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Horticultural crops are susceptible to various biotic stressors including fungi,

oomycetes, bacteria, viruses, and root-knot nematodes. These pathogens

limit the growth, development, yield, and quality of horticultural crops,

and also limit their adaptability and geographic distribution. The continuous

cropping model in horticultural facilities exacerbates soil-borne diseases,

and severely restricts yield, quality, and productivity. Recent progress

in the understanding of mechanisms that confer tolerance to di�erent

diseases through innovative strategies including host-induced gene silencing

(HIGS), targeting susceptibility genes, and rootstocks grafting applications

are reviewed to systematically explore the resistance mechanisms against

horticultural plant diseases. Future work should successfully breed resistant

varieties using these strategies combined with molecular biologic methods.
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Introduction

Horticultural crops, including vegetables, fruits, and ornamentals, provide nutrients,

biologically active substances, and aesthetic values. Additionally, they are an integral part

of economies and contribute significantly to the agricultural production (Shipman et al.,

2021). However, there are various challenges to the growth, production, and processing of

horticultural crops. Diseases caused by fungi, oomycetes, bacteria, viruses, and root-knot

nematodes often lead to crops yield reductions, quality deterioration, and post-harvest

loss (Zhang et al., 2014; Wang et al., 2015; Zhang M. et al., 2021). Huge efforts have

been made to create disease-resistant cultivars by the traditional breeding, however,

this method is limited because of unavailable natural resistance sources. Consequently,

using conventional approaches to breed resistant cultivars is still a big challenge. To

reduce the negative effects of diseases in horticultural crops, alternative strategies for

generating disease-resistant varieties and searching environmentally-friendly control of

plant diseases are urgent requirements.

In this review, we summarize the progress in developing plant tolerance to

disease with a focus on three aspects: host-induced gene silencing (HIGS) technology,

targeting susceptibility (S) genes, and rootstocks grafting applications. Each approach

is based on the in-depth study of mechanisms underlying plant defense responses.
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Finally, we discuss the current challenges and future research

directions, aiming to offer a reference and recommendations for

further research on horticultural crops’ diseases resistance.

Host-induced gene silencing (HIGS)
technology

HIGS mechanisms

HIGS is an RNA interference (RNAi)-based technology

that silences virulence genes in pathogens, virus, or insects

by expressing double-stranded RNAs or hairpin RNAs in host

plants that are complementary to essential genes, thereby

conferring protection to engineered plants from infection

(Govindarajulu et al., 2015; Cai et al., 2018; Koch and

Wassenegger, 2021; Zand Karimi and Innes, 2022). In detail,

RNAi is a conserved part of post-transcriptional gene-

regulation, which has served as a available and powerful genetic

tool to accelerate the research in plant biotechnology and to

develop the potentially useful agronomical traits (Huang et al.,

2006; Baum et al., 2007; Mao et al., 2007). Dicer, an RNaseIII-

like enzyme, which can split a precursor dsRNA into small-

interfering RNA or microRNA duplexes to make the gene post-

transcriptional silencing (Tinoco et al., 2010; Govindarajulu

et al., 2015). The double-stranded siRNAs generate from the an

RNA-induced silencing complex, which contains an argonaute

protein including an endonucleolytic activity for cleavage of

target RNAs and a small RNA-binding domain (Ketting, 2011).

Subsequently, the activated RNA-induced silencing complex

loosens the siRNAs in an ATP-dependent reaction, and

produces an anti-sense strand targeting complementary mRNA

transcripts through base-pairing interactions for degradation of

the targeted mRNA to inhibit protein translation (Hamilton

and Baulcombe, 1999; Baulcombe, 2004). This technology has

been proven to be a useful tool for investigating the functions

of candidate pathogenic genes in pathogens and creating

transgenic crops to better control diseases (Nunes and Dean,

2012).

