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Phosphate solubilizing microbes (PSM) can improve soil P availability by P

dissolution. These microbes can make substances that regulate plant growth,

which promotes plant growth. The present study aimed to characterize PSM

and determine how PSM application a�ected P solubilization, soil phosphatase

activity, and upland rice yield. The greenhouse experiment used a factorial

randomized block design (RBD) with two factors and three replications. The

first factor was PSM isolates, which came in four di�erent forms: without

microbes, with microbes (Burkholderia sp.), with fungus (Penicillium sp.),

and with a combination of microbes (Burkholderia sp. and Penicillium sp.).

The PSM isolates were characterized to analyze the production of organic

acids, phosphatase enzymes, and phytohormones. The second factor was

the superphosphate fertilizer dose, which has four levels: 0, 50, 75, and

100 kg P ha−1. According to the PSM characterization, it produced organic

acids such as lactate acid, oxalate acid, citric acid, and acetate acid, as well

as phytohormones (IAA) and the enzyme phosphatase. The pot experiment

results show that the PSM inoculation raised the available P and soil

phosphatase, P content of the plant, decreased soil organic P, and increased

upland rice production. For improving available P, phosphatase activity, P

content of the plant, and upland rice yields, mixed inoculants of phosphate-

solubilizing bacteria and fungi performed better. The availability of soil P,

the activity of the enzyme phosphatase, and the upland rice yields were all
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improved by applying P fertilizer at 75 kg P ha−1. This study showed that PSM

as a biofertilizer reduced the dosage of inorganic fertilizers by up to 25%.

KEYWORDS

available P, organic acid, phosphatase, organic P, P fertilizer

Introduction

One of the macronutrients crucial for plant growth is

phosphorus (P). However, several barriers prevent plants from

accessing P in the soil, particularly in marginal soil. The

primary issue with phosphorus is that it is present in high

soil concentrations yet inaccessible to plants. In this instance,

it heavily depends on the soil’s qualities, properties, and

management (Balemi and Negisho, 2012; Xu et al., 2020). In

agricultural soils, high P fixation by Al and Fe hydroxides

is frequently a problem (Penn and Camberato, 2019). The

key factors that contributed to the lack of P in most soil

are the low soil P availability, low soil P total, low fixation

of soluble P, and the fact that most of the P in soil is still

in organic form and not available to plants (Shen et al.,

2011).

It is required to develop the usage of microbes that

contribute to the transformation of P nutrients in the soil

and can be utilized as biofertilizers, such as phosphate

solubilizing microbes, to increase plant development and

fertilization effectiveness (Kalayu, 2019). Recently, the

genus Burkholderia has become necessary as phosphate

solubilizing microbes (Moreno-Conn et al., 2021) and the

genus Penicillium (Reyes et al., 2001; Countinho and Felix,

2012). The phosphate solubilizing microbes (PSM) can

remove phosphorus (P) from bonds with aluminum, iron,

calcium, and magnesium (Al, Fe, Ca, and Mg), allowing it to

dissolve P that is unavailable to plants and make it available

to them (Alori et al., 2017). Sharma et al. (2013) stated

that PSM could solubilize and mineralize P from inorganic

and organic pools of total soil P. This is because, in the

soil, organic acids produced by bacteria can create stable

complexes with P-binding cations (Menezes-Blackburn et al.,

2016).

In addition to being able to release fixed P, the phosphate-

solubilizing microbes have various benefits for promoting plant

growth, including the ability to create phosphatase enzymes

(Behera et al., 2017; Fitriatin et al., 2020). According to

Stevenson (1986), between 15 and 80% of soil’s phosphorus (P) is

contained in its organic form. P availability may come from soils

with a high organic P concentration (Khosa et al., 2021). Since

plants cannot directly utilize the inorganic form of P, it must first

be converted into a soluble (organic) P through a mineralization

process helped by soil enzymes (Quiquampoix and Mousain,

2003; Tian et al., 2021).

