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Introduction: Reconstructive breeding based on autotetraploids to generate

triploid varieties is a promising breeding strategy in banana (Musa spp.).

Therefore understanding the molecular mechanisms underlying the

phenotypic di�erences between the original diploid and its autopolyploid

derivatives is of significant importance in such breeding programs of banana.

Methods: In this study, a number of non-chimeric autotetraploid plants,

confirmed by flow cytometry and chromosome counting were obtained using

colchicine treatment of ‘Pisang Berlin’ (AA Group), a diploid banana cultivar

highly resistant to Fusariumwilt Tropical Race 4 (Foc TR4) and widely cultivated

in Asia.

Results and discussion: The autotetraploids showed significant increase

in plant height, pseudostem diameter, root length, leaf thickness, leaf

area, and leaf chlorophyll content. Transcriptomic analysis indicated that

di�erentially expressed genes were mainly enriched in plant hormone signal

transduction, mitogen-activated protein kinase (MAPK) signaling pathway,

and carbon fixation in photosynthetic organelles. The genes related to the

metabolism, transport or signaling of auxin, abscisic acid (ABA), cytokinin

(CTK) and gibberellin (GA), as well as the genes encoding essential enzymes

in photosynthetic CO2 fixation were di�erentially expressed in leaves of

autotetraploids and most of them were up-regulated. Metabolomic analysis

revealed that the di�erentially accumulated metabolites were mainly involved

in plant hormone signal transduction, porphyrin and chlorophyll metabolism,

indole alkaloid biosynthesis, and carbon fixation in photosynthetic organelles.

The results therefore, demonstrate that the hormones IAA, ABA, and

photosynthetic regulation may play a vital role in the observed enhancement

in the autotetraploids. These could be used as molecular and biochemical

markers to facilitate the generation of triploid progenies as suitable new

varieties for cultivation.
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Introduction

Banana (Musa spp.) is one of the major cash crops in the

tropics and subtropics, as well as one of the major food crops in

most developing countries (Heslop-Harrison and Schwarzacher,

2007). Banana production can be affected by a number of

pests and diseases as well as climatic change (Dita et al.,

2011). Development of resistant varieties is considered the

most sustainable solution to banana productivity challenges.

However, traditional banana breeding is very complicated due to
most cultivated bananas being triploid (2n = 3x = 33) and very
low fertility or complete sterility. The lack of pest and disease
resistance genes has also been noted in most edible varieties

(Poerba et al., 2019). Several of the desired characteristics

are however, available in the diploid germplasm (AA and AB

groups), including high hand number, parthenocarpy, slim fruit

fingers, dwarf plant height, pest and disease resistance but

with low yields, and generally non-parthenogenesis (Ortiz and

Vuylsteke, 1995; Silva et al., 2001; Ssebuliba et al., 2006).

Polyploidization is a breeding technique that offers an

opportunity to create novel genetically improved polyploid

germplasm with increased interspecific fertility that can further

be used to generate triploid varieties through conventional

crossing programs (Sattler et al., 2016). Polyploid induction is

thus put forward as an important step in banana breeding.

Triploid bananas can be generated by crossing between diploid

and autotetraploid plants and this has become one of the most

important strategies in crossbreeding of bananas and has led

to the successful commercialization of banana varieties in the

Cavendish subgroup (Jenny et al., 2002; Perrier et al., 2019).

Autotetraploid plants can be obtained by crossing triploids

with diploids, chromosome doubling of diploids, somatic

hybridization, or genetic engineerin (Do Amaral et al., 2015;

Borges et al., 2016; De Carvalho Santos et al., 2019). Induction

of chromosome doubling using colchicine is widely used in

polyploid mutagenesis of various plants. To date, polyploidy

has been successfully induced in the crops like apple (Zhang

F. et al., 2015), citrus (Pablo et al., 2011; Wu et al., 2012),

and pear (Kadota and Niimi, 2002; Sun et al., 2009). However,

rather than the desired euploids, the aneuploids and even

hyperpolyploidy may occur in the chemical mutagenesis of

chromosome doubling. Polyploids generally showed organ

enlargement than the diploids in kiwifruits (Wu et al., 2012) and

rice (Zhang J. et al., 2015). Allario et al. (2011) found that the

autotetraploid leaves, roots, stems, and other organs of lemon

became larger. Polyploids also tended to be better adapted to the

environment. Polyploids of Hordeum vulgare, Citrus limonia as

well as Manihot esculenta showed enhanced drought resistance

compared to the corresponding diploid parents (Chen and Tang,

1945; Nassar, 2006; Allario et al., 2013). Apple autotetraploids

showed higher drought and salt resistance (Xue et al., 2015;

Zhang F. et al., 2015). Moreover, it was found that polyploidy

can accumulate more quality related metabolites, like sugars,

amino acids, and organic acids (Cohen et al., 2013). However,

the growth of some autopolyploids was weaker than those of the

diploids, exhibiting the characteristics of delayed development

and dwarfing. For example, the autotetraploids of Arabidopsis

spp. were weaker than the diploids (Fort et al., 2015), and the

autotetraploid orange and apple plants were reported to be

dwarfing (Syvertsen et al., 2000; Allario et al., 2011).

