AUTHOR=Fitriatin Betty Natalie , Mulyani Oviyanti , Herdiyantoro Diyan , Alahmadi Tahani Awad , Pellegrini Marika
TITLE=Metabolic characterization of phosphate solubilizing microorganisms and their role in improving soil phosphate solubility, yield of upland rice (Oryza sativa L.), and phosphorus fertilizers efficiency
JOURNAL=Frontiers in Sustainable Food Systems
VOLUME=6
YEAR=2022
URL=https://www.frontiersin.org/journals/sustainable-food-systems/articles/10.3389/fsufs.2022.1032708
DOI=10.3389/fsufs.2022.1032708
ISSN=2571-581X
ABSTRACT=
Phosphate solubilizing microbes (PSM) can improve soil P availability by P dissolution. These microbes can make substances that regulate plant growth, which promotes plant growth. The present study aimed to characterize PSM and determine how PSM application affected P solubilization, soil phosphatase activity, and upland rice yield. The greenhouse experiment used a factorial randomized block design (RBD) with two factors and three replications. The first factor was PSM isolates, which came in four different forms: without microbes, with microbes (Burkholderia sp.), with fungus (Penicillium sp.), and with a combination of microbes (Burkholderia sp. and Penicillium sp.). The PSM isolates were characterized to analyze the production of organic acids, phosphatase enzymes, and phytohormones. The second factor was the superphosphate fertilizer dose, which has four levels: 0, 50, 75, and 100 kg P ha−1. According to the PSM characterization, it produced organic acids such as lactate acid, oxalate acid, citric acid, and acetate acid, as well as phytohormones (IAA) and the enzyme phosphatase. The pot experiment results show that the PSM inoculation raised the available P and soil phosphatase, P content of the plant, decreased soil organic P, and increased upland rice production. For improving available P, phosphatase activity, P content of the plant, and upland rice yields, mixed inoculants of phosphate-solubilizing bacteria and fungi performed better. The availability of soil P, the activity of the enzyme phosphatase, and the upland rice yields were all improved by applying P fertilizer at 75 kg P ha−1. This study showed that PSM as a biofertilizer reduced the dosage of inorganic fertilizers by up to 25%.