 to only
27%, while at the same time, a share of South American countries
soared from 12% 70 years ago to 38% today. Another two players
whose influence in the maize market seems to be rising are
Ukraine and China. On the demand side, Mexico and Japan
are vital importers. China, gaining traction in global markets,
has also become a market influencer. The latter was particularly
felt in early 2020 when a massive purchase of grains shook the
equilibrium of the maize market worldwide. However, despite
the richness of the literature analysing the prices of agricultural
commodities, recent events of extreme changes in corn prices
have also been received as a surprise among traders worldwide.

The objective of this article is to predict maize’s monthly
average global price. To do so, we test three machine learning
(ML) algorithms based on regression trees, predicting the annual
change in the monthly maize price from the annual changes
in regional maize productions or yields. These techniques aim
at capturing the effect of the regional supply level change on
global maize prices. In addition to these three ML algorithms,
we use two time-series methods: vector autoregressive model
(VAR), which had previously proven to capture the effects of
shocks in exogenous variables on feed prices (Schaub and Finger,
2020), and Trigonometric Seasonal Box Transformation with
ARMA residuals Trend and Seasonal Components (TBATS), a
model that enables us to predict price changes based on the
combined influence of trends, seasonality, and auto-correlations
of monthly prices.

In this paper, we compare the performances of these five
models for out-of-sample predictions to those of a benchmark
model based on linear regression for time horizons of one
to twelve months ahead. Besides, we show that the three
ML algorithms tested here can be used to identify the most
influential maize-producing regions and to identify the origins
of price shocks.

2. DATA

The relationship between commodity price shocks and annual
supplies depends not only on how production changes at the
global scale but also on regional production (Hertel et al., 2016).
For this reason, we used regional production and yield annual
changes as dependent variables (see Supplementary Tables 2, 3

in Supplementary Data). These data were collected in 242
countries and are publicly available in FAOSTAT for 1961 to 2019
to aggregate 19 regions (FAO, 2020). As the harvest dates differed
across these regions (according to their location in the northern
or southern hemispheres), we assumed that the production (or
yield) in a given region would have an impact on maize prices
during one year starting from the harvest month of the biggest
producer of this region. This period corresponds roughly to
the beginning of the regional market year. For example, the
North American market year currently starts in September and
ends in August. Therefore, we assume that production (yield) in
Northern America in year y starts impactingmonthly maize price
from September of that year until August year y+ 1. In contrast,
the regional market year in Southern America (located in the
southern hemisphere) begins in by the end of the local harvest
season, and, therefore, impacts maize prices from March year y
until February year y + 1. All the periods considered are shown
in Supplementary Data.

We converted the nominal maize prices (USNo. 2 yellow from
the World Bank’s commodity market database) into real 2010
USD. Then, we defined qm,y as a series of deflated monthly global
maize prices, where m and y are the months and year indices,
respectively, so that m = 1,. . . ,12 and y = 1,. . . ,Y . The second
series zk,y describes the production (or yield) in a region k (k= 1,
. . . , K) and a year y. Since these variables have different units, we
express them in relative terms as follows:

pm,y =
qm,y − qm,y−1

qm,y−1
(1)

xk,y =
zk,y − zk,y−1

zk,y−1
(2)

Figure 1 provides a visual representation of the regional
production changes vs. changes in world price, depending on
the production levels of the top three maize producers. With the
clear dissimilarities in the production-price relation of the three
regions, we note the differences between the levels of variability
of production and yield (Supplementary Figures A.a, A.b).

3. METHODS

We consider two types of models, i.e., models predicting maize
price changes as a function of yearly production (yield) changes
and models predicting maize price changes from past monthly
observations of price changes and yearly production (yield)
changes. The first type of models can be expressed as

pm,y = f (x1,y, . . . , xk,y, . . . , x19,y) (3)

and the second as:
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FIGURE 1 | Annual changes (%) in global price vs. Regional production (in the three leading producing regions). Each dot represents an observation, while the smooth

line (fitted using loess) shows the pattern of these two elements.

pm,y = f (pm,y−1, x1,y, . . . , xk,y, . . . , x19,y) (4)

where k is the region index. We consider different types of
function f , based on linear models and machine learning
algorithms, as described below.

