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Africa

To meet the global demand for food, several factors have been deployed by agriculturists

to supply plants with nitrogen. These factors have been observed to influence the

soil nitrification process. Understanding the aftermath effect on the environment and

health would provoke efficient management. We review literature on these factors, their

aftermath effect on the environment and suggest strategies for better management.

Synthetic fertilizers and chemical nitrification inhibitors are the most emphasized factors

that influence the nitrification process. The process ceases when pH is <5.0. The range

of temperature suitable for the proliferation of ammonia oxidizing archaea is within 30

to 37oC while that of ammonia oxidizing bacteria is within 16 to 23oC. Some of the

influencing factors excessively speed up the rate of the nitrification process. This leads

to excess production of nitrate, accumulation of nitrite as a result of decoupling between

nitritation process and nitratation process. The inhibition mechanism of chemical

nitrification inhibitors either causes a reduction in the nitrifying micro-organisms or

impedes the amoA gene’s function. The effects on the environment are soil acidification,

global warming, and eutrophication. Some of the health effects attributed to the influence

are methemoglobinemia, neurotoxicity, phytotoxicity and cancer. Biomagnification of the

chemicals along the food chain is also a major concern. The use of well-researched

and scientifically formulated organic fertilizers consisting of microbial inoculum, well-

treated organic manure and good soil conditioner are eco-friendly. They are encouraged

to be used to efficiently manage the process. Urban agriculture could promote food

production, but environmental sustainability should be ensured.

Keywords: agricultural intensification, agroecosystems, environmental challenge, nitrification inhibitor, nitrifying

microorganism, synthetic fertilizer

INTRODUCTION

Nitrification process (NP) is an oxidation reaction that usually occurs under aerobic conditions.
The process serves as an intermediate of oxidized and reduced forms of nitrogen in its cycling.
The nitrate produced serves as a substrate for denitrification and a nutrient for plant growth. This
has made it important to environmental sustainability and agricultural intensification. Compounds
such as ammonium (NH4), ammonia (NH3), hydroxylamine (NH2OH), nitrous oxide (NO), nitrite
(NO2-), and nitrate (NO3-) are the major forms of nitrogen associated with the process. The
soil nitrification process is divided into two major phases which are nitritation and nitratation,
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and the order of microbial oxidation of ammonia via nitrite
to nitrate is sequential (Amoo and Babalola, 2017). Nitritation
accomplishes the oxidation of ammonia to nitrite, while
nitratation phase oxidizes nitrite to nitrate. This process
is majorly engineered by some group of nitrifying bacteria
and archaea in a complex chemical transformation, and
they are affected by several factors. The factors include
synthetic fertilizers, chemical nitrification inhibitors and other
agrochemicals. The effects are evaluated with total soil nitrogen,
mean annual temperature, pH and microbial biomass nitrogen
(Li et al., 2020).

The universal cycling of nitrogen is being massively distressed
due to the activities of man on the lithosphere. Manipulation
of the soil nitrification process for agricultural benefit has been
one of such activity. This has led to and would continue to
lead to negative effects which many researchers do not foresee.
Reviewing this will enlighten scientists on the importance of the
soil nitrification process, its influencing factors and the effect on
environment and biotic health (Figure 1). This would provoke
better management and cause amendments to be made. The
influence is measured by the rate at which associating chemicals
are produced or by the dynamics of the soil organism, especially
those directly associated with the process ‘the nitrifying bacteria
and archaea’.

IMPORTANCE OF NITRIFICATION

The modern nitrification process has led to a 50% loss of
nitrogen and has reduced the availability of nitrogen for the
use of plants (Beeckman et al., 2018). Despite the present
situation, the importance of the nitrification process cannot be

FIGURE 1 | Effect of influencing soil nitrification process negatively.

overemphasized. Its most important goal is to provide nitrate for
plant use. Although there are other available nitrogen forms in
the soil, nitrate seems preferable to most plants and other soil
organisms and leads to better functioning of the ecosystem if
produced in the right proportion.

Crop nitrogen demand is unpredictable. The time of greatest
demand is normally during the stem elongation phase, except
for crops targeted for high protein grain whose highest demand
is during the flowering phase (Angus, 2001). However, the
presence of external NO−

3 induces the expression of the NO−

3
transporter gene, causing elongation of lateral roots (Mantelin
and Touraine, 2004). Also, high-affinity transport system (HATS)
becomes active if concentration of NO3 in soil is low (<
250 micrometers) and low-affinity transport system (LATS)
becomes activated if the concentration of NO3 is high (>250
micrometers) (Plett et al., 2018). Subsequently, an excess supply
of nitrate reduces the demand for nitrate (Mantelin and
Touraine, 2004); therefore, it is needed in a gradual release and
at the right time.

