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Current less-than-truckload (LTL) shipping practices allow for temperature

abuse (TA) in the last segment (last mile) of the food supply chain. When

this TA is combined with “First In, First Out” product rotation methods, it

could lead to food spoilage and food waste; therefore, data-based decision

models are needed to aid retail managers. An experiment was designed

using pallets (4 layers/pallet × 5 boxes/layer) of commercially produced

boneless chicken breast filet trays. The pallets were exposed to 24h of

simulated LTL TA (cyclic 2 h at 4◦C, then 2h at 23 ± 2◦C). Filet temperatures

were recorded for all 20 boxes using dataloggers with thermocouple wires.

Additionally, microbiological sampling of filets [aerobic plate counts (APC)

and psychrotrophic plate counts (PSY)] was conducted before (0 h of LTL

TA) and after (24 h of LTL TA) the TA experiment for select boxes of the

pallet and compared to control filets (maintained at 4◦C). After TA, a shelf-

life experiment was conducted by storing filets from predetermined boxes

at 4◦C until spoilage (7 log CFU/ml). Temperature and microbiological data

were augmented using Monte Carlo simulations (MC) to build decision making

models using two methods; (1) the risk of each box on the pallet reaching

the bacterial “danger zone” (>4◦C) was determined; and (2) the risk-of-loss

(shelf-life < 4 days; minimum shelf-life required to prevent food waste) was

determined. Temperature results indicated that boxes on the top and bottom

layers reached 4◦C faster than boxes comprising the middle layers while the

perimeter boxes of each layer reached 4◦C faster than centrally located boxes.

Shelf-life results indicate simulated LTL TA reduced shelf-life by 2.25 and 1.5

days for APC and PSY, respectively. The first MC method showed the average

risk of boxes reaching 4◦C after 24h of simulated LTL TA were 94.96%, 43.20%,

27.20%, and 75.12% for layers 1–4, respectively. The second MC method

indicated that exposure at >4◦C for 8 h results in a risk-of-loss of 43.8%. The

findings indicate that LTL TA decreases shelf-life of chicken breast filets in a

heterogenous manner according to location of boxes on the pallet. Therefore,

predictive models are needed to make objective decisions so that a “First

Expire, First Out” method can be implemented to reduce food wastes due to

TA during the last mile.
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Monte Carlo, spoilage, last mile logistics, LTL, food loss, food waste, APC,
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Introduction

Supply chainmanagement of temperature sensitive products

such as perishable food commodities throughout the cold chain

is very challenging. Cold chain, a version of supply chain,

focuses on maintaining product integrity and quality through

temperature management from product origin to the final

consumer (Global Cold Chain Alliance, 2020). A “break” in cold

chain leads to temperature abuse (TA; Ndraha et al., 2018) which

can occur during transportation and ultimately affects food

safety and shelf-life of the products. TA during the last mile of

the cold chain can push the foods into the “danger zone” defined

as temperature between 40 and 140◦F or 4 and 60◦C which

creates an environment conducive for the growth of spoilage and

pathogenic microorganisms (Labuza and Fu, 1995; Oscar, 2009;

United States Department of Agriculture, 2021). Hence foods

are kept out of the “danger zone” temperatures to mitigate food

safety risks (Godwin et al., 2012). Moreover, TA during supply

chain can lead to faster food spoilage contributing to the global

food loss (before retail) and waste (retail and beyond) problems

causing economic losses and food security issues. In the U.S.

alone, food waste is as high as 40%, and 133 billion pounds may

be lost at the levels of retail and consumption (United States

Department of Agriculture, 2022a). Addressing the food waste

problem is important to feed a continuously growing population

which could reach 8.5 billion by 2030 (United Nations, 2022a) of

which an estimated 660 million may be battling hunger (United

Nations, 2022b). Hence, it is important to study the effects of TA

during transportation, its impact on the spoilage of foods and

develop practical methods to predict shelf-life to reduce food

waste and loss.

Transportation of foods from the processor or distributor

to the retailer or final consumer is primarily done using two

popular shipping methods: (1) Full Truckload (FTL) and (2)

Less-Than-Truckload (LTL; Vega et al., 2021). In contrast to

FTL, LTL shipping is utilized when the cargo requires only

a portion of the space in a trailer (FedEx, 2022) such that

the shipper does not pay the rent of an entire truck but

only for the space their cargo occupies (Özkaya et al., 2010).

One of the biggest challenges of LTL is understanding the

“last mile” problem (Deutsch and Golany, 2018). The last

mile is the last segment of a supply chain where product

is transported to the end user (Shu et al., 2015). During

the last mile, temperature fluctuations and condensation can

occur on perishable food products (Mirzaee and Bishop, 2009)

potentially due to the LTL delivery vehicle making multiple

stops during the last mile (Aljohani and Thompson, 2020).

Addressing how to best approach last mile problems is a key

component of the United States Food and Drug Administration

(2021) (FDA) “New Era of Smarter Food Safety” and can

help regulatory bodies to further strengthen the food supply

chain. Skawińska and Zalewski (2022) proposed the use of real

time temperature monitoring using various technologies as an

effective tool in the food cold chain. Additionally, research has

been conducted to improve the design of reefer trucks and

introduce new components to the container itself to improve air

circulation, establish loading/unloading patterns, and improve

cooling efficiencies (Tassou et al., 2009; Rai et al., 2019; So et al.,

2021). Also, de Frias et al. (2020) investigated the temperature

implications of opening doors to a refrigerated display case

with the most extreme scenarios (opening every 5min for

60 s) resulting in significant differences in product temperature.