3.1. Models 1, 2, and 3—Machine Learning
The use of ML makes it possible to discover hidden patterns
about the relationship between the direction and magnitude
of changes in pm,y vs. the variability in xk,y. This way, we
can detect non-linear relationships between variables without
making any strong preliminary assumptions on the shapes
of the relationships. More specifically, we use three different
approaches, namely classification and regression trees (CART,
model 1), Random Forest (RF, model 2), and gradient boosting
(GBM, model 3).

Classification and regression trees (CART) is a recursive ML
technique developed by Breiman et al. (1984). The algorithm
receives all the observations that include information about
the input variables (x1,y,x2,y,. . . ,x19,y), and build a regression
tree to minimize the error rate in predicting pm,y, measured
here by the residual sum of squares (RSS). The partitioning
process starts with a single node at the top of the tree (root).
In each step, the algorithm splits the node into two, each
defined by a different input (region), and stops when no further
improvement is possible, i.e., when RSS cannot be any lower. We

fit CART using the rpart package of R (Therneau et al., 2019).
An illustration can be found in Supplementary Figure A.b,
Supplementary Data.

CART models are usually easy to interpret but are considered
weak learners (Luo et al., 2019), which might be highly biased. To
overcome this problem, we apply two alternative methods based
on the assembly of high numbers of individual trees, namely
random forest (RF) and gradient boosting machine (GBM) (Liaw
et al., 2002). RF takes a random subset of the original dataset and
uses it to fit a basic decision tree to predict pm,y. A bootstrapping
process is implemented T times (t = 1, . . . ,T), and the T
resulting trees are then averaged to produce the final predictions.
Here, we find that RF leads to the most stable results with T =

500 trees. RF is applied here using the package randomForest
(Breiman et al., 2018).

Similar to RF, GBM examines subsamples of data and fit a
single tree to each one. Nevertheless, unlike the latter, the selected
sub-sample is chosen according to the estimation error obtained
in the analysis of the previous training set. In this study, we find
that GBM returns the most accurate forecast when using T =

100 trees. This method is implemented with the gbm R package
(Friedman, 2001).

3.2. Model 4—Multivariate Linear
Regression
In linear model (LM), price change pm,y is related to xk,y as:
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pm,y = αm +

Ks
∑

k=1

βk,mxk,y + ǫm,y (5)

where αm is the intercept, βk,m are regression parameters, ǫm,y

are the residuals, and Ks (< 19) is the number of selected
regions. One model is fitted separately for each month m (with
the function lm of the R software). To obtain a parsimonious
model, we use a step-wise algorithm (based on AIC) to select the
most influential Ks regions. Because of its simplicity and strong
assumptions, this linear model serves as a benchmark model.

3.3. Model 5—VAR
Model vector autoregressive (VAR) empirically examines the
evolution and common effects that time series have on each other
so that it describes the relationships over time between all the
variables in question. In this case, the model includes several
dynamic variables that affect each other and the effect of shocks in
each explanatory variable on the global price. Unlike the models,
we have used so far, pm,y is not only a function of xk,y but also of
the past price change values, pm,y−1.

The basic purpose of VAR is to describe the interactions
between all variables and try to predict future effects. Since
firstly introduced by Sims (1980), VAR has been widely used
and is considered a particularly effective tool in designing policy
strategies (Bernanke et al., 2005; Jouchi et al., 2011). Here, we use
this approach to predict pm,y as a function of pm,y−1 and of xk,y
as follows:

pm,y = αm + β0,mpm,y−1 +

K
∑

k=1

βk,mxk,y + ǫm,y (6)

One separate model is fitted for each monthm using the vars R
package (Pfaff and Stigler, 2018).

3.4. Model 6—TBATS
The Trigonometric Seasonal Box Transformation with ARMA
residuals Trend and Seasonal Components (TBATS) model
(De Livera et al., 2011) is an upgraded time-series model which
can deal with trends, multiple-seasonality and auto-correlations.
This method automatically determines whether a Box-Cox
transformation of the data is required, whether seasonality needs
to be accounted for (based on Fourier series), and whether a time
trend should be included. It also automatically selects the optimal
number of autoregressive and moving average components for
predicting the target response variable.

Contrary to the models mentioned above, TBATS is fitted
to the time series of the relative annual change in the monthly
price of maize directly, without using the production data.
TBATS aims at predicting price changes from the past series
of observed price changes without taking regional productions
into account. We consider several time horizons for price change
predictions, from one month ahead to one year ahead. Here,
this method is implemented with the R package forecast
(Hyndman et al., 2020).