In addition to being a nutrient, nitrate is a local and
systemic signal that regulates genome-wide gene expression, root
morphology, leaf expansion, seed dormancy and floral induction
(Hachiya and Sakakibara, 2016). It helps in the production of
embryos during the early stages of reproduction and carries
out anthesis (Yoneyama et al., 2016). Several responses to
nitrate are mediated via calcium and phytohormone signaling
pathways including auxin, cytokines and abscises acid (Hachiya
and Sakakibara, 2016). A decrease in nitrate assimilation causes
a decline in protein concentration in cereals. This leads to
retardant growth, and the subsequent effect on animal and
human nutrition can be detrimental (Dier et al., 2018).

An additional benefit of nitrification is the oxidation of
ammonia. Ammonia has a negative effect on plant, biotic and
abiotic components of the environment. Excess ammonia affects
the uptake of nutrients, disturbs hormonal balance, decreases
soluble carbohydrates of plants, and distorts photosynthesis
and metabolic pathways (Wang et al., 2016). Directly or
indirectly, ammonia plays a crucial role in environmental
damage (Lehtovirta-Morley, 2018). This could be the result of
its higher acid level when compared to the oxidized nitrogen
forms. Ammonia in agricultural runoff negatively affects water
bodies as it reduces dissolved oxygen resulting in aquatic biota
toxicity (Wang et al., 2016). Plant tolerance of ammonia varies
within plant species (Byrnes et al., 2017), and few plants can
conveniently use ammonia.

The availability of nitrates is one of the main factors that
determine the productivity and growth of plants. Unfortunately,
they are scarce in natural soil due to soil physical and chemical
properties, microorganism activities and drainage (Kiba and
Krapp, 2016). Of all the nitrogen forms, nitrate is the most
susceptible to leaching, thus making it often unavailable for plant
use at the moment needed. The anthropogenic input of nitrogen
has done more harm than good to the agricultural system.
Although done purposely to improve crop yield, the excessive
and repeated input of anthropogenic nitrogen has increased
nitrate leaching (Nevison et al., 2016) and reactive nitrous oxide
gas production. This is alarming as agriculturists believing they
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FIGURE 2 | Schematic diagram showing biochemical reaction in nitrifying

bacteria.

have made available sufficient nitrates for plant growth have
indirectly affected productivity.

MECHANISM OF NITRIFICATION
PROCESS

The mechanism of nitrification is a complex one, being a
mixture of biological and chemical processes (Figure 2). The
biochemical reaction takes place on the membrane site of
the associating microorganisms. Primarily, ammonia (NH3) is
used as the major substrate. It is transformed by ammonia
monooxygenase enzyme (amoA) into hydroxylamine (NH2OH),
while hydroxylamine with the aid of the enzyme hydroxylamine
oxidoreductase (HAO) reacts with water to produce nitrite (NO2)
(Amoo and Babalola, 2017). Nitrite oxidoreductase (NXR) found
in nitrite-oxidizing bacteria transforms nitrite into nitrate (NO3)
(Fu et al., 2020). The reaction requires the use of oxygen and
hydrogen; electrons are usually released from the membrane. In
an unperturbed environment, the nitrification process is usually
stable, however, when disturbed by anthropogenic activities it
varies. The variation is dependent on factors that affect the
availability of ammonia as well as the abundance and function
of nitrifying bacteria. At suitable conditions such as sufficient
amount of substrate and pH that is balanced, the rate of
nitrification as reported by Tarre and Green (2004) is 0.55 g of
N.g of biomass−1, day−1.

FACTORS INFLUENCING THE
NITRIFICATION PROCESS

Categorically, the factors that affect the nitrification process
can be chemical or physical. These factors were adopted to
intensify crop production and meet global food demand. The
chemical factors include synthetic fertilizer, chemical nitrification
inhibitors and pesticides. Some of the notable physical factors are
temperature, pH, and oxygen (Schaefer and Hollibaugh, 2017).
Li et al. (2020), evaluated the global soil nitrification rate across
terrestrial ecosystems. It was observed that the total soil nitrogen
contributed mostly to the nitrification with a coefficient of 0.29,
next was the mean annual temperature (0.25), followed by the pH
(0.24), and microbial biomass nitrogen (0.19).

TABLE 1 | Nitrogen content of nitrogen-based synthetic fertilizer.