Efforts have been made to generate desired banana

genotypes through polyploidy induction (Poerba et al., 2019).

Banana plants generated by chromosome doubling mainly

showed increased pseudostem size, stomatal length, fruit,

and bunch weight (Hamill et al., 1992). The autotetraploid

plants obtained from the wild diploids were taller and more

robust, but with droopy leaves, fewer suckers, more sparse

roots, changed fruit size and shape, and doubled anthocyanin

content in the leaves (Vakili, 1967). Chromosome doubling

of SH-3362 (AA) resulted in stronger autotetraploid plants

with thicker pseudostems, thicker roots, and wider leaves

(Hamill et al., 1992). In genotypes ‘Kluai Sa’ (AA) and

‘Kluai Leb Mu Nang’ (AA), leaf and fruit shape changed

in autotetraploid plants relative to their diploid counterparts

under the same growth conditions (Kanchanapoom and

Koarapatchaikul, 2012). Chromosome doubling of ‘Pisang

Lilin’ (AA) showed increased pseudostem diameter and plant

height. Leaf number at flowering and harvest stages as well

as bunch and fruit weights significantly increased in the

autotetraploids (Do Amaral et al., 2015). However, apart

from the phenotypic changes, little is known on molecular

mechanisms underlying the phenotypic difference between

diploid and its autopolyploid counterparts.

The diploid banana variety Pisang Berlin (AA) is highly

resistant to Fusarium wilt Tropical Race 4 (Foc TR4), and is

widely grown in southern China and other Southeast Asian

countries (Hapsari and Lestari, 2016; Zuo et al., 2018). It has

superior fruit quality, but the yields are low due to its small

hands and fruits size. Therefore in our breeding program, we

attempted to increase fruit size through polyploidization and

therefore improve the yields of the diploids with good fruit

quality characteristics. The present study focused on the growth

of the autotetraploid seedlings of Pisang Berlin and explored the

molecular mechanisms underlying phenotypic variation caused

by ploidy changes, which would allow better understanding and

utilizing the autotetraploids in the banana breeding program.

Materials and methods

Plant materials

The diploid banana variety Pisang Berlin (Musa acuminata,

AA genome; ITC0611, doi: 10.18730/9K96E) was used in this

study. The meristematic shoot tips of this variety were obtained

from the China’s National Banana Collection at Guangzhou, and
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FIGURE 1

Ploidy analysis of of Pisang Berlin (AA). (A) DNA content of diploids (the main peak at channel 100). (B) DNA content of triploids (the main peak at

channel 100–200). (C) DNA content of autotetraploid (the main peak at channel 200). (D) Chromosome number of diploids (2n = 2X = 22). (E)

Chromosome number of triploids (2n = 3X = 33). (F) Chromosome number of autotetraploids (2n = 4X = 44).

propagated in the solid Murashige and Skoog (MS) medium

under sterile conditions at 25◦C (Swamy et al., 1983). The pH

of the medium was adjusted between 5.7 and 5.8.

Chromosome doubling

In vitro induction of autotetraploids on shoot tips of Pisang

Berlin (treated by colchicine) was carried out according to

the method described by Bakry et al. (2007). Thereafter, the

shoot tips were grown in vitro in the liquid MS medium

(125mL) consisting of adenine sulfate (651.5µM) and 6-

benzylaminopurine (22.2µM, BAP). After that, they were kept

at 27◦C on a gyratory shaker at 80 rpm in liquid MS medium

for 7 days under 16-h/8-h light/dark cycle. Selected shoot tips

were treated with 1.25 mmol/L colchicine added to the 125ml

of liquid MS medium. The treated shoot tips were cultured in

darkness for 48 h at 80 rpm. Thereafter, the shoots were rinsed

in sterile water for 48 h at 80 rpm, followed by transfer into liquid

MS medium for additional 7 days culture. Finally, the shoots

were transferred into the solid MS medium for further sub-

culture.

Rooting culture and plant regeneration

After 30-days of post-initial sub-culture, the surviving

shoot tips were further sub-cultured twice or more at

every 35–40 days, followed by transfer into the rooting

medium (MS that contained 30 g/L sucrose and 7 g/L

agar solidification). Thereafter, all shoots were maintained

in the growing stage at 25 ± 2◦C and 16-h/8-h light-

dark cycle conditions. After 30-40 days, the rooted plantlets

were transferred into liquid Hoagland nutrient solutions

and retained for further 30 days (Hoagland and Arnon,

1950).