HIGS target pathogenic genes for
di�erent diseases resistance

Recently, an increasing number of HIGS products or studies

have been developed and become an effective strategy to control

pathogen infections (Table 1). Cotton Verticillium wilt serves

as a seriously soil-borne disease and is caused by the genus

Verticillium, which makes negative impacts for a wide range of

plants and is also a constant threat to agriculture worldwide.

HIGS targeting pathogenic genes in Virticillium dahliae such

as hygrophobins1 (VdH1) (Zhang et al., 2016a), G protein

signaling (RGS1) (Xu et al., 2018), and acetolactate synthases

(VdILV2 and VdILV6) (Wei et al., 2020) effectively control

Verticillium wilt. Also, a independent study has shown that

cotton plants can transfer microRNAs (miR166 and miR159)

into V. dahliae pathogens to target corresponding virulence

genes Clp-1 (Ca2+-dependent cysteine protease) and HiC-15

(isotrichodermin C-15 hydroxylase) to confer disease resistance

(Zhang et al., 2016b). Furthermore, targeting pathogenic genes

(Ave1, Sge1, and NLP1) of the invaded V. dahliae in tomato and

Arabidopsis thaliana can be used to generate Verticillium wilt

resistance (Song and Thomma, 2018). Powdery mildew (PM)

fungi (Blumeria graminis) are obligate biotrophic pathogens that

cause damage in thousands of plant species including wheat

(Triticum aestivum) and barley (Hordeum vulgare). HIGS has

been exploited to silence effector genes in B. graminis, which

results in reduced fungal development and enhances resistance

to PM (Nowara et al., 2010; Pliego et al., 2013). Rust fungi are

caused by the Puccinia striiformis f. sp. tritici or P. graminis f.

sp. Tritici, which leads to the devastating diseases in wheat or

other cereal species globally. HIGS of essential pathogenic genes

in the invaded fungi has also shown promise for the engineering

of resistance in many host plants (Yin et al., 2011; Zhang

et al., 2012; Panwar et al., 2013). A independent result shows

that CRISPR-Cas9 disruption of TaPsIPK1, a wheat receptor-

like cytoplasmic kinase gene, leads to immune priming without

constitutive activation of defense responses and confers durable

and broad-spectrum resistance against Pst without affecting

important agronomic traits (Wang et al., 2022). The lettuce

downy mildew (DM) is caused by a biotrophic oomycete

(Bremia lactucae), which is the most important disease of lettuce

worldwide. HIGS of virulence genes HAM34 and CES1 results

in greatly reduced growth and sporulation of B. lactucae, and

effective control ofDM in lettuce (Govindarajulu et al., 2015). In

addition, transgenic rice targeting MoAP1 via expressing RNA

hairpins can highly enhance resistance to 11 tested M. oryzae

strains (Guo et al., 2019).

Fusarium serves as a genus of filamentous fungi containing

many different plant pathogens resulted in various devastating

diseases including Fusariumwilt. HIGS technology has also been

shown to be used for preventing Fusarium species pathogens in

different crops (Koch et al., 2013; Chauhan and Rajam, 2022).

The fungal CYP51 encodes the cytochrome P450 lanosterol

C-14α-demethylase and plays essential functions for fungal

growth, ergosterol biosynthesis and pathogenicity. Targeting

of CYP51 genes obtain high efficiency of fungal inhibition to

different Fusarium species pathogens in vitro and in planta

through spray applications (spray-induced gene silencing, SIGS)

or HIGS methods (Koch et al., 2013, 2019; He et al., 2019).

Also, Fusarium head blight (FHB) is a serious disease in wheat,

barley, and maize, which is caused by the F. graminearum and

F. culmorum species and results in annual yield losses from high

disease pressure. HIGS of the β-1, 3-glucan synthase gene FcGls1

in the invaded fungi highly enhance FHB resistance in the plant

spike and leaf inoculation assays (Chen et al., 2016).
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TABLE 1 HIGS strategy to control pathogen infections in di�erent plants.