Nitrogenous Chemical Chemical Approximate

synthetic fertilizer state formula % of

nitrogens

Anhydrous ammonia Gas NH3 82%

Urea Solid CO(NH2)2 46%

Urea ammonium nitrate Liquid [CO(NH2)2] [NH4NO3] 32%

Ammonium nitrate Solid NH4NO3 34%

Ammonium phosphate Solid (NH4)3PO4 11%

Sodium nitrate Solid NaNO3 16%

Ammonium sulfate Solid (NH4)2SO4 21%

Calcium nitrate Solid Ca(NO3)2 17%

Diammonium phosphate Solid (NH4)2HPO4 18%

Monoammonium phosphate Solid NH4H2PO4 12%

Potassium nitrate Solid KNO3 13%

Calcium ammonium nitrate Solid 5Ca (NO3)2·NH4NO3·10H2O 27%

Ammonium thiosulfate Solid (NH4)2S2O3 12%

Magnesium nitrate Solid Mg(NO3)2 18%

Synthetic Fertilizer
Synthetic fertilizers come in various types, brands and formulae
(Table 1), and they could be in solid, liquid or gaseous
state. The different kinds of fertilizer majorly are made
of phosphorus, potassium, nitrogen, and a combination of
either two or the three elements (Cai et al., 2019). Koli
et al. (2019) classified them as straight (supply only one
nutrient), complex (containing two or three nutrients), and
mixed fertilizer (has more than three nutrients). Majority
are nitrogen-based as a result of high requirement of the
element by the plants. Farmers rely on fertilizers made of
nitrogen to have an exponential increase in crops produced.
However, the efficiency of its use is low (30–50%) when
comparing it to the amount of crop produced (Liang et al.,
2019).

In time past, the rotation of crops was carried out in farming
to exploit endophyte nitrogen-fixing rhizobia inhabiting legumes
and microorganisms in organic waste to produce beneficial
nutrients, ammonia and nitrate for plant use. The practice was
safe but could not continually be relied on because it does not
provide enough for the plant usage. This resulted in the use of
synthetic fertilizer which provides an immediate replacement to
naturally produced nutrients. Unfortunately, it negatively affects
the rate of nitrification in the long run (Verma et al., 2018).
Those with ammonia speed up the rate of nitrification excessively
since they provide an immediate substrate for ammonia oxidizers
to act on. Also, synthetic fertilizers with phosphate elevate
the process of nitrification 12 times by raising soil pH to
favor the process (DeForest and Otuya, 2020). This often leads
to an oversaturation of nutrients beyond what the biota in
the environment can assimilate. Generally, where there is an
increase in soil nitrifying microorganisms as a result of synthetic
fertilizer application, it is only temporal (Quemada et al.,
2019).
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Chemical Nitrification Inhibitors
Nitrogen is lost from the soil through leaching, volatilization of
NH3 and other nitrogenous gases associated with the microbial
reaction in the denitrification and nitrification processes (Coskun
et al., 2017). Due to the detrimental effects of the gases on
health and the environment, inhibitors have been recently used to
restrict the rate of nitrification. This causes the transformation of
ammonium (NH+

4 ) to nitrate (NO
−

3 ) to be delayed in the soil. The
actions of the inhibitors are noticed by restraining the action of
the genes associated with process (Liu et al., 2020). Also, growth
of the acting bacteria and archaea be inhibited (Elrys et al., 2020).
However, their use and mechanism of inhibition are yet to be
fully understood.

Nitrapyrin (NP), Dicyandiamide (DCD) and 3,4-
dimethylpyrazole phosphate (DMPP) are well-known synthetic
nitrification inhibitors (Lu et al., 2019). They are usually used
along with synthetic nitrogen fertilizers or organic waste.
Infusing organic waste with DMPP can prolong the nitrification
time (Kong et al., 2018). This is achieved by chelating chemicals
like Cu which inhibit the first enzymatic step of nitrification
(Wu D. et al., 2018). Moreover, the mechanisms of inhibition
vary within the different nitrification inhibition (Rodrigues
et al., 2018). Application of DCD with urea decreased the rate
of NH+

4 loss (1.8mg N kg−1 soil day−1) which could have been
a result of an inhibitory effect on ammonia-oxidizing microbial
communities (Duncan et al., 2016).

DMPP is considered less toxic than DCD because its
recommended application rate is one-tenth of DCD (Rodrigues
et al., 2018). However, according to Yang et al. (2016), an
increase in yield by the application of DMPP was noticed
only in alkaline soil. The shortcomings of chemical nitrification
inhibition as reported by Lu et al. (2019) include difficulties in
application, high cost, environmental pollution and food safety
risks (Table 2). Other than these few mentioned shortcomings,
there are likely to be more. Knowing the specific species that
are targeted by this organism would be of great advantage to
agricultural and environmental management.

Other Agrochemicals and Substance
Aside from the use of fertilizer and nitrification inhibitors, there
are some other agrochemicals and substances used in farms that
influence the nitrification process. They are frequently used to
promote plant productivity. Pesticides are one of them and they
are of various categories, such as fungicides, insecticides, and
rodenticides. Iprodione a fungicide has an antagonistic effect
on amoA genes, it decreases their abundance and reduces the
rate of nitrification (Zhang et al., 2018a). Another is herbicides
which can be synthetic or organic. Atrazine and glyphosphate
are synthetic herbicides observed to grossly reduce the rate of
nitrification in the soil by inhibiting the microbial functional
genes responsible for the process (Zhang et al., 2018b).