The phosphate solubilizing microbes as plant growth-

promoting rhizobacteria PGPR play an essential role in

increasing plant growth and yield (Kalam et al., 2020; Basu

et al., 2021; Hamid et al., 2021; Nasab et al., 2021) and can

withstand the adverse effects arising from various biotic and

abiotic stresses (Kour et al., 2019; Bhat et al., 2022; Gowtham

et al., 2022; Shah et al., 2022; Verma et al., 2022). Kusale

et al. (2021a,b) isolated Klebsiella variicola from the wheat

rhizosphere, producing phytohormone, organic acid, phytase,

salt ameliorating, and antioxidant metabolites. They found

this bacterium as a potential bioinoculant for salinity stress

management. Another potential for PGPR can inhibit plant

diseases. Suriani et al. (2020) reported that the significant

reduction of blast disease due to applying a mixture of piper

leaves extracts and PGPR improved the growth and yield

of rice.

The importance of phosphate-solubilizing microbes

in increasing nutrient availability and food yield has

been demonstrated in numerous studies. Common bean

productivity and nutritional availability increased due

to phosphate-solubilizing bacteria, promoting biological

activity (Bamagoos et al., 2021). Pereira et al. (2020) applied

phosphate-solubilizing bacteria as plant growth-promoting

bacteria (PGPB) Azospirillum brasilense, Bacillus subtilis,

and Pseudomonas fluorescens increased maize production

by up to 34% and increased plant P uptake. To improve the

soil P nutrient content and maximize the P fertilization, it

is necessary to investigate the characteristics of PSM and

their ability to increase P solubility in the soil through

P organic mineralization into P inorganic and fixed

P dissolving.

Materials and methods

Soil sample collection

Burkholderia sp. and Penicillium sp. were isolated

from the rice rhizosphere. Ten grams of rhizospheric soil

samples (10 cm depth) were collected from Jatinangor

District, Sumedang Regency, West Java Province,

Indonesia (6054′56, 4′′S) and (107046′16, 9′′E). Soil

samples as a source of isolates of phosphate solubilizing

microbes were stored in zip lock bags and transferred to

the laboratory.
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Isolation of P solubilizing microbes

Isolation of PSM was carried out by a serial dilution plate

method using Pikovskaya media (10 g glucose, 5 g Ca3(PO4)2,

0.2 NaCl, 0.5 g (NH4)SO4, 0.1 g MgSO4·7H2O, 0.5 g yeast

extract, 0.2 g KCl, 0.002 g FeSO4·7H2O, 0.002 g MnSO4·H2O,

15 g agar, in 1 L distilled water, pH 7) (Nautiyal, 1999). One

gram soil sample was dissolved into 9ml of sterilized distilled

water in test tubes and mixed. The serial soil dilutions were

made for 10−4, 10−5, 10−6, and 10−7. Furthermore, 0.5ml of

each dilution was drawn using a micropipette and placed on to

plate with Pikovskaya media, and spread using a sterile L-shaped

spreader. The plates were then inoculated for 2–5 days at room

temperature. The clear zone indicated the ability of the isolate

to dissolve phosphate in Pikovskaya media, which contains

insoluble phosphate (Tricalcium phosphate). The characteristic

morphology of Burkholderia sp. were small in diameter (about

1mm) and white or pale yellow with well-defined margins.

Burkholderia sp. are rod-shaped, motile, free-living, and Gram-

negative bacteria. While Penicillium sp. are filamentous fungi

that have branched conidiospores.

Estimation of organic acid production
and phosphatase activity

Organic acid was measured using HPLC (Photodiode Array

Detector, Singapore Product Waters 2998) (Sarker and Al-

Rashid, 2013). The mobile phase used was 5.0mM L−1 H2SO4

in ultrapure water (HPLC grade) at a flow rate of 0.6ml per

minute. 10 µl sample was injected with a run time of 40min

for each sample. Standard solutions were injected to obtain the

retention time for each compound.

Phosphatase enzyme activity was determined according to

Eivazi and Tabatabai method (Margesin, 1996). The substrate

was added with p-nitrophenyl to form the p-nitrophenol

compound through enzyme activity. Consecutively, it was

stained by sodium hydroxide solution, which can be detected

by a 400 nm spectrophotometer (Shimadzu Corp, Tokyo, Japan),

indicating phosphate enzyme activity.

Screening and estimation of IAA

The synthesis of phytohormones (IAA) was determined

by the colorimetric method of Gordon and Weber (Sarker

and Al-Rashid, 2013) using Salkowski’s reagent. Salkowski

reagent is a mixture of 35% perchloric acid (HClO4) and 0.5M

ferric chloride (FeCl3), which pink color developed by positive

reaction indicates IAA production. This method is mainly used

for detecting IAA from microbes.