Plant Pathogenic genes Pathogen/Disease Result References

Cotton VdH1 Verticillium wilt High tolerance to Verticillium wilt Zhang et al., 2016a

Cotton VdRGS1 Verticillium wilt High tolerance to Verticillium wilt Xu et al., 2018

Cotton VdILV2,VdILV6 Verticillium wilt High tolerance to Verticillium wilt Wei et al., 2020

Tomato and Arabidopsis Ave1, Sge1, and NLP1 Verticillium wilt High tolerance to Verticillium wilt Song and Thomma, 2018

Rice MoAP1 M. oryzae Resistance toM. oryzae Guo et al., 2019

Wheat and barley Avra10 Blumeria graminis (PM) Resistance to B. graminis Nowara et al., 2010

Barley BEC1011, BEC1054 Blumeria graminis (PM) Resistance to B. graminis Pliego et al., 2013

Wheat PsCNA1/PsCNB1 Puccinia striiformis f. sp. tritici (Pst) Resistance to stripe rust Zhang et al., 2012

Wheat MAPK Puccinia triticina (Pt) Resistance to leaf rust Panwar et al., 2013

Lettuce HAM34,CES1 Bremia lactucae (DM) Resistance to DM Govindarajulu et al., 2015

Arabidopsis CYP51 Fusarium graminearum Resistance to FHB Koch et al., 2013

Arabidopsis and barley FgCYP51A,FgCYP51B,FgCYP51C Fusarium graminearum Resistance to FHB Koch et al., 2019

Wheat CYP51A, CYP51B,CYP51C Fusarium graminearum Resistance to FHB He et al., 2019

Tomato ERG6/11 Fusarium wilt Resistance to Fusarium wilt Dou et al., 2020

Wheat FcGls1 Fusarium culmorum Resistance to FHB Chen et al., 2016

Tomato Fusarium wilt serves as primarily vascular disease,

which is caused by the Fusarium oxysporum f. sp. lycopersici

(Fol) and leads to the high disease pressure and yield losses.

The fasciclin-like proteins (FLPs) in the Fol pathogen play

important roles in the cell-to-cell adhesions and signaling

cascade, and HIGS targeting the pathogenic genes (FoFLP1,

FoFLP3, FoFLP4, and FoFLP5) shows the reduction of spore

count and germination frequency, and disease symptoms in the

infected plants (Chauhan and Rajam, 2022). Currently, banana

cultivation is also seriously threatened by Fusarium wilt caused

by F. oxysporum f. sp. cubense (Foc), and HIGS of two ergosterol

biosynthetic genes ERG6/ERG11 in the invaded Foc results in

highly resistance to Fusarium wilt in banana (Dou et al., 2020).

The above studies using HIGS technology not only provide

reference for horticultural crops to generate disease resistance,

but also obtain a theoretical foundation for developing double

stranded RNA fungicides to control crop fungal diseases.

Accordingly, the molecular mechanisms that underlie HIGS

technologies have been defined the specificity, stability, and

durability required for future field applications. HIGS strategies

will serve as a genetic protection against pathogens applicable to

highly disease-susceptible horticultural crops.

Susceptibility genes and application

Susceptibility genes and CRISPR-Cas9
technology

Pathogens cause a huge threat to crop quality and

productivity, and it is worse that most of plants or crops

don’t pose resistance to diseases. S genes exist in susceptible

crop varieties and are required for successful pathogens

infection. Typically, pathogens use the host plants’ S genes

to accelerate their invading and proliferation. On the basis

of the plant-pathogen interactions, S genes mainly have

three molecular mechanisms. Firstly, the basic compatibility

assists the pathogens recognition and penetration in hosts;

secondly, the sustained compatibility promotes pathogens

proliferation and spread; and thirdly, these genes can

negatively regulate immune signals (van Schie and Takken,

2014). S-gene-mediated defense responses involves the

underlying target S genes to confer typically broad-spectrum

and durable disease resistance to the invaded pathogens

(Zaidi et al., 2018). Current reviews have described the

different technologies to analyze molecular mechanisms or

applications of S genes (Lapin and Van den Ackerveken,

2013).