4. MODEL EVALUATION

The model prediction errors were assessed and compared using a
rolling cross-validation (CV) technique, implemented separately
for each month and model. At each iteration of the CV, we select
a sub-sample (training-set) containing observations from all the
first Ỹ = 44 years (1962/3-2006/7) plus the i following years (i is
successively set equal to 1, 2, . . . I, where I = 13 or 14, depending
on the month considered). At each iteration, the training set
trains the models, and the resulting trained models are used to
predict the price change at year Ỹ + i + 1. With this procedure,
we ensure that at least Ỹ + 1 years of data are available to train
the models. Smaller datasets would lead to inaccurate predictions
and a lack of identifiability.

We define the forecast error for the model in month m of the
marketing year y as:

ǫm,y = p̃m,y − pm,y (7)

where pm,y is the observed price, and p̃m,y is the forecast made in
monthm of the marketing year y by any of the models considered
in this study. We then use these errors to compute an RMSE for
each month and each model, as:

RMSEm =

√

∑I
y=1(p̃m,y − pm,y)2

I
(8)

The accuracy of TBATS predictions is evaluated by computing
the RMSE criterion for 12 different time horizons, i.e., h =

1,2,. . . ,12 months ahead. For a given year, a given month, and a
given time horizon, TBATS is trained using all price data available
before the monthm− h, and the trained model is used to predict
the value of pm,y (Ỹ = 28, ITBATS = 690). This procedure is
repeated relative to every year, every month, and time horizon.
Then, a specific value of RMSE has computed for each month
m and time horizon h combination by averaging the prediction
errors among all years of data.

Finally, we assess and rank the influences of the producing
regions using two different techniques. First, we use permutation
ranking with RF and GBM to assess the importance of each
region for predicting maize prices. This approach allows us to
identify the most and least influential regions when forecasting
maize price changes (Supplementary Data). Second, using the
Shapley decomposition technique (Shapley, 1953), we strive
to identify the regional production variations responsible for
specific extreme price change anomalies that occurred at some
specific months and years in the past. Importance ranking and
Shapley decomposition were implemented using the package
iml of the R software.

5. RESULTS

Figure 2 below presents a comparison between the price changes
predicted by the different models and the observed price changes.

The left side of the Figure 2 presents the forecasts derived
from the ML and linear models from October 2006 to January
2020 (Segmentation by months is in Supplementary Data).
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FIGURE 2 | Maize global price change: observed vs. forecasted, as obtained with all models. CART, RF, GBM, LM, and VAR are shown on the left. The TBATS

forecasts are displayed on the right for time lag ranging from 1 to 12 months. The dashed black lines are the 1:1 lines (lines of equality).

Generally, MLmodels tend to produce more accurate predictions
than LM and VAR, as the latter two methods produce somewhat
fluctuating predictions. Nonetheless, VAR seems to perform well
in case of extreme price shocks.

TBATS predictions tend to diverge more from the
observations when derived several months before the dates
of forecast (right side of Figure 2). For lag longer than three
months, the predictions differ a lot from the observations.

Figure 3 below shows the relative advantage of using each
model for forecasting pm,y, with the reference value being the
observed standard deviation of the price each month (sd(pm,y)).
This measure corresponds to the difference between sd(pm,y) and
the RMSE of each model the same month, divided by sd(pm,y),
and expressed in percentages. A positive value indicates that
the corresponding model is better than a constant prediction
equal to zero. All the points below the black horizontal line
indicate models offering no-better-than-average price forecasts.
In contrast, those above indicate models with average forecast
errors lower than sd(pm,y). Suchmodels are better than a constant
prediction. The highest relative advantage values (located at the
top of the graphic) indicate the most relevant models, which

appear to be the tree-basedmethods inmost cases (GBM, RF, and
CART). The results are presented separately for TBATS to assess
the influence of the time lags on the prediction accuracy. The
relative advantage of TBATS compared to a constant prediction
is high for a time horizon up to 3 months and became very low
after six months.