Greenhouse studies

The pot experiment was conducted at an elevation of ∼782

meters above sea level in the greenhouse of the Agriculture

Faculty at Universitas Padjadjaran in West Java, Indonesia.

Ultisol from Jatinangor was employed and taken at a depth of

0 to 20 cm. The soil pH was 5.11, soil P availability was moderate

(16.9mg kg−1), its C-org level was moderate (2.86%), and its

CEC level was high (38.5 cmol kg−1). C-org. Using the Walkley

and Black method, the Bray method was used to determine P

availability, and CEC was determined using the 1N ammonium

acetate at pH 7 (van Reeuwijk, 2012).

A factorial randomized block design (RBD) with two factors

and three replications was used for the experimental setup. The

first factor was PSM isolates, which were divided into four levels:

those without microbes, those with Burkholderia sp., those with

Penicillium sp., and those with a combination of Burkholderia sp.

and Penicillium sp. The second factor was the superphosphate

fertilizer dose, which has four levels: 0, 50, 75, and 100 kg P ha−1.

This dose was used to determine the efficient dose range caused

by the application of PSM.

A mixture of soil (10 kg per pot with the size of 40 cm x

50 cm) and cow dung (50 g) was incubated for 2 weeks. When

two plants were planted per pot, and P fertilizer was applied. In

accordance with the specified dosage, P fertilizer was provided,

and PSM isolate was conducted with a density of 106 CFUml−1

and was inoculated to 10 ml pot−1.

According to the Eivazi and Tabatabai approach, soil

phosphatase, P availability, soil organic P utilizing extraction

method, and P content of plant were the observed responses

(Kjeldahl method). Total P in the plant can be extracted by wet

ashing method using a mixture of concentrated acids HNO3 and

HClO4. The level of the P element in the extract was measured

using a spectrophotometer (Soil Research Institute, 2005).

Statistical analysis

Data was collected for an analysis of variance (ANOVA), F-

Test was done to show the significant effects of tested treatments

on observed variables. Duncan Multiple Range Test (DMRT) at

P < 0.05 was used to compare treatment means.

Results and discussion

Biochemical characteristics of PSM

The synthesis of organic acids, phosphatase activity,

and concentration of P-dissolved in Pikovskaya media

indicated the phosphate solubilizing capacity of the isolates

(Supplementary Table 1). Analysis of the organic acids

production revealed that both isolates, Burkholderia sp. and
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Penicillium sp. produced organic acids, including lactate acid,

oxalate acid, citric acid, and acetate acid. Lactic acid was

produced in more amounts compared to other organic acids. In

comparison, glutamic acid was produced in the least amount.

The capacity of these bacteria to dissolve phosphate will differ

depending on their ability to produce organic acids (Sharma

et al., 2016; Serna-Posso et al., 2017). Osmolovskaya et al. (2018)

claimed that each organic acid has a different capacity to chelate

metal ions. Two factors, including the stability constant of

complex organic acids with metal ions and the structure of the

hydroxyl and carboxyl molecules in the primary carbon chain,

affect this variance. Yang et al. (2022) reported that the capacity

of phosphate-solubilizing fungi to produce organic acids and a

decrease in the pH of the medium is closely related to the ability

of phosphate solubilizing to produce organic acids.

Burkholderia sp. produced more organic acids than

Penicillium sp. As a result, it had a better capacity to dissolve P

than Penicillium sp. It also showed higher phosphatase enzymes

and more production of IAA. Bacteria generally exhibit higher

Psolubilization than fungi. The synergism action of Burkholderia

sp. and Penicillium sp. can increase the production of organic

acids and, thus, more P solubilization. Previous studies have

shown that the production of organic acids by the co-culture

(bacteria and fungi) was more significant than the sum of

organic acid production by the individual cultures (Rodrigues

and Nahas, 2012).

Phosphatase activity and soil P

Analysis of soil phosphatase showed a rise carried on by

PSM inoculation. Compared to the other treatments, mixed

inoculations of Burkholderia sp. and Penicillium sp. usually

had a stronger tendency to increase soil phosphatase. This

investigation demonstrated that giving a mixed bacteria and

fungi inoculant significantly impacted soil phosphatase more

than the microbe alone.