Clinoptilolites are synthetic substances with high cation
exchange properties with the potential to retain ammonium
ions (Jakkula and Wani, 2018). Hydrogel, polyvinyl alcohol, and
anionic polyacrylamide are soil conditioners reported by Seddik
et al. (2019) noticed to increase the total nitrogen content of
the soil. Although, according to Youssef et al. (2019), polyvinyl

TABLE 2 | Environmental risk of chemical nitrification inhibitors.

Chemical

Nitrification inhibitor

Environmental risk References

3,4-dimethylpyrazole

phosphate (DMPP)

Absorption and

accumulation of chemical in

plant tissue

Rodrigues et al.,

2019

Dicyandiamide (DCD) Increases ammonia

released from the soil

Elrys et al., 2020

Nytrapyrin (NP) Transported off agricultural

fields with possible effect on

non-target organism.

Woodward et al.,

2016

3,4-dimethylpyrazole-

succinic acid

(DMPSA)

It affects non-target

organism that are of

agricultural benefit

Corrochano-

Monsalve et al.,

2020

N-(n-butyl)

thiophosphoric triamide

(NBPT)

More leaching and

denitrification loss

Meng et al., 2020

Benzotriazole (BTA) Contamination of Ground

water

Trcek et al., 2018

Potassium thiosulfate Accumulation of nitrite Cai et al., 2018

alcohol had no significant effect on the nitrification process. Also,
quartz sand used to control soil nutrient leaching in agricultural
soil affects nitrogen transformation dynamics. It was observed to
grossly inhibit the autotrophic nitrification process and stimulate
the immobilization of NO−

3 and thus should be used cautiously
(Wang et al., 2017). This must have been a result of altering the
agricultural soil’s physical and chemical properties.

Flue gas desulphurization gypsum (FGDG) has also been used
as a soil amendment and noticed to influence the nitrification
process by inhibiting and delaying the occurrence of amoA
genes (Li et al., 2016). Industrial waste from dairy factories
escalates the availability of ammonium, this rapidly increases
nitrification process. Other forms of human activities that have
brought excess influx of nitrogen include, combustion of fossil
fuel, biomass burning, and biological activities in the natural
soil. The terrestrial anthropogenic activities have been increasing
tremendously over the past years and would continue to increase.
Researchers need to find a way to create a pseudo-balanced
ecosystem continuously.

Climate Change
Agriculture practices such as bush burning, tree cutting have
affected climate change. One of the observed effects of climate
change is an unusual increase in atmospheric temperature.
Increased temperature increases the volatilization and emission
of nutrients. The nitrification process driven by AOA and AOB
is strongly affected by elevation and fundamental differences
in temperature. Taylor et al. (2017) evaluated AOA and AOB
across a gradient of (4–42oC), it was observed that the maximum
nitrification potential rates of AOA are within the range 30 to
37oC while that of AOB is within the range 16 to 23oC. Hu et al.
(2016) reported an increase in AOA and a gradual decrease in
AOB under elevated temperatures. Akram et al. (2018) observed
a correlation between change in climate, nitrogen fertilizer
application and emission of N2O. According to Sahrawat (2008),
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plotting the response of temperature to climate change gives a
bell-shape with an optimum temperature of 30–35oC.

Physical Factors
Anthropogenic activities often affect physical factors of soil
environment. These in turn affect the soil nitrification process.
Notable physical factors that affect the process are temperature,
pH, moisture, oxygen, and aeration. The two most important
physical factors are temperature and pH. The response of the
process to temperature is similar to that observed in climate
change. Le et al. (2019) reported that ammonia oxidation is
inhibited at pH 5 while nitrite oxidation is inhibited at pH 8.5,
optimum activity of AOB andNOB are 7.5 and 7.0. The optimum
pH varies but there is an agreement of the process ceasing at 5.0
since oxidation of ammonia is the first. Also, Soil moisture closes
up pore spaces, this affects aeration and reduces the oxygen level.
Nitrification is a biochemical oxidation process, low oxygen levels
in the soil would negatively affect the process.

AOB diversity differs among soil types; the presence of clay
in soil affects the nitrification process. Waterlogging which could
arise as a result of frequent irrigation reduces the soil oxygen level
decreasing the nitrification potential rate and the abundance of
ammonia oxidizingmicroorganisms (Nguyen et al., 2018). Tillage
is an age-long agricultural practice done to increase productivity
by removing weeds and increasing soil aeration. However, it
has a subsequent disadvantage of reducing soil biomass, which
negatively affects soil structure and quality (Vazquez et al., 2019).
The mechanism of the influencing physical factors is not fully
understood as a result of the complex interaction among the
various factors.

EFFECT OF THE INFLUENCING FACTORS
ON THE ENVIRONMENT

In the past, scientists managing the nitrification process have
focused on agricultural intensification, paying little or no
attention to environmental degradation. The addition of fertilizer
initially brought an enormous boom in agricultural productivity
with little or no side effects. However, it is presently clear that
the use of nitrogen fertilizer is causing serious environmental
issues. Excessive levels of NO−

3 in the soil can be imputed
to the increasing use of fertilizer made of synthetic nitrogen
in agroecosystems (Zhai et al., 2017). Significant changes were
observed in soil bacteria community structure, and soil organic
matter mineralization tends to be negatively affected by the use
of DMPP (Zhang et al., 2017).