Results show that several models are more accurate than
constant predictions. The relative advantages of GBM tend to be
higher when including regional productions as inputs rather than
regional yields. However, the differences between the two types
of inputs are not very high. The relative advantages of LM or
VAR are often negative, revealing that these methods do not often
perform better than constant predictions. Concerning TBATS
(Figure 3, right), price change predictions aremore accurate than
constant predictions, as long as the time-horizon for forecasting
remains lower than 3 or 4 months. For such cases (dark points
in Figure 3), the relative advantage of TBATS predictions can
be higher by 78% higher than constant predictions. On the
other hand, for longer time horizons, the accuracy of TBATS
decreases rapidly and becomes inaccurate for time lag higher
than six months.
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FIGURE 3 | Relative advantage in terms of prediction accuracy of the forecasting models, over 1990–2020. This measure corresponds to the difference between the

standard deviation of the price changes in the whole dataset (sd(pm,y )) and the RMSE of each model the same month, divided by sd(pm,y ), and expressed in

percentages. It indicates the relative benefit of using the models compared to a constant prediction equal to zero. ML methods, LM and VAR were used with

production and yield inputs, successively.

We used the cross-validated values of RMSE to identify the
most accurate models for each time horizon between one month
and a year ahead, as shown in Table 1.

According to Table 1, TBATS is the best model to predict
pm,y in each of the 12 months of the year in a forecast range of
two (September to November) to five months ahead (February
March, and May to August). However, to predict a price for time
horizons longer than three or four months, ML models are often
more reliable and, in addition, offer the possibility to identify
the most and least influential regions based on importance
ranking and Shapley decomposition. For example, importance
rankings (Supplementary Figure A.b in Supplementary Data)
reveal a strong influence of Northern America for almost all
months. Correspondingly, Western Asia, another key producing
region, had strong relative influence substantially during the two
months preceding the harvest season in Northern America (July
and August).

The Shapley decompositions confirm the strong influence of
Northern America. Two Shapley decompositions are shown in
Figure 4 for two extreme events corresponding to a substantial

price increase and a strong price decrease over the period
considered. Each regional Shapley value indicates the share of
the price anomaly (either in December 1995 or in December
2013) explained by the corresponding region. According to
these decompositions, the high maize price increase occurring
in December 1995 appears to be mainly due to the changes
in maize production in Northern America and, to a lower
extend, in Southern Africa. The maize productions in Northern
America are also responsible for a significant share of the
substantial price decrease in December 2013. Other examples
confirming the significant role of Northern America are shown
in Supplementary Data.

6. DISCUSSION

This research project analyzes six decades of the global maize
market. Maize is the highest produced crop worldwide and an
essential energy source, especially in developing countries. Our
study attempts to forecast the international monthly price of
this commodity as a function of regional productions. Although
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TABLE 1 | Best forecasting options for different months.

Time lags (months) sd p

m 1 2 3 4 5 6 7 8 9 10 11 12 obs.

Jan.
TBATS GBM (xk,y = Production)

0.05 0.06 0.09 0.11 0.17

Feb.
TBATS GBM (xk,y = Production)

0.05 0.08 0.09 0.11 0.13 0.19

Mar.
TBATS GBM (xk,y = Production)

0.04 0.08 0.11 0.12 0.14 0.18

Apr.
TBATS GBM (xk,y = Production)

0.06 0.08 0.11 0.13 0.14 0.18

May
TBATS GBM (xk,y = Production)

0.06 0.06 0.09 0.12 0.15 0.18

Jun.
TBATS GBM (xk,y = Yield)

0.08 0.09 0.11 0.13 0.14 0.16 0.17 0.22

Jul.
TBATS CART (xk,y = Production)

0.11 0.15 0.14 0.15 0.20

Aug.
TBATS GBM (xk,y = Production)

0.07 0.12 0.19

Sept.
TBATS CART (xk,y = Production)

0.09 0.14 0.18

Oct.
TBATS GBM (xk,y = Production)

0.06 0.11 0.17

Nov.
TBATS GBM (xk,y = Production)

0.06 0.11 0.15 0.19

Dec.
TBATS GBM (xk,y = Production)

0.04 0.07 0.1 0.13 0.17

The names reported for each month correspond to the models showing the lowest RMSE for predicting price change at this period. The numbers indicate the RMSE values of the best

models. As TBATS tends to perform very well for short time lags, TBATS appears to be the best option for all months when the time lag is in the range of 1 to 5. For longer time lags,

other models (in particular GBM) are more accurate. For CART and GBM, the name between brackets indicates whether the predictions were more accurate with regional yields or

productions. The last column (sd p obs.) indicates the empirical standard deviations of the observed price changes, which can be considered as a benchmark.

many have analyzed and attempted to predict maize price
accurately (Hoffman et al., 2015; Ahumada and Cornejo, 2016;
Xiaojie and Yun, 2021), very few have developed methods that
are both easy to reproduce and interpret by users who are not
necessarily specialists in price prediction. With regards to ML,
our study offers a double contribution. It is one of the first
performing Medium Term maize price forecasting using ML,
let alone detecting the main drivers for maize price changes
through investigation of the ML algorithms. Second, it offers
a practical, non-academic contribution—by providing a range
of price forecasting tools that could be easily implemented by
stakeholders who do not have access to the best tools needed to
trade in global markets optimally.