FCM-based ploidy degree determination

In order to determine the ploidy level, FCM was used

using the method proposed by Roux et al. (2004). Meanwhile,

sample preparation was conducted following the descriptions

of Poerba et al. (2019). Leaf tissues (20–30mg) were sampled

using a sharp scalpel blade and placed in glass petri dishes..

1mL LB01 buffer (363mg Tris, 148.9mg Na2EDTA, 20.2mg

spermine, 1.193 g KCl, 233.8mg NaCl, 200 ul Triton X-

100, 220 ul mercaptoethanol 200ml deionized water with

a pH of 7.5) (DoleŽel et al., 1989) was added to the plate.

The nuclear DNA was stained with 2µg/ml PI solution.

Thereafter, the nuclear suspension was filtered using the

50-µm nylon mesh, followed by maintenance on ice till

further experiments. FCM was performed to measure DNA

concentrations (C units) within the samples, with 1C indicating

the DNA concentration in the haploid chromosome set

(n). Following FCM, the fluorescence intensity distribution

(relative DNA concentration) was generally determined

in arbitrary units (channel numbers). In this study, one
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FIGURE 2

Phenotypic characterization of autotetraploid and diploid Pisang Berlin seedlings grown under the same conditions. (A, B) Phenotypic

comparison of autotetraploid and diploid Pisang Berlin seedlings. (C) The pseudostem diameter, plant height, maximum root length, leaf

thickness, leaf area, and chlorophyll content of autotetraploid and diploid Pisang Berlin seedlings. X2N represented diploids of Pisang Berlin. X4N

represented autotetraploids of Pisang Berlin. * in the figure represent significant di�erences at P < 0.05 level.

Musa acuminata ssp. malaccensis (2n = 22) sample was

utilized as the diploid reference (Poerba et al., 2019).

The flow cytometer was adjusted to ensure that the peak

represented the G1 nuclei appearing on channel 100. Later,

additional samples were normalized to locations relative to the

G1 peak.

Detection of chromosome number in the
root tips

Young root tips of plants were selected and sliced by wall-

removing low permeability and flame drying (Chen et al.,

1979). Enzymolysis was carried out in a mixed enzyme solution
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TABLE 1 RNA sequencing data and quality control.

Sample Raw reads Clean reads Mapped reads Clean bases Q 30 (%) GC content (%)

X1 49146166 47441494 44171524 (93.11%) 7.12G 94.81 50.96

X2 42717568 40921468 38203772 (93.36%) 6.14G 96.06 50.71

X3 46079646 44478910 41355175 (92.98%) 6.67G 95.95 50.29

X4 41287264 39209796 36417744 (92.88%) 5.88G 96.06 49.42

X5 46425252 43947988 40847833 (92.95%) 6.59G 95.48 49.95

X6 42116118 40230606 37307283 (92.73%) 6.03G 94.28 50.36

X1, X2, and X3 were diploids and X4, X4 and X4 were autotetraploid of Pisang Berlin.

(3% cellulase + 1% macerozyme) for 1.5 h. The smear was

fixed after cleaning with water, dried by alcohol lamp flame,

and then examined after staining with 5% Giemsa dye. A

preliminary microscopic examination was performed under a

10-fold Olympus microscope. The splits were photographed

under a 40x lens.

Phenotype analyses of diploid and
autotetraploid

Diploid (control) and autotetraploid plantlets were grown

in liquid Hoagland nutrient solutions for 30 days at 25 ± 2◦C

and 16-h/8-h light-dark cycle conditions, photographed, and the

phenotypes were recorded as described by An et al. (2009). Plant

height, length, and width of leaves were measured by measuring

tape, stem diameter and leaf thickness were measured by an

electronic micrometer, and chlorophyll value was measured by

a portable chlorophyll meter. The leaf area was calculated as

described by Liu et al. (2013).

cDNA preparation and illumina
sequencing

Total RNA was isolated from the cultured leaves of diploids

(X1, X2, and X3) and autotetraploids (X4, X5, and X6) of

banana plants after 30 days with EASY spin Plus Plant RNA

Kit (AidLab, Beijing). RNA concentration was detected by

Nanodrop. Agilent 2100 Bioanalyzer (Agilent Technologies,

Santa Clara, CA, USA) was employed for detecting RIN

and 28S/18S values. Then, RNA integrity and quality were

measured by 1% AGE. Additionally, 18 cDNA libraries were

prepared in line with specific protocols using NEB Next Ultra

RNA Library Prep Kit. This was followed by the sequencing

of cDNA libraries by Novogene (Beijing, China), adopting

Illumina HiSeq TM 2000 platform. The quality of raw reads

was checked using FastQC (http://www.bioinformatics.