The efficiency of nitrogen use in crops is low. Fifty percent
of the synthetic nitrogen applied to agricultural systems is not
mopped up, instead, it is distributed to the surroundings as oxides
of nitrogen (NOx) and ammonia (Coskun et al., 2017). The excess
nitrogenous compounds are lost to surface water, groundwater
and the atmosphere as a result of over saturation in the soil,
propelling detrimental effects to the environment. The increased
ammonia leads to soil acidification and eutrophication of surface
water bodies (Ni et al., 2018).

Soil Acidification
Fertilizers with ammonia, especially urea, reduce the pH of the
soil; this increases its acidity (Goulding, 2016). An acidic soil
affects the normal functioning of the ecosystem, especially the
biotic component. Also, high acid levels of soil negatively affect
the biodiversity dwelling in it, this is detrimental to soil quality
(Li et al., 2017). Farmers resolve the challenge by manipulating
the soil with various chemicals and substances, thus the land
eventually becomes degraded and undesirable for planting in the
long run.

Nitrification inhibitors can also decrease the rate of
nitrification by disrupting the activities of the bacteria leading
to low soil pH (Alonso-Ayuso et al., 2016). Soil with low pH
affects the uptake of nutrients such as calcium (Ca), magnesium
(Mg), potassium (K), phosphorus (P) and molybdenum in
plants (Shi et al., 2019). Inhibiting nitrification is believed to
reduce agricultural production costs, pollution and climate
change (Coskun et al., 2017). However, the detrimental effects
of nitrification inhibition in increasing the volatilization of NH3

outweigh its benefits.

Eutrophication
Eutrophication is a global challenge that impairs the quality of
marine and inland waters (Le Moal et al., 2019). Ammonia,
nitrite, and nitrate are widely spread in natural waters, and they
increase the occurrence of eutrophication (Wu S.-H. et al., 2018).
The leached nitrogenous substances result in eutrophication and
they affect surface and groundwater, causing algal blooms and
loss of biodiversity (Beeckman et al., 2018). The occurrence of
eutrophication often results in the production of cyanobacteria
in rivers and waterways (Le Moal et al., 2019). This has led to the
threatening of aquatic resources (Paerl, 2018).

The management and mitigation of the global expansion of
toxic cyanobacterial harmful algal blooms (CyanoHABs) is a
major challenge facing researchers and water resource managers
(Paerl et al., 2019). In June 2016, St Lucie River in Florida
had high concentrations of cyanotoxins that greatly exceeded
WHO guidelines for consumable and recreational water (Metcalf
et al., 2018). The degradation of the environment and abuse
of agrochemicals has prompted researchers into searching
for environmentally friendly ways of improving crop yields
(Enagbonma and Babalola, 2019). Replacing synthetic fertilizers
with a more environmentally friendly biofertilizer could limit the
occurrence of algal blooms.

Global Warming
According to NOAA (2021), in 2020 the average temperature
globally was 0.98oC warmer than in previous years. Modernized
agriculture areas would contribute to global warming as they
depend on fertilizer and other agrochemicals to maximize plant
growth. The inputting of synthetic and organic nitrogenous
materials in the soil by agroecosystems has contributed largely
to anthropogenic N2O emissions (Charles et al., 2017). In a study
carried out by Feng et al. (2019) in North Eastern China, chemical
fertilizer was observed to increase nitrous oxide emission
by increasing nitrifying and denitrifying microorganisms.
Decoupling is usually observed in the two stages of nitrification
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FIGURE 3 | Decoupling in soil nitrification process resulting to global warming.

(Heiss and Fulweiler, 2016). Accelerating soil nitrification with
rapid microbial activity could cause decoupling (Figure 3) as a
result of nitrite accumulation and a reduction in nitrogen use
efficiency (NUE) of plants. This often leads to the escape of
excess nitrite and other reactive nitrogen into the environment
(nitrogen cascade). Nitrogen dioxides are greenhouse gases with
300 times greater global warming effect than carbon dioxide
(Beeckman et al., 2018). NO is chemically reactive, the gas is
involved in photochemical processes in the troposphere and acts
as the major pioneer of ozone (O3) formation at ground level
(Recio et al., 2019).

Nitrification and denitrification are closely related, and the
types of gas used up and produced by the different processes pose
a challenge to scientific researchers. Denitrification produces
higher amounts of N2O when compared to nitrification, as
nitrification simply produces the substrate on which denitrifying
bacteria act (Siljanen et al., 2019). If this is so, then it would
be more appropriate to inhibit denitrification process and not
nitrification process for reducing global warming which is the
goal of chemical nitrification inhibitors.