Our study uses machine-learning algorithms and relies on
publicly available data only. It is based on the use of annual
regional yields and productions to enable the user to interpret the
results, principally challenging the transparency of each model.
The chosen models were those which had been previously tested
in relation with the global maize market and regional production
(Zelingher et al., 2021), i.e., CART (Breiman et al., 1984), RF
(Hastie et al., 2009), and GBM (Friedman, 2001). To those are
added two econometric models, each having some advantages:

VAR (Sims, 1980), which can detect inter-and intra-effects of
local productions shocks, and TBATS (De Livera et al., 2011),
as a time-series based approach that has proved to achieve low
forecasting errors (Lima and Laporta, 2020).

To understand the process behind the model outputs and
identify the forces which drive price change forecasts, we
use two evaluation techniques: a relative importance ranking
and Shapley decomposition (Shapley, 1953). These two model-
agnostic approaches are helpful to identify different drivers
of maize price variations. At first, the relative importance
ranking quantifies the impact of each producing region on
annual changes in the monthly price (as a consequence of
its contribution to the forecasting ability of the model). Next,
Shapley decomposition provides a case-explicit examination of
the contributions of different regional production changes to
specific yearly price changes. This second approach is especially
relevant for understanding the forces influencing extreme price
changes, which might drive a global food crisis.

The paper emphasizes the importance quantifying the
marginal contribution of each input factor used to forecast price
changes. Furthermore, this study highlights the importance of
predicting global maize prices according to various scenarios
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FIGURE 4 | Shapley values for December 1995 (strong price increase) and December 2013 (strong price decrease). The decompositions show the contributions of

the producing regions to two extreme relative price changes (regional production in red, and yields in blue). At a given date, the sum of the regional Shapley values is

equal to the price change anomaly.

using different models. This way, the impact of the various
producing regions (input) can be examined and evaluated
accordingly. This approach provides valuable information for
understanding the impacts of production changes in highly
influential regions.

Our results reveal significant dissimilarities between the
impact levels of the different regions. Our results confirm the
existence of strong relationships between maize prices and
production changes in major producing regions, as already
claimed by Headey and Fan (2010). However, the strength of
these relationships varies over time and is stronger in the months
and weaker in others. Thus, the impact of Northern America is
strong throughout the entire year except for July and August.
As it happens, the primary harvest season in this region begins
in September and, after this month, the previous year’s crop
is no longer traded or only in small volumes. As it is not yet
possible to predict with certainty the amount of crop harvested
in the coming year, the impact of Northern America declines in
July-August. On the opposite, the relative impact ofWestern Asia

becomes higher in July and August, as these two months present
the main harvest season in this region.

This study offers a significant contribution to the price
forecasting literature of agricultural commodities. First and
foremost, our modeling framework is constructed to be easily
replicated. Whereas, to date, many have been obliged to base
their food security strategy on paid data obtained from private
companies or based on results that are difficult to replicate (see
WASDE, World Bank Commodities Price Forecast or FAO-
AMIS Market Database); our research offers an interesting
alternative. Indeed, our codes provide the users with tools to
predict maize price values and to understand the processes
leading to these forecasted price values. Another contribution
derives from the division of the forecasting period simultaneously
to months and time horizon, giving the users the unique
opportunity to adapt their strategy in case of possible changes
in the maize market. Lastly, our approach enables analysis of
specific events through the Shapley-algorithm, while taking the
opportunity to understand the origins of extreme price changes.
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Although this project deals with maize, the tested
methodologies can be applied to other agricultural commodities.
In future work, we will examine this assumption on several
different internationally traded crops. There, we will strive to
capture inter-and intra-sectoral differences, detect the factors
impacting price volatilities, expand our forecasting tools to a
larger set of commodities, and contribute to increase global
food security.
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