babraham.ac.uk/projects/fastqc/) before data analysis. The

impure reads were filtered, whereas the high-quality ones were

FIGURE 3

Principle component analysis (PCA) of diploids and

autotetraploids of Pisang Berlin samples. X2N represented the

diploids of Pisang Berlin (X1, X2, and X3 represented sample

replicates). X4N represented the autotetraploids of Pisang Berlin

(X4, X5, and X6 represented sample replicates).

acquired using Trinity by adopting default parameters, which

were later utilized for constructing the distinct consensus

sequences (Grabherr et al., 2011). Filtered reads were

compared with the Musa acuminata subsp. malaccensis (ID:

ensemblplants_musa_acuminata_subsp_malaccensis_asm31385

v1_gca_000313855_1) using TopHat (v2.0.10) (Trapnell et al.,

2012).

Gene analysis and functional annotation

Using the RPKM (Reads Per kb per Million reads)

approach, unigene expression was estimated by cuffdiff

(Trapnell et al., 2012). DEGseq v1.14.0 software was used

for identifying differentially expressed genes (DEGs). All
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FIGURE 4

GO enrichment and KEGG enrichment of di�erentially expressed genes in diploids and autotetraploids of Pisang Berlin. (A) GO enrichment and

di�erent colors represented di�erent functional categories, including BP biological processes, CC cellular components, and MF molecular

functions. (B) KEGG enrichment and gene ratio represented the ration of the number of di�erentially expressed genes to the total gene number

in the specific pathway, green indicated a low Q-value, while red indicated a high Q-value.

genes were assigned with corresponding p-values, and

DEGs were selected upon the thresholds of |log2|≥1 and

p≤0.05. Later, acquired unigenes were mapped against Nr

(Non-redundant Protein Sequence Database in GenBank),

Swiss-Prot (Protein Sequence Database), GO (gene ontology;

Conesa et al., 2005), COG (Cluster of Orthologous Groups

of proteins; Tatusov et al., 2003), and KEGG (Kyoto

Encyclopedia of Genes and Genomes; Kanehisa et al.,

2006) databases.

Metabolic profiling

The leaf tissue samples of diploid and autotetraploid of

banana plants were freeze dried in a lyophilizer (Scientz-100F)

under vacuum, followed by grinding into fine powders. Later,

80% methanol (500 µL), added with 0.1% formic acid, to

dissolve the powders (100mg). After overnight preservation

at 4 ◦C the samples were vortexed six times to enhance

extraction efficiency. Later, the samples were centrifuged for

10min at 15,000 g and the supernatants were then filtered

using a 0.22µm microporous filter, followed by processing

for Ultra Performance Liquid Chromatography (UPLC)-mass

spectrometry (MS/MS) (Want et al., 2010; Dunn et al.,

2011). To characterize the secondary metabolites, around 0.1 g

lyophilized leaf sample powders were subjected to methanol

(80%) extraction. Then, the QTOF 6520 mass spectrometer

(Agilent Technologies, Palo Alto, CA, USA) was employed for

profiling secondary metabolites by adopting the 1200 series

Rapid Resolution HPLC system. Typical fragment ions were

compared to the reference for identifying secondary metabolites

as well as additional amino acids (Wang et al., 2016). Metabolites

that shared close fragment ions were deemed as identical

compounds. Statistical analysis of secondarymetabolite data was

performed using Analyst 1.6.1 software (AB SCIEX, Ontario,

Canada). Variable importance in projection (VIP) values were

determined through partial least squares discriminant analysis.

The differentially changed metabolites (DCMs) were selected

based on the thresholds of VIP > 1, p < 0.05, and FC > 1.5

or <0.667.

Reverse transcription of and qRT-PCR

M-MLV reverse transcriptase was adopted for synthesizing

2 µg RNA in line with Evo M-MLV RT Kit instructions

(Accurate biotechnology, China) and further diluted to 1:6

for subsequent experiments. Ten genes were validated by

qRT-PCR with thermal cycler apparatus (BIO-RAD iQ3 7700,

Applied Biosystems). The 20 mm3 qRT-PCR reaction system

contained 2×SYBR Green Pro Taq HS Premix (10 mm3), ROX

Reference Dye (0.4 mm3), respective primers (10 µmol ×
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FIGURE 5

Endogenous hormone di�erentially expressed genes in diploid and autotetraploid of Pisang Berlin. X1, X2, and X3 represented the diploid

banana plants, and X4, X5, and X6 represented the autotetraploid banana plants.

dm−3, 0.4 mm3 each), RNase Free ddH2O (7.8 mm3) and

cDNA (1 mm3). The thermal profile was comprised of two

segments: 30-S at 95◦C; 5-S denaturation at 95 ◦C, and 30-

S annealing at 60 ◦C for altogether 40 cycles. Every assay

was repeated thrice. Primer Express 2.0 Software (PE Applied

Biosystems, USA) was applied in primer designing with default

parameters. Supplementary Table S1 displayed the sequences

of all the primers. Excel software and 2−11Ct (Livak and

Schmittgen, 2001) were used for data analysis with MaCAC-Q

as the reference.