EFFECT OF THE INFLUENCING FACTORS
ON HEALTH

The influencing factors on the nitrification process have directly
and indirectly affected biotic health. Biomass, crops and animals’
health is affected at low pH (Zou et al., 2018). Acidic soil increases
the bioavailability of heavy metals making the soil toxic for
organisms (Ayangbenro et al., 2018). Low pH accumulates and
increases the toxicity of aluminum (Al) and manganese (Shi
et al., 2019). The metals accumulate in plants and biomagnify
along the food chain, disrupting the physiology of animals.
Furthermore, bacterial wilt disease develops more quickly and
severely in acidic conditions, causing mechanical blockage of
the water transport system in the plant (Li et al., 2017). Also,

retarding the nitrification process by using nitrification inhibitors
might effectively decrease the emission of N2O. However, more
NH3 would be retained in the soil and its volatilization to the
atmosphere would be increased (Fan et al., 2018; Ni et al., 2018).
The emission of ammonia negatively affects the health of humans
and vegetation (Ni et al., 2018).

Plants
The continual application of nitrification inhibitors in a farm
can negatively affect the growth and development of plants.
According to Rodrigues et al. (2018), plants can take up N-(n-
butyl) thiophosphoric triamide (NBPT) urease inhibitor, which
can affect their metabolism by influencing their endogenous
urease. NBPT reduces the possibility of urea reaching the
nickel atom. This causes transient yellowing of leaf tips as a
result of urea toxicity soon after application (Cantarella et al.,
2018). Nitrapyrin used with liquid fertilizers shows symptoms
of phytotoxicity (Rodrigues et al., 2018). Bioaccumulation of
DMPP in plant leaves showed signs of phytotoxicity and affects
plant metabolism and hormone signaling (Rodrigues et al.,
2019). Soil factors, management factors and crop types often
determine the efficiency of nitrification inhibitors (Yang et al.,
2016). Also, the hindrance in NO formation as a result of
inhibiting the nitrification process could negatively affect the
resistance of plants to disease (Yun et al., 2016). Plants produced
are weak, disease-prone with less fruiting, accumulate salt and
burn plant roots at high concentrations. Although NO can have a
positive effect on plants; however, at high concentrations it poses
potential damage to cellular structures under conditions of redox
imbalance (Farnese et al., 2016). An excessive increase in the rate
of nitrification which would produce high concentration of NO
should also be checked.

Soil Organism
High concentration of nitrite is caused by varying factors which
include heavy use of synthetic fertilizer and treatment of soil
with biocidal chemicals (Siontorou and Georgopoulos, 2016).
It can also accumulate in soil when oxidation of ammonia
proceeds faster than the consumption of nitrate and when
nitrate consumption is slower than its reduction (Heil et al.,
2016). Nitrite at high concentrations is toxic to soil organisms.
Nitrification inhibitors might have an undesirable effect on non-
target soil organisms (Rodrigues et al., 2018).

Animals and Humans
Contamination of water bodies has been on the increase in
emerging urban cities of developing countries (Fashae and
Obateru, 2021). Fashae and Obateru (2021) observed a river
located at Ibadan, Nigeria was polluted. This was partly
attributed to agricultural activities. Also, groundwater with
nitrate, the by-product of the soil nitrification process, is a global
challenge, particularly in agrarian countries. The influence on
the nitrification process has made it readily available in the
environment. Nitrate dissolves easily in water, diffusing quickly
toward the groundwater especially in sandy soil. Consumption of
groundwater contaminated with nitrate can cause adverse health
challenges. The health hazard of nitrate contamination varies for
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individuals in a population, and often it is in decreasing order
from infants, children, adult females and adult males (Zhai et al.,
2017). Infants and children are seen to be most susceptible to
the contaminant.

Methemoglobinemia is a common physiological disorder in
infants as a result of ingesting high levels of nitrate either through
formula or water. The nitrate binds with methemoglobin and
this affects the ability of the blood to react with oxygen, it often
leads to death (Ward et al., 2018). Besides methemoglobinemia,
other health effects associated with nitrate consumption include
cancer of the colon, disease of the thyroid, neural tube defects,
and adverse pregnancy outcomes (Ward et al., 2018). Nitrate can
transform into N-nitroso compounds which have the potential
to cause cancer, especially cancer of the colon (Schullehner et al.,
2018).

Ammonia volatilization would increase with increasing urea-
based fertilizer application. Ammonia has been associated with
irritation of the eyes and respiratory system, and it also
intensifies the production of particulate matter which damages
the respiratory tissue (Naseem and King, 2018). Excessive
amount of both ammonia and nitrate in the soil increases
the occurrence of eutrophication. The toxins produced by
cyanobacteria associated with eutrophication are known to be
hepatotoxic, neurotoxic, irritating to the gastro intestine and
cause contact dermatitis (Metcalf et al., 2018).