Based on the phosphatase data from Supplementary Table 2,

it could be seen that Burkholderia sp. isolate increased

phosphatase activity by 142.7% compared to the control.

Additionally, the phosphatase activity was increased by

147.9% when Burkholderia sp. isolate and Penicillium sp.

were combined, which was significantly more significant

than the control. The synergy between Burkholderia species

and Penicillium species, which produced more phosphatase

enzymes, was thought to be the origin of this phenomenon.

Under low pH or high acidity conditions, acid phosphatase

activity will work more actively (Tagad and Sabharwa, 2018).

Phosphatase activity will increase along with an increase in

organic P. This is due to the PSM activity, which hydrolyzes

the organic P in the soil. High phosphatase activity most likely

occurred due to PSM hydrolyzing P organic from organic P in

the soil. Phosphatase activity will also work with the amount of

P organic (Ma et al., 2021).

Burkholderia sp. and Penicillium sp. were inoculated

combined, increasing the amount of accessible P in the soil by

8.5% (Supplementary Table 2). PSM can produce organic acids

that combine to form complex chemicals, which causes this

behavior. This complex compound production will reduce P

fixation, increasing the amount of accessible P (Rashid et al.,

2016).

The results of this experiment revealed that applying 75 kg

P2O5 ha−1 enhanced P availability in soil by 26.7% during the

vegetative phase and by 20.7% when using 100 kg P2O5 ha−1.

Additionally, when the amount of P fertilizer in the soil solution

rises, P is absorbed into free elements like Al and Fe (Penn

and Camberato, 2019). P availability increased more by applying

75 kg P2O5 ha
−1 than by using 100 kg P2O5 ha

−1. Fe minerals

fixation is thought to be the reason for the low P transfer to soil.

As a result, residual fertilization cannot be optimally absorbed

by plants if fertilization dosage is increased.

According to the experiment, mixed inoculation of

Burkholderia sp. and Penicillium sp. could improve P availability

in the soil more than inoculation of Burkholderia sp. This

ensures that fungi, rather than bacteria, may survive in soil with

low pH levels as Ultisol.

Following inoculation with a phosphate-solubilizing

bacteria, the organic soil P concentration was dropped

(Supplementary Table 2). The fact that phosphatase-producing

bacteria are present and have caused a decrease in the amount

of organic soil P showed that organic P was being mineralized.

According to de Oliveira Rita et al. (2013), the reduction in the

organic soil P content indicates that P organic is mineralized.

The experiment’s outcome demonstrated that a mixture

of Burkholderia sp. and Penicillium sp. solubilized the least

amount of organic soil P alone. But mixing these phosphate-

solubilizing bacteria and fungi results in a faster mineralization

rate than using a single isolate of either bacteria or fungi. Based

on the results of this experiment, it can be inferred that a

combination of Burkholderia sp. and Penicillium sp. increased

the mineralization of P in organic soil. The finding supported it

that treatment of combined inoculation of Burkholderia sp. and

Penicillium sp. caused themaximum activity of soil phosphatase.

According to the experiment results, the combined inoculation

of Burkholderia sp. and Penicillium sp. decreased the soil organic

P content and increased the soil P availability.

The P content of plant and yield of
upland rice

The application of Burkholderia sp., Penicillium sp., and

combined inoculant (Burkholderia sp. and Penicillium sp.)

each considerably raised the P content of the plant, according
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to the observation at the end of the vegetative period

(Supplementary Table 3). This is probably due to the usage of

PSM, which can reduce the dose of phosphorus fertilizers. The

inoculant of Burkholderia sp. and Penicillium sp. was applied,

increasing the P content of the plant by 27.3%. The P content

of the plant increased after an increase in P level. This is due to

the fact that fungi can survive in highly harsh soil conditions

and that they also maximize plant P uptake. Burkholderia sp.

inoculant application, however, raised the P content in the plant

by 18.2% at the end of the vegetative period.

Supplementary Table 3 shows that applying P fertilizer at

doses of 75 and 100 kg P2O5 ha−1 significantly increased

the P content of plants. This effect happens because plants

respond to fertilization at the end of the vegetative period.