Statistical analysis

ANOVA was adopted using the SPSS 19.0 statistics

software for comparing phenotypic data of different

samples. The Fisher’s least significance difference (LSD)

test was applied for multiple comparisons of variables at 0.05

(p < 0.05).

Results

Autotetraploids generated by colchicine
treatment

We carried out the chromosome doubling by treating shoot

tips of Pisang Berlin (Musa spp. AA genome) with colchicine.

Using flow cytometry, we checked the ploidy levels of the

shoot tips in each sub-culturing step (without damaging their

meristematic cells) in order to dissociate chimeras by repeated

vegetative propagation. After three successive sub cultures,

autotetraploid shoots were confirmed and then transferred into

the rooting culture medium. Accurate chromosome counts

in root tips were carried out to verify ploidy levels of the

regenerated autotetraploid plantlets (Figure 1). Compared to the

diploid plants, autotetraploid plants exhibited a better growth

performance, exhibiting significant increase in pseudostem

diameter, plant height, maximum root length, leaf thickness, leaf

area, and chlorophyll content (Figure 2).
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FIGURE 6

Photosynthesis di�erentially expressed genes in diploids and autotetraploids of Pisang Berlin. X1, X2, and X3 represented the diploid banana

plants, and X4, X5, and X6 represented the autotetraploid banana plants.

Transcriptomic analysis and di�erentially
expressed genes

Transcriptomic analysis was carried out on the diploid

and autotetraploid plants to explore the genes responsible for

the differential growth. The overall raw/clean reads within

every sample ranged between 41,287,264 and 49,146,166. The

sequence reads were aligned into the reference genome of

banana, and results indicated that > 92% were map-able.

This yielded altogether of 38.43 Gb of clean data. The >

94% Q30 and 50% GC concentrations suggested a high-quality

transcriptomic results for the subsequent analyses (Table 1).

The PCA analysis classified overall variation in two major

components as 51.68 and 17.65%. These observations were

validated through PCA, which suggested that diploids tissues

fall away from autotetraploid tissues (Figure 3). These samples

were also subject to hierarchical clustering on the basis of RPKM

values. This approach classified six samples into two main

groups: one (X2N) containing X1, X2, and X3, while the other

(X4N) comprised X4, X5, and X6 (Figure 3).

There were 25334 DEGs in X4N vs. X2N. GO-

function classification statistics were further performed

on DEGs in autotetraploids and diploids after doubling.

The DEGs were mainly found enriched in the plastid and

chloroplast parts in the cellular composition of Pisang

Berlin (X4N.vs.X2N) (Figure 4A). KEGG enrichment further

indicated DEGs were mainly enriched in plant hormone

signal transduction, MAPK signaling pathway, and carbon

fixation in photosynthetic organisms (Figure 4B). The change

in polyploid phenotype was tightly associated with plant

endogenous hormones (Dai et al., 2015). Therefore, we

focused on the DEGs related to plant hormone between

autotetraploids and diploids because we found that the

growth of autotetraploids at the seedling stage had a
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FIGURE 7

Quantitative RT-PCR results of up-regulated genes in autotetraploid of Pisang Berlin.

better plant performance compared with those of diploids

(Figure 2).

There were eight auxin-related genes within the

autotetraploids of Pisang Berlin, including four with

up-regulation and four with down-regulation. The

up-regulated DEGs included three Ma5NG4 genes

(GSMUA_Achr2G22430_001, GSMUA_Achr4G12460_001,

and GSMUA_Achr4G04580_001 encoding auxin-induced

5NG4), which were auxin-induced protein with transport

function and played a role in signaling of auxin (Kaur

et al., 2017); MaIAA30 (GSMUA_Achr4G22520_001)

encoded an auxin-responsive protein (Sato and Yamamoto,

2008). The down-regulated DEGs included MaARF18

gene (GSMUA_AchrUn_randomG11300_001 encoding

auxin-response factor 18) which inhibited activity on

downstream auxin genes (Chen et al., 2021); MaARF7

gene (GSMUA_Achr6G29070_001 encoding auxin-response

factor 7) negatively regulated auxin (Jong et al., 2009);

Two MaPIN genes (GSMUA_Achr8G23120_001 and

GSMUA_Achr10G07210_001) were auxin efflux carrier

component and inhibited cell growth (Xu et al., 2005) (Figure 5;

Supplementary Table S2).