Nitrification inhibitors have been detected in open water
environments and their effects on aquatic ecosystems and human
health are still unclear (Qin and Lin, 2019). DCD has been
discovered in milk products obtained from animals fed on plants
cultivated with DCD (Rodrigues et al., 2018), and consumption
of contaminated products is a potential health risk in humans
(Ning et al., 2018). The health of people living in the region where
nitrification inhibitors are continuously applied can be negatively
affected (Yang et al., 2016).

MANAGING NITRIFICATION PROCESS

Recent agroecosystem practice depends heavily on chemicals,
machinery, and other forms of management that dilapidate soil
structuring and quality (Rillig and Lehmann, 2019). Additional
expenditure on fertilizer is still increasing and encouraged in
many areas even when the nitrogen fertilizer efficiency is not
profitable. Management of nitrous oxide is best done locally
and regionally since no best solution is permanent. Continual
feedback from the agricultural system is necessary and immediate
mitigation should be proffered where necessary (Coyne and Ren,
2017). An efficient nitrification program can be established by the
stakeholders. They are to determine if and when nitrification is a
challenge, which parameters are associated with the challenge and
proffer solutions.

The rate of nitrification is observed to be positively correlated
to the abundance of AOB (Tao et al., 2017). Monitoring it and
factors that tend to overtly influence their growth would initiate
a good procedure for management. Afterward, some organisms
known to counteract the adverse effect of the nitrification and
denitrification process could be used. Inoculating microbes into

soil has been considered an environmentally sustainable means
to increase production (Alori et al., 2017). Enebe and Babalola
(2018), suggested integration of microorganisms with other
mediums as biofertilizers. Modern biotechnologies can be used to
decrease the contamination of food associated with organic and
microbial biofertilizers.

Verma et al. (2018) suggested that agrochemicals produced
should be incorporated with organic manures or biofertilizer,
a system referred to as integrated plant nutrient management.
However, Pathak et al. (2016) recommend a management system
that eradicates chemicals by using microbial bioinoculants and
organic manure. Organic fertilizer could be made from living
organism, dead organism or their waste. They could directly or
indirectly increase the supply of nitrogen in the soil naturally and
in a stable way. According to Wang et al. (2018), Trichoderma
viride inoculated into the topsoil increases the abundance
of AOA and AOB. Phanerochaete chrysosporium and Bacillus
thuringiensis can promote nitrate and ammonia supply in soil
(Shang et al., 2017). Organicmanure has been produced using the
combination of microbial bioinoculants and vermicomposting
(Arumugam et al., 2017).

Biochar made from the burning of organic waste is a carbon-
rich product used also as soil amendment. According to He
et al. (2016), rice straw biochar causes an increase in nitrifiers
activities and enhances the nitrification process. Zeolites are
naturally occurring mineral compounds used in agriculture as
soil conditioners. It is known to have a nutrient holding capacity,
retain nitrogenous substances and gradually release them in
a controlled manner (Jakkula and Wani, 2018). Zeolites have
the potential to efficiently stabilize the nitrification process.
Scientifically formulated organic fertilizers have been produced
by researchers (Table 3). The acceptance of organic fertilizer
for agricultural intensification should promote crop yields by
improving nutrient storage, physical and chemical parameters of
the soil (Cai et al., 2019). Applying the right amount of manure
to plants when needed is also very crucial. This would require the
agriculturist to know the growth stage when individual species of
plants need nitrate the most and the quantity needed.

Biological nitrification inhibitors are produced by certain
plants which include Brachiaria humidicola cv. (Byrnes et al.,
2017), rice (Oryza sativa), sorghum (Sorghum bicolor), pearl
millet (Pennisetum glaucum), wheat relative (Leymus racemosus),
Neem (Azadirachta indica) (Cantarella et al., 2018) and peanut
(O’Sullivan et al., 2016). Brachiaria humidicola is known to
produce brachialactone (a powerful nitrification inhibitor) in
its rooting systems and has the highest biological nitrifying
inhibiting capacity established so far (Subbarao et al., 2017).
1,9-decanediol, a biological nitrification inhibitor in rice
root exudates, was recently identified and proved to inhibit
nitrification in bioassays using Nitrosomonas (Lu et al., 2019).
The use of these biological nitrification inhibitors is better
options if nitrification inhibition must be used. Also, since
inhibition aims to retain nitrate and reduce nitrous oxide
emission, then denitrification should be focused on to reduce the
emission of greenhouse gas. Biological denitrification inhibition
would be a better strategy to make nitrate more available in the
soil for the use of plants (William et al., 2019).
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TABLE 3 | Scientifically formulated organic fertilizers.