The P fertilization at a dosage of 75% of the recommended

dosage increased the concentration of plant P by 12.5%, while

fertilization at 100% increased P fertilization by 16.7%. The

presence of organic acids created by the upland rice root system

is thought to be the reason for the P plant’s high content, which

is at 100% of the recommended dosage.

The results showed that PSM isolate and P fertilizer did

not interact to alter upland rice output (milled dry grain).

The combined inoculant of Burkholderia sp. and Penicillium

sp. increased milled dry grain by 41.1%, even if the result

did not show any interaction (Supplementary Table 3). It varies

directly to how much PSM mixed inoculant is applied to the

soil P availability parameter. Burkholderia sp. and Penicillium

sp. inoculant each boost upland rice output by 33% and 21%,

respectively (Supplementary Table 3). Even though Burkholderia

sp. and Penicillium sp. separately improved yield, it was still

lower than applying a combination inoculant of both types.

IAA produced by PSM can cause increased rice yields.

Supplementary Table 1 shows that Burkholderia sp. produced

higher IAA than Penicillium sp. In line with that, upland rice

yield was higher in treatment Burkholderia sp. compared to

rice yields in treatment Penicillium sp. Penicillium sp. and

Burkholderia sp. will interact to fulfill each other requirements

for food, especially P. Because Penicillium sp. and Burkholderia

sp. work synergistically, phosphatase enzyme is released

throughout the mineralization and immobilization processes,

converting P organic to P inorganic. Therefore, until the end

of the generative phase, the growth of any of them is ideal for

plant growth.

Additionally, the ability of Burkholderia and Penicillium

species to emit organic acids acts as a factor that can raise

the P element produced as a result of Fe fixation. The synergy

helps provide P for upland rice until harvest time, particularly

in filling its grains, which eventually results in a rise in

the yield of milled dry grains. According to Hutagaol et al.

(2021), the application of phosphate-solubilizing fungi (PSF)

improved the growth and production of rice compared to

the control (no application of PSF). With its high phosphate-

solubilizing capacity, Penicillium guanacastense could be used

as a biofertilizer in forestry and agriculture (Qiao et al., 2019).

The application of Burkholderia sp. in a particular soil type

may help in plant nutrient uptake by solubilizing added and

support their survival in extreme conditions by other qualities

that promote plant growth (Baghel et al., 2020). Vafa et al. (2021)

reported applying a combination of phosphate-solubilizing

bacteria and N-fixing bacteria (Azotobacter sp. and Azospirillum

sp.) mycorrhizal fungus, and seaweed extract improves growth

parameters and grain yield in wheat.

Upland rice production was raised by 17.9% after P

fertilizer application with a dose of 75 kg P2O5 ha−1.

Upland rice yield was not increased by increasing the P

dose over 75 kg P2O5 ha−1 but decreased by 11% with a

100 kg P2O5 ha−1. The response of the plants to fertilizer

decreases with increasing soil nutrient levels (Li et al.,

2019). P fertilizer in excessive quantities will impact soil

micronutrient deficiencies (Zn, Fe, Bo, and Mn), making

minerals unstable and competing with root activity to

absorb nutrients.

Although there was no interaction between

PSM and P fertilizer in terms of upland rice yield,

excessive P content inhibits the role of PSM in

phosphorus transformation. According to Liu et al.

(2021), bacterial activity in P transformation increases

in conditions of P deprivation. Behera et al. (2017)

reached a similar conclusion. Their study revealed

that a high P concentration in the medium decreased

bacterial activity.

Conclusions

According to this study, phosphate-solubilizing microbes

increased soil phosphatase activity, phosphorus availability,

phosphorus concentration, and upland rice yield. This

PSM inoculation can enhance P organic mineralization by

lowering the soil P organic content. The effects of raising

P available content, soil phosphatase activity, organic P

mineralization, P content of the plant, and upland rice

production are better when Burkholderia sp. and Penicillium

sp. mixed inoculant are used. Applying phosphate fertilizer

at 75% of the recommended rate positively affects soil

phosphatase activity, phosphate availability, soil P organic

soil, and upland rice production. Additionally, PSM can

be developed as a biofertilizer to increase phosphorus

fertilization efficiency.
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