Furthermore, we screened five gibberellin (GA)-related

DEGs, including four DEGs up-regulated and one down-

regulated in the autotetraploids. The four up-regulated

DEGs included three MaCIGR1 genes and one MaGA2ox8

gene. The MaCIGR1 genes (GSMUA_Achr9G12070_001,

GSMUA_Achr6G24310_001, and GSMUA_Achr8G03620_001),

are belonged to the GRAS family and encode chitin-inducible

gibberellin-responsive protein 1, which could play an

importance role in regulating plant height (Kovi et al.,

2011). The MaGA2ox8 gene (GSMUA_Achr9G11880_001)

encodes gibberellin 2-beta-dioxygenase 8 and may regulate GA

levels (Zhai et al., 2019). The down-regulated DEGs included

MaGID1 (GSMUA_Achr6G16980_001 encoding gibberellin

receptor GID1) occluded gibberellin in a deep binding pocket

covered by its N-terminal helical switch region (Murase et al.,

2008) (Figure 5; Supplementary Table S2).

Moreover, there were four abscisic acid (ABA)-related

DEGs within the autotetraploids, including two that were

up-regulated and two that were down-regulated. The

two up-regulated DEGs included one ABA 8’-hydroxylase

1 gene (GSMUA_Achr4G18430_001) promoting the

content of ABA (Kitahata et al., 2005), and one MaPYL8

gene (GSMUA_Achr3G03480_001 encoding abscisic acid

receptor PYL8) positively regulating ABA signaling during

germination and abiotic stress responses (Saavedra et al.,

2010). The two down-regulated DEGs were MaABI5 genes

(GSMUA_Achr8G07740_001 and GSMUA_Achr10G00420_001

encoding abscisic acid-insensitive 5) which would
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FIGURE 8

Principal component analysis (PCA) analysis of diploids and

autotetraploids of Pisang Berlin samples.The ordinate

represented the clustering of samples and the abscissa

represented the clustering of metabolites. The diploids and

autotetraploids of Pisang Berlin were represented as following,

X2N represented diploids of Pisang Berlin (1, 2, 3, and 4

represented sample replicates), X4N represented autotetraploid

of Pisang Berlin (5, 6, 7, and eight represented sample replicates).

negatively regulate ABA signaling (Brocard, 2002; Figure 5;

Supplementary Table S2).

It was noted that six down-regulated DEGs

related with cytokinin, and the six MaCKX genes

(GSMUA_Achr7G02270_001,GSMUA_Achr8G22680_001,

GSMUA_Achr9G17760_001,GSMUA_Achr5G11840_001,

GSMUA_Achr1G01980_001, GSMUA_Achr1G02900_001

encoding cytokinin dehydrogenase) inactivated cytokinin

(Chen et al., 2009; Figure 5; Supplementary Table S2).

Our results showed that there were seven differentially

expressed MaRubisco genes encoding Ribulose 1,5-

bisphosphate carboxylase, which were down-regulated in

autotetraploids of Pisang Berlin. There is one MaPEPC

(GSMUA_Achr6G26850_001 encoding phosphoenolpyruvate

carboxylase), which was up-regulated in the autotetraploids of

Pisang Berlin. PEPC catalyzed the irreversible carboxylation

of phosphoenolpyruvate (PEP) to form oxaloacetate

which played a key role in photosynthesis (Yasushi et al.,

2003). There were three MaRPI DEGs encoding ribose-5-

phosphate isomerase DEGs, including one with up-regulation

(GSMUA_Achr4G03710_001) and the other two with

down-regulation in the autotetraploids. There were five

MaMDH DEGs encoding malate dehydrogenase and three

MaFBP DEGs encoding fructose-1,6-bisphosphatase down-

regulated in the autotetraploids of Pisang Berlin (Figure 6;

Supplementary Table S3). The twelve DEGs that were up-

regulated in the autotetraploids were further screened for

qRT-PCR analysis, and the results were consistent with the

transcriptome results (Figure 7).

Metabolome analysis and di�erential
metabolites

PCA analysis classified overall variation as PC1 and

PC2, contributing 16.92/18.17%, respectively (Figure 8). The

correlations between samples with the same ploidy were high,

indicating good repeatability of samples, as well as stability and

reliability of the experimental data. The results of metabolome

analysis revealed that metabolites of autotetraploid seedlings

were significantly different from those of diploid banana

seedlings (Figure 8).

Our results indicated that there were 276 differential

metabolites in the autotetraploids and diploids of Pisang

Berlin. We found 107 differential metabolites that were up-

regulated in the autotetraploids. Furthermore, the KEGG

pathway enrichment analysis showed that the significantly

enriched pathways were biosynthesis of amino acids, porphyrin

and chlorophyll metabolism, indole alkaloid biosynthesis,

and carbon fixation in photosynthetic organisms (Figure 9;

Supplementary Table S4).