Though developed recently, many new breeding techniques

associated with genetic engineering are used to successfully

generate and commercialize high-yield and durable disease-

resistant crop varieties. Recently, several plant breeding

technologies have been developed and exploit the high-

throughput genotyping and phenotyping methods to establish

gene editing and speed-breeding platforms (Li et al., 2018;

Watson et al., 2018), including the latest tools, such as CRISPR–

Cas9 system. This technology can easily target interesting

genes in different plant species containing Arabidopsis, tobacco

and rice (Jiang et al., 2013), wheat (Wang et al., 2014),

and maize (Char et al., 2017), to introduce agronomically

important traits including disease resistance (Wang et al., 2014;

Zaidi et al., 2016a). Targeting S genes via CRISPR system

has been successfully and widely applied because of its high

specificity, greater efficacy, and also it can be designed and

implemented easily.
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TABLE 2 Susceptibility genes applied in plant diseases defense.

Plant Target modification S gene Pathogen/Disease Result References

Wheat Gene disruption TaMLO-A1, B1, D1 Powdery mildew (PM) High tolerance to PM Wang et al., 2014

Cucumber Gene disruption CsMLO1 Powdery mildew (PM) Resistance to PM Nie et al., 2015

Tomato Gene disruption SlMlo1 Powdery mildew (PM) Resistance to PM Nekrasov et al., 2017

Grape Gene disruption VvMLO3 Powdery mildew (PM) Resistance to PM Wan et al., 2020

Wheat Gene disruption TaEDR1 Powdery mildew (PM) Resistance to PM Zhang et al., 2017

Rice Promoter disruption OsSWEET14 Xanthomonas oryzae pv.

oryzae (Xoo)

Resistance to bacterial

blight

Li et al., 2012

Rice Gene mutation OsMED25 Xanthomonas oryzae pv.

oryzae (Xoo)

Resistance to bacterial

blight

Suzuki et al., 2022

Rice Gene disruption SPL33 M. oryzae and

Xanthomonas oryzae pv.

oryzae (Xoo)

Resistance againstM.

oryzae and Xoo

Wang et al., 2017

Rice RNA silencing DEP1 Sheath blight disease Enhanced disease

resistance

Liu et al., 2021

Wheat Knockdown TaClpS1 Puccinia striiformis f. sp.

tritici (Pst).

Resistance against Pst Yang et al., 2020

Wheat RNA silencing Ta7ANPR1 stem rust (Puccinia

graminis f. sp. tritici)

Resistance to stem rust Wang et al., 2020

Citrus Promoter disruption CsLOB1 Citrus canker Disease resistance Peng et al., 2017

Tomato Gene disruption SlDMR6-1 Pseudomonas syringae,

Phytophthora capsici, and

Xanthomonas spp.

Enhanced disease

resistance

Thomazella et al., 2021

Cucumber Gene disruption eIF4E CVYV (ipomovirus),

ZYMV and PRSMV

(potyvirus)

Resistance to CVYV,

ZYMV, and PRSMV

Chandrasekaran et al., 2016

Watermelon Gene disruption Clpsk1 Fusarium oxysporum f.

sp. niveum (FON)

Resistance to Fusarium

Wilt

Zhang et al., 2020

Targeting S genes for plant disease
resistance

Recent studies have demonstrated S genes to be effective

strategies to obtain resistance against various pathogens

including viruses (Baltes et al., 2015; Chandrasekaran et al., 2016;

Zaidi et al., 2016b; Aman et al., 2018), bacteria (Peng et al., 2017),

and fungi (Shan et al., 2013; Wang et al., 2014). Disruption of

S genes can confer broad-spectrum disease resistance and this

technology has been applied in many economically important

plant species (Table 2). Mildew resistance locus O (Mlo) encodes

a transmembrane protein containing seven trans-membrane

domains. Mlo is a well-known S gene and is conserved in

monocots and dicots plants, which always serves as a typical and

prominent example in durable pathogen-resistance programs.