Organic fertilizer References

Pelleted feather meal + soybean meal Evans, 2019

Mixture of various animal excreta Bhalla et al., 2017

Poultry excreta + wood shavings Bhalla et al., 2017

Lime Zhang et al., 2019

Cattle manure Tao et al., 2017

Livestock excreta + Musca domestica larvae Kitazumi et al., 2016

Ipomoea vermicompost Hussain et al., 2017

Arbuscular mycorrhizal fungi organic fertilizer

pellets encapsulated with alginate film

Pitaktamrong et al.,

2018

Microalgae Coppens et al., 2016

Grounded fish waste Bond, 2017

Seaweeds Verma, 2017

Sugarcane bagasse Shaarani et al., 2019

Vegetable waste + Nitrosomonas sp +

Nitrobacter sp

Naghdi et al., 2018

Azotobacter candida Alami, 2017

Bacillus candida Alami, 2017

URBAN AGRICULTURE

Cultivation of food in the cities, termed “urban agriculture,” is
becoming popular and of paramount importance globally. If
well managed in a sustainable way, it would be a good strategy
for combating food security. McDougall et al. (2019), evaluated
the stress of urban agriculture on the ecosystem in Sydney,
Australia, it was observed that the environmental loading ratio
was on the increase (5.82) with 14.66% renewable input. They
concluded that the system was inefficient. However, with a better
management strategy, there was a drastic improvement, with
an environmental loading ratio of 1.32. The use of synthetic
fertilizers and other agrochemicals should be discouraged.
Alternatively, organic waste and self-composting that promote
plant growth should be encouraged, and bioinoculants proven
to be safe could be incorporated for efficiency. Considering
proximity to human settlement, urban agriculturists should
be trained, certified, and continuously monitored before and
during agricultural practice. Failure to do this could result in
the indiscriminate use of synthetic fertilizers and agrochemicals,
thereby increasing the exposure of many to their environmental
and health risks.

LIMITATIONS AND PROSPECT

Intensification of agriculture has proved to be a threat to the
security of food at the present and in the future (El Mujtar et al.,
2019). Techniques in the agronomic management of soil should
be improved. Research on soil nitrification process still has gaps
to be covered and should be continuous. Considering the urgent
need to manage the process as a result of its environmental and
health effect, some of the prospects and suggestions for further
research include:

1. Extensive environmental toxicological studies of the
influencing factors should be carried out on agrochemicals
and weighed with their intended benefit before approval for
usage. Also, bioaccumulation and biomagnification along
the food chain should be evaluated. Already, the use of
agrochemicals (herbicide, fungicide, insecticide and synthetic
fertilizer) is discouraged because of their negative effects
in the long run. However, nitrification inhibitors are being
encouraged and the usage is gradually increasing. Many of
them are still under long term toxicological studies, they
appear alright at first usage, but with time the negative effect
is noticed. There should be a thorough investigation of its
effects on the environment and health.

2. Production of scientifically formulated and modified organic
fertilizer that can serve as an alternative to nitrogen-based
fertilizer. Plants express inert proteins that could promote
or suppress growth in plants when they are in contact
with factors externally (Olanrewaju et al., 2019). Also, the
fertility of soil needs to be considered when increasing
crop production (Omomowo and Babalola, 2019). Fertilizers
made from neem oil or cake can stabilize the nitrification
process and increase nitrogen use efficiency (Sarwar et al.,
2019). Using biotechnologically improved organic substances
to immobilize nitrate for later gradual release into the soil
environment would be beneficial.

3. Identifying and classifying nitrifying bacteria and archaea
associated with specific crop plants species using new
generation sequencing (NGS). The divergent thoughts of
researchers on nitrification processes result from incomplete
knowledge of the full range of its microbial network.
During the 4th International Conference on nitrification,
early career investigators were encouraged tomanage nitrogen
concentrations for the benefit of soil biodiversity (Klotz, 2016).
Nitrifying bacteria and archaea can be biotechnologically
worked on and their proliferation in soil environment can be
optimized for the management of nitrification process.

4. Influenced nitrification and denitrification processes’
contribution to global warming, and the use of micro
bioinoculants as a management strategy. Without the
influencing factors, the nitrification process’s contribution
to global warming would likely be minimal. However, yield
may be low except with the use of bioinoculants, which would
provide a gradual release of nutrient.

CONCLUSION

The process of nitrification affects global cycling of nitrogen
and its derivatives, nitrogen use efficiency, ecosystem health
and services. In unperturbed natural agroecosystems, only small
amounts of nitrogen and its derivatives are lost. However,
the present agroecosystem has highly increased the rate of
nitrification beyond what the biotic system can absorb. They
depend on synthetic fertilizers, nitrification inhibition and
other agro-substance which influences the soil nitrification
process. The effects of their influence are observed negatively
on the environment and biotic health in general. Proper
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management and biotechnology need to be put in place to
reduce and remediate their effect. Managing nitrification can
be achieved by having an in-depth understanding of the
process, initiating a well-planned monitoring strategy, using eco-
friendly and sustainable materials to improve the availability
of nitrogen in soils, deploying several strategies wholly and
specifically for the various chemicals and organisms distributed
within its system. Urban agriculture can be used to boost
food production, but it must be managed properly to ensure
environmental sustainability.
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