We further analyzed metabolites associated with hormones

and photosynthesis. We found that DL-tryptophan, tabersonine,

trans-3-Indoleacrylic acid, Indole, and skatole related to auxin,

as well as Abscisic acid, present at high levels in the

autotetraploids. In contrast, zeatin-7-N-glucoside related to

cytokinin, and biliverdin, D-ribulose 5-phosphate related to

photosynthesis present at high levels in diploids of Pisang Berlin

(Table 2).

Combined analysis of the metabolome and transcriptome

revealed that, DEGs and differential metabolites in diploids and

autotetraploids of Pisang Berlin, were found to be enriched in

30 metabolic pathways. DEGs and DCMs were mostly related to

phenylpropanoid and amino acid biosynthesis, as well as plant

hormone signaling in Pisang Berlin (Figure 10).

Discussion

Banana breeding for triploids is believed to be the optimum

for cultivation in the banana industry, since the triploids exhibit

better agronomic characteristics, good fruit quality and infertile

or (seedless; Bakry et al., 2007). The reconstructive breeding to

generate banana (Musa spp.) triploid varieties is a promising

breeding strategy based on artificial autotetraploids as a breeding

step. Induction of autotetraploid plants during mitosis with

spindle fiber-inhibiting chemicals (such as colchicines and

oryzalin) is a feasible approach to develop autotetraploids,

but chimeras may occur during the polyploidy induction by

colchicine, while some plants of ploidy variation could return to

their original ploidy (De Carvalho Santos et al., 2019). In this

study, regenerated plants of autotetraploids were obtained by

colchicine induction (Figure 1). The mixoploidy phenomenon

observed after the first and second generation of propagation

was detected by the FCM approach (Pio et al., 2014), and
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FIGURE 9

Scatter plot of 20 KEGG pathways between diploids and autotetraploids of Pisang Berlin of the di�erentially accumulated metabolites

enrichment analysis. The degree of enrichment is shown by ratio, P-value, and the number of metabolites enriched in each pathway. X2N

represented diploids of Pisang Berlin; X4N represented autotetraploid of Pisang Berlin.

this phenomenon, known as “retromutation” usually occurs in

polyploid cells (Bakry et al., 2007). To avoid this phenomenon,

we used the strategy of repeated vegetative propagation to

dissociate chimeras (Roux et al., 2001), and obtained the non-

chimeral autotetraploids (Figure 1).

Polyploids that were generated by chromosome doubling

could have some superior agronomic features, including

increased fruit size, disease tolerance, and seedless (Sanford,

1983; Predieri, 2001; Kanchanapoom and Koarapatchaikul,

2012). In this study, autotetraploids were obtained from

treatment with colchicine on meristematic shoot tips of diploids

Pisang Berlin (AA). The autotetraploid plantlets exhibited

better plant performance, displaying significantly increases in

height and diameter of pseudostem, root length, thickness and

area of leaves, as well as leaf chlorophyll content, compared

to the diploid control (Figure 2). This effect seems to be

associated with the gene dosage effect as would be expected.

Previous research based on colchicine derived polyploidy also

obtained similar results (Vakili, 1967; Hamill et al., 1992).

Polyploidy has the general effect of increasing gene expression

levels, which would result in enhancing plant resistance and

improving adaptation to adverse environmental conditions

(Sattler et al., 2016).

Endogenous plant hormones are synthesized and

transported to various parts that regulate growth and

development by forming different concentration gradients

and ratios (Arnao and Hernández-Ruiz, 2018). Polyploidy

plants usually show organ hypertrophy and longer growth
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TABLE 2 Di�erential metabolites associated with growth hormone.

Compound_ID Name log2FC P-value VIP Up.Down

Com_622 DL-Tryptophan 2.688060296 0.000143895 2.142428434 up

Com_6035 Tabersonine 1.536882485 0.003161298 2.093947607 up

Com_21447 Abscisic Acid 2.66297236 0.027466353 2.305281688 up

Com_221 trans-3-Indoleacrylic acid 2.234765359 0.000545497 2.035622108 up

Com_1203 Indole 2.222727091 0.000570632 2.019590916 up

Com_5715 Skatole 1.572345839 0.001128781 1.83655634 up

Com_7656 Zeatin-7-N-glucoside −0.736131109 0.004628143 1.345465678 down

Com_7524 Biliverdin −0.635862077 0.040149073 1.13956098 down

Com_344 D-Ribulose 5-phosphate −1.728866675 0.026882755 2.172300016 down

FIGURE 10

Association analysis of di�erential expression genes and di�erential metabolites. The abscissa represented the ratio of the metabolites or genes

enriched in this pathway to the number of metabolites or genes annotated in this pathway, the ordinate represented the KEGG pathway

enriched by metabolome and transcriptome. Count represented the number of metabolites or genes enriched in the pathway. X2N, diploids of