Targeting Mlo with CRISPR–Cas9 system has continued to

confer resistance of powdery mildew (PM) in wheat (Wang

et al., 2014), cucumber (Nie et al., 2015), tomato (Nekrasov

et al., 2017), and grapevine (Wan et al., 2020). Also, wheat

Tamlo-R32 mutant with a 304-kilobase pair targeted deletion

in MLO-B1 locus that confers broad-spectrum and durable

robust powdery mildew resistance and retains crop growth

and yields (Li et al., 2022). Another PM-susceptibility locus is

named as EDR1 encoding a Raf-like mitogen-activated protein,

which significantly enhances the PM resistance via targeted the

S gene by CRISPR–Cas9 technology in wheat (Zhang et al.,

2017). Watermelon (Citrullus lanatus) wilt is one of the most

devastating diseases, which is caused by Fusarium oxysporum

f. sp. niveum (FON) and affects watermelon quality and yields

in the world. Clpsk1 gene, encodes the phytosulfokine (PSK)

precursor attenuated plant immune response, and knockout of

Clpsk1 by CRISPR/Cas9 system confers highly resistance to FON

in watermelon (Zhang et al., 2020).

Many S genes have also been identified and applied in

disease resistance in the rice. The bacterial blight caused by the

Xanthomonas oryzae pv. oryzae (Xoo), which can transfer sugars

from the plant cell to the apoplast meeting pathogen’s nutritional

needs through several endogenous transactivator-like effectors
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(TALEs). A sugar transporter, OsSWEET14, is a typical S gene

of Xoo strains targeted by four different transcription activator-

like (TAL) effectors. Utilized genome editing technology can

successfully target OsSWEET14 disruption and significantly

enhance resistance against Xoo (Li et al., 2012). A subunit of

themediatormultiprotein complex,OsMED25, which serves as a

important adaptor between transcription factors (TFs) and RNA

polymerase II, and plays crucial roles in lateral root development

mediated by jasmonic acid (JA) in rice. Loss of function

OsMED25 mutants exhibit high resistance to Xoo through

regulating JA- and auxin-signaling (Suzuki et al., 2022). Another

Xoo-susceptibility locus, SPL33, encoding a eEF1A-like protein,

which is used to trigger broad-spectrum and durable resistance

against different pathogens including Xoo andM. oryzae (Wang

et al., 2017). Additionally, knockdown of G-protein γ subunit

DEP1, which is a key player in the transmission of extracellular

signals via membrane-spanning G-protein-coupled receptors to

intracellular effectors, highly enhance resistance against sheath

blight disease in rice (Liu et al., 2021).

Furthermore, wheat stem rust serves as a devastating

disease and is caused by Puccinia graminis f. sp. tritici, which

can lead to the estimated annual losses of US $1 billion

to wheat production worldwide (http://www.usda.gov/nass).

Two independent results have shown that targeting TaClpS1

or Ta7ANPR1 can trigger resistance to stem rust in wheat

(Wang et al., 2020; Yang et al., 2020). Citrus canker is one

of the most destructive diseases caused by Xanthomonas citri

subsp.citri (Xcc), which affects citrus crop production and results

in severe yield losses (Stover et al., 2014). LATERAL ORGAN

BOUNDARIES 1 (CsLOB1), a typical S gene for citrus canker,

which can promote pathogen growth and erumpent pustule

formation. And loss-functions of CsLOB1 with CRISPR–Cas9

technology highly enhance resistance against citrus canker (Peng

et al., 2017). Another susceptibility locus, DMR6, has also

been used to confer broad-spectrum and durable resistance

against fungal, oomycete, and bacterial pathogens in tomato

(Thomazella et al., 2021). Moreover, apart from fungal and

bacterial pathogens, the S genes have also been used to trigger

immunity against different viral pathogens. A cap-binding

protein, eukaryotic translation initiation factor 4E (eIF4E),

serves as essential roles in the cellular infection cycle of different

viruses, and a study has shown that targeting eIF4Es through

the CRISPR–Cas9 method highly increase viruses resistance in

cucumber (Chandrasekaran et al., 2016).