Pisang Berlin; X4N, autotetraploid of Pisang Berlin.

periods, mainly due to the alterations of endogenous hormone

levels. Previous reports showed that the DEGs related to

cell development and carbohydrate metabolism, showed up-

regulation within poplar polyploids (Cheng et al., 2015). In

autotetraploid plants of Atractylodes lancea, their increasing

stress resistance and phenotypic changes in leaves, may be

related to the DEGs including DnaK/Hsp70, ACO, ETR/ERS,

FAD2, AOS, LOX, PHS1/PAS2 and YWHAE (Ul Haq et al.,

2019). Another study found that in autotetraploids of birch

(Betula platyphylla) and mulberry (Morus alba), the phenotypic

changes would be attributed to the differentially expressed genes

involved in signal transduction of plant hormones (including

cytokinin, gibberellins, ethylene, and auxin; Mu et al., 2012; Dai

et al., 2015).
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The metabolic changes caused by polyploidy usually endue

plants with stronger environmental adaptability. For example in

willow plants, it was observed that the endogenous hormones

(auxin and gibberellin) accumulated more in autotetraploids’

root tips (Dudits et al., 2016), in comparison to the diploids.

In our study, we analyzed genes associated with endogenous

hormones. In autotetraploids of Pisang Berlin (AA), the genes

Ma5NG4 and MaIAA30 were up-regulated, whereas the genes

MaARF18, MaARF7 and MaPIN were down-regulated, which

may result in higher auxin content and afterwards lead to

growth promotion (Figures 2, 5, Supplementary Table S2). The

gibberellin-related genes, MaCIGR1 and MaGA2ox8 were up-

regulated, MaGID1 was down-regulated, indicating that these

genes might play an importance role in increasing the plant

height of autotetraploids (Supplementary Table S2).

Abscisic acid (ABA) has the effect on the slow growth

when in vitro preservation of Mahesak (Tectona grandis)

(Tongsad et al., 2020). In our study, the up-regulation of

ABA 8’-hydroxylase 1 and MaPYL8, as well as down-regulation

of MaABI5, may lead to the high levels of abscisic acid

found in the autotetraploids (Figure 5, Supplementary Table S2).

Interestingly, we recently observed the slow plant growth

occurred in autotetraploid plants of Pisang Berlin in the field,

which also could be due to the inhibition effect caused by ABA

(Humplík et al., 2017). Furthermore, we found that six genes of

MaCKX cytokinins in the autotetraploids were down-regulated,

and zeatin-7-N-glucoside related to cytokinin present at

low levels (Figure 5, Supplementary Table S2). These evidences

confirmed that MaCKX genes might play an important role in

inactivation of cytokinins.

The photosynthetic process is considered as a series

of enzymatic reactions, which involves genes related to

Ribulose 1,5-bisphosphate carboxylase (Rubisco), malate

dehydrogenase (MDH), ribose-5-phosphate isomerase

(RPI), phosphoenolpyruvate carboxylase (PEP), fructose-1,6-

bisphosphatase (FBP) (Whitney and Andrews, 2001; Liang et al.,

2011; Wang et al., 2011; Ciou et al., 2015). Rubisco is responsible

for the first step of the dark reaction in photosynthesis, but

its catalytic efficiency is very low (Sharwood, 2017; Galmés

et al., 2019). From our work, we identified the down-regulated

Rubisco DEGs, as well as the up-regulated DEGs of PEP

and RPI (Figure 6, Supplementary Table S3), which would

possibly have critical positive effects on photosynthesis

of the autotetraploids. Dai et al. (2015) also found that,

the larger plants of autotetraploid mulberry trees were

associated with the differentially expressed genes involved in

photosynthesis biosynthesis.

Conclusion

Through in vitro chromosome doubling, we obtained the

non-chimeral autotetraploids of M. acuminata (AA) “Pisang

Berlin”, a highly resistant banana diploid variety to Foc

TR4. The autotetraploids showed significant increases in plant

height, pseudostem diameter, main root length, and leaf

thickness, area, and chlorophyll content. The evidences from

transcriptome and metabolome profiling demonstrated that

the hormones IAA, ABA, and photosynthetic regulation may

play a vital role in the plant growth of autotetraploids in

bananas. However, we contend that further investigations

are needed to analyze the autotetraploids cultivated and

hybridized with diploid elite cultivars for producing superior

triploid hybrids that might have better values in sustainable

breeding programs.
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