As most of horticultural crops resources are susceptible

to different diseases, identifying and targeting S genes to

develop resistant crop varieties is a continuous strategy to

meet urgent requirements. The genome-edited horticultural

crops in various studies have also been achieved transgene

free, and this protection approach can be applicable to highly

susceptible varieties.

Grafting in disease resistance

Grafting technology

Grafting is a traditional technique and widely implemented

in modern agriculture to control soil-borne diseases caused by

bacteria, fungi, oomycetes, viruses or root-knot nematodes of

different crops in a sustainable and environmentally friendly

approach (Nawaz et al., 2016; Li and Chen, 2017; Li and

Zhao, 2021; Thies, 2021). Briefly, this technology is commonly

accomplished by connecting two plant segments, the upper one

named the scion and the lower part known as the rootstock.

Successful grafts depend on an anatomical connector that

surgically joins the rootstock and scion, and creates a dual

plant system expressing superior traits on either half of the

junction. Grafting technology acts as a disease management

tactic that has been rapidly expanded to the horticultural crops

including solanaceous and cucurbit fruiting vegetables. A good

rootstock/scion combination forms a robust root system to

guarantee nutrient transport and resistance to deal with different

stresses (Louws et al., 2010). Additionally, grafting has also

been associated with crop performance, yield, fruit quality, and

nutritional value required by farmers and consumers (Kyriacou

and Rouphael, 2018), and provides advances to control abiotic

stresses, to reduce the using of chemical and fertilizer (Rouphael

et al., 2008; Proietti et al., 2010). Currently, grafting has been

used to explore research into the disease-resistant mechanisms

by studying the functions of transmissible signals including

genes, RNAs, proteins, hormones, and metabolites between

rootstock and scions (Harada, 2010; Goldschmidt, 2014; Xu

et al., 2022).

Applications of rootstocks grafting to
manage soil-borne diseases

Plant grafting appears to be the effective and sustainable

methods to control the soil-borne pathogens including fungi,

bacteria, viruses, and nematodes. The resistant rootstocks

mainly contain intra-specific (within the same species), inter-

specific (different species), and inter-generic (different genera).

These selective rootstocks always have resistant genes or with

non-host resistance mechanisms, seem to be an important and

typical weapon to manage against soil-borne diseases (Louws

et al., 2010). For example, root-knot nematodes (RKN) is one

of the most important limiting soil-borne diseases for vegetable

production (Hallmann and Meressa, 2018), which is caused by

the most damaging species Meloidogyne spp., and have a wide

range of host plants (Greco and DiVito, 2009; Jones et al., 2013).

RKN are obligate endoparasitic nematodes, which move

among the soil particles, and subsequently, penetrate near
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the elongation zone of the host roots. Root parenchyma cells

can form hypertrophy, hyperplasia, and affect the water and

nutrients uptake in the infected host plants, and results in

pathogenetic symptoms including dwarfism, wilting, nutrient

deficiency, and plant death. Many vegetable and fruit crops

containing tomato (Solanum lycopersicum), eggplant (Solanum

melongena), cucumber (Cucumis sativus), and watermelon

(Citrullus lanatus) have potential for improving pathogen

resistance through grafting technology (Kokalis-Burelle and

Rosskopf, 2011). In tomato, the family Solanaceae or hybrids

have typically been used to select the nematode resistant

rootstocks for grafting. The muskmelons (Cucumis melo) has

not yet identified RKN resistance. However, the hybrids of C.

melo and C. metuliferus have shown potential as rootstocks

posing the root-knot nematode resistant, which are used to graft

onto commercial musk melon cultivars (Sigüenza et al., 2005;

Kubota et al., 2008). In addition, the hybrids C. ficifolius × C.

myriocarpus and C. ficifolius × C. anguria are tolerant to RKN

(M. cuscannonballus) and resistant to Fusarium oxysporum f.

sp. melon. When grafted, they preserve the different quality

in the melon fruit compared to self-grafted or non-grafted

plants (Cáceres et al., 2017). The wild watermelon (Citrullus

lanatus var. citroides) germplasm and commercial watermelon

rootstock (C. lanatus) have significantly less galling than the

diploid seeded watermelon “Fiesta,” bottle gourd rootstocks and

the Cucurbita moschata × C. maxima squash hybrid rootstock

(Thies et al., 2008), which may be useful as candidate rootstocks

for overcoming the watermelon RKN (Thies et al., 2010). These

results will provide a number of alternative rootstocks that are

available for different growers in the near future.

Fusarium species are common soil-borne pathogens, which

can persist in soils, straw, and seeds for decades by colonizing

alternate hosts leading to long-term disease cycles (Martínez

et al., 2003). Fusarium, is well-studied and rootstocks resistant

to Fusarium are widely available. Therefore, Fusarium can be

managed through grafting. In general, the Fusarium causes wilt

through recognizing host roots, penetrating, and colonizing the

vascular tissue slowly, which provides an advantage for severe

rootstocks or scion/rootstock combinations that reduces water

stress. Therefore, the grafting practices with available resistance

of rootstocks have provided successes to effectively manage

Fusarium pathogens in multiple crops.

Many studies have shown that use of rootstocks with

resistance to Fusarium wilt have been successfully obtained in

vegetable annual crops through grafting. Globally, watermelon

Fusarium wilt is the most production-limiting disease, which

is caused by the pathogen Fusarium oxysporum f. sp. niveum

(FON) and contains four races, designated 0, 1, 2, and 3 (Zhang

et al., 2015). Watermelon seedlings grafted onto the bottle

gourd rootstocks are highly resistant to FON compared with

self-grafted watermelon crops (Huh et al., 2002; Zhang Z. Q.

et al., 2021), and also facilitate to increase fruit quality and total

yield (Davis et al., 2008). Additionally, bottle gourd [Lagenaria

siceraria (Molina) Standl.] and inter-specific hybrid squash

(Cucurbita maxima Duch. ex Lam. × C. moschata Duch. ex

Poir) rootstocks-grafted plants are highly resistant to Fusarium

wilt caused by FON races 1 and 2 (Davis et al., 2008; Keinath

and Hassell, 2014a,b). Furthermore, in Turkey, grafted a diploid

watermelon cultivar “Crimson Tide” is highly resistant to FON

race 1, however, bottle gourd grafted watermelon can control

the unidentified FON races including FON race 2 in soil and

increase yields (Yetisir et al., 2003). In Spain, the interspecific

hybrid squash “Shintoza” rootstock grafted triploid watermelon

can overcome against unidentified FON races and increase

yields by over 3-fold (Miguel et al., 2004). Thus, grafting is an

effective strategy to overcome different FON races present or

predominates in a field.

Melon (Cucumis melo L.) Fusarium wilt is a devastating

soil-borne disease caused by the Fusarium oxysporum f. sp.

melonis (FOM), which heavily affects melon cultivation and

production. A study finds among a panel of 65melon germplasm

lines, “K134068,” “K133069,” “Wondae,” and “PI414723,” shows

increased resistance to FOM. The resistant rootstocks grafted

“Earl’s elite” (Muskmelon) found that the yield, quality, and

FOM-resistance are better than those of non-grafted melons

(Dong et al., 2013). Additional rootstock species are available

for melon grafting include wax gourd (Benincasa hispida) and

pumpkin (Cucurbita spp.) (Traka-Mavrona et al., 2000). It is

reported that the Cucurbita rootstock grafted melon can affect

the plant growth (Ruiz and Romero, 1999), fruit quality, yield,

and Fusarium wilt phenotype (Ruiz et al., 1997; Traka-Mavrona

et al., 2000; Nisini et al., 2002).

Cucumber FW is also one of most destructive soil-borne

disease, and the continuous cropping of cucumber in the

horticultural facilities causes the FW to occur frequently, and

severely restricts the high-yield, high-quality and high efficient

cultivation of cucumber. Currently, grafting cucumber onto

rootstocks is the most effective and sustainable technique to

prevent FW (Reddy, 2016; Shi et al., 2016). Five different

rootstocks of cucurbits including Super Shintoza, Bottle gourd,

VSS-61F1, Cobalt, and Ferro have been used evaluate the

resistance to Fusarium wilt under high-temperature stress

conditions. Among them, the VSS-61 F1 rootstock has a high

grafting efficiency, high compatibility between the rootstock and

the scion, and also provides high resistance against Fusarium

wilt (Shalaby et al., 2022). Similar results have been confirmed

that grafted cucumber can form carbohydrates and lignin

deposites as protective substances such as necrotic layer to

prevent Fusarium invasion (Sabry et al., 2022). The inter-specific

F1 hyprid of Cucurbita maxima × C. moschata has been widely

untilized as rootstock species for grafting cucumbers around the

world (Lee and Oda, 2003). To date, although the vast range of

disease-susceptible cucumber scion–rootstock interactions have

been analyzed, the response of grafted seedlings to pathogens

or disease-resistant mechanisms are still difficult to investigate

(Leonardi and Romano, 2004; Al-Debei et al., 2012). Also, many
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studies have shown that the pumpkin rootstocks have been used

to identify candidate resistant genes to defend Fusarium wilt for

increasing cucumber yields and profits (Xu et al., 2022).

Currently, more and more horticultural plants have been

grafted onto the compatible disease-resistant rootstocks to

manage against soil-borne diseases or abiotic stress (Huang

et al., 2015). The available rootstocks, grafting compatibilies, and

methods are important factors for increasing grafting success

rates, influence the corp quality and yield, and overcoming

soilborne pathogens. The present results indicated that disease-

susceptible horticultural plants grafting onto suitable rootstocks

can significantly reduce the disease incidence and increase crop

yield and quality.

Challenges and perspectives

Although large efforts have also been made to generate

disease-resistant horticultural cultivars via traditional breeding,

many pathogens have still not been effectively and sustainably

controlled. The lack of disease-resistant germplasm and

continuous cropping practices used in most crop producing

areas highly limits pathogens control. At present, an increasing

number of studies highlight the use of alternative techniques

including HIGS, S gene targeting, and rootstocks grafting to

effectively and sustainably improve plant resistance against

different pathogens. Thereafter, practical problems in the

diseases of horticultural plants defense may be solved by

creating novel cultivars with above approaches. HIGS silences

the virulence genes of invaded pathogens to suppress pathogenic

symptoms. Finding susceptibility genes from disease-susceptible

horticultural cultivars and targeting these genes through

different methods including gene editing and speed-breeding

platforms may confer durable and broad-spectrum resistance

against pathogens infections. Additionally, grafting is generally

effective against diseases reported and used as environmentally

friendly technique in modern agriculture to overcome soil-

borne diseases such as RKN and FW. Many independent studies

better investigate that rootstocks pose different resistant genes

to defense soil-borne diseases, and furthermore, the resistant

genes will be used to innovate varieties against these diseases.

In this sense, additional efforts must be made in control

pathogens invasion to increase crop quality and productivity.

Accordingly, these new strategies summarized in this review are

available for the management of different diseases invaded in the

horticultural crops.
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