Additionally, they found that TA can occur with temperatures

as high as 6.6◦C when the doors are opened in regular intervals

and durations. Much research has been conducted on the effects

of TA on the safety (Wen and Dickson, 2012; Chen and Meng,

2021) and spoilage (Reddy et al., 1995; Rogers et al., 2014) of

various food products. However, there is a gap in the literature

on the effects of LTL TA during the last mile at the pallet level for

temperature sensitive products. This is an important gap to fill

as it mimics the real-world scenario providing a more pragmatic

insight into the problem compared to studies conducted on

individual pieces of food in controlled laboratory settings.

Another implication of TA during LTL can be on product

rotation decision making at the retail level. The traditional

product rotation model of “First In, First Out” (FIFO) operates

under the assumption that products that arrive first should be

rotated out first because they will expire first (Pikora et al.,

2021). In contrast, the “First Expire, First Out” (FEFO) model

takes into consideration the remaining life of a product (Mendes

et al., 2020) which can be impacted by the temperature of the

refrigerated trailer. The temperature inside refrigerated trailers

are not homogeneous therefore, the level of TA experienced

by products placed at different locations inside a refrigerated

truck may be different (Jedermann et al., 2009; Getahun

et al., 2017). do Nascimento Nunes et al. (2014) demonstrated

the heterogeneity of temperature of a pallet of berries and

demonstrated the FIFO model leads to the waste of high value

temperature sensitive products. The FEFO model has been

suggested to be a superior to FIFO in food (Curto and Gaspar,

2021) as well as non-food products, such as pharmaceuticals

(Sukasih et al., 2020; Rezeki et al., 2022). One of the primary

challenges of FEFO is it requires information sharing between

different members of the cold chain (Hertog et al., 2014).

However, in vertically integrated industries, such as poultry

(Vukina, 2001), information sharing is much easier. Also, the

development of technologies (e.g., RFID) has made the use of a

dynamic shelf-life more realistic (Grunow and Piramuthu, 2013;

Gaukler et al., 2017). Through our research, we have further

emphasized the significance of the FEFO model and provided

mathematical equations to predict shelf-life that can reduce food

waste at the retail level.

Building mathematical models requires significant amount

of data collected repeatedly over a period of time which is
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a daunting and an expensive task so researchers often use

simulation models. Simulation models (e.g., Monte Carlo) can

be powerful tools that enable the user to play the “what if?”

game and perform risk analysis. Monte Carlo methods (MC)

have been used in a wide variety of fields due their wide range of

applicability (Raychaudhuri, 2008). In agricultureMC have been

used to estimate proportions of crops in Kenya (Maeda et al.,

2010), estimate the feasibility of alternative farming methods in

Tanzania (Kadigi et al., 2020), and estimate the risks associated

with pesticide use in Iran (Eslami et al., 2021). Even when

narrowing the scope to a single industry (e.g., the poultry

industry) MC methods have been investigated extensively.

Rico-Contreras et al. (2017) used MC to estimate economic

risk associated with different moisture levels of poultry litter

used for energy production. A study using MC was done in

the United Kingdom to determine the environmental impact

of the 4 major types of egg production systems (Leinonen

et al., 2012). MC were used to investigate the impact of

predetermined parameters on the likelihood of Salmonella

infection from the consumption of a common chicken dish

in South Korea (Jeong et al., 2018). MC have been previously

used by researchers to estimate the remaining shelf-life of both

food and pharmaceutical products (Waterman et al., 2007; Lau

et al., 2022). In an experiment onmilk, shelf-life was investigated

with MC being used to construct probability distributions

of storage temperature, initial bacterial concentration, and

generation times (Schaffner et al., 2003). Giannakourou and

Taoukis (2019) utilized MC with cold chain distribution and

temperature data. They were able to compare the shelf-life

predictions of their model with shelf-life predicted by the “use-

by” date, and they concluded that the uncertainty calculations

built into their model resulted in more accurate shelf-life

predictions. Additionally, Giannakourou et al. (2001) investigate

the applicability of a shelf-life decision system (SLDS). They

implemented MC to simulate the results of the SLDS method,

and they determined in local markets 12% and 2% of products

were spoiled at the time of consumption for the FIFO system

and the SLDS system, respectively. Because of its previous use

in similar applications, we believe MC could be applied to the

LTL TA problem discussed. The objectives of this study are to

investigate the effects of LTL TA during the last mile at the

pallet level on the shelf-life of temperature sensitive products

and to provide a potential solution through predictive models

using MC.

Materials and methods

Experimental design

A commercially produced 1,000 lb pallet of boneless, skinless

chicken breast filets (4 layers/pallet x 5 boxes/layer x 24 trays/box

x 3–6 filets per tray) from a USDA inspected processing facility

was procured and used to measure the temperature of filets

(n = 20) in boxes during simulated 24 h of simulated LTL TA

(2 h at 4◦C, then 2 h at 25◦C) for 5 independent trials. Next,

microbial sampling was conducted (3 filets/box x 2 preselected

boxes/layer) before TA (0 h) and immediately after TA (24 h).

Additional microbial sampling was conducted (3 filets/box x

2 preselected boxes/layer) on alternating days (2, 4, 6, 8) after

the LTL TA portion of the experiment to determine the rate of

spoilage for all 5 trials. Lastly, using temperature and microbial

data from the 5 trials, two separateMCmethods were developed.

Figure 1 outlines themethodology followed during this research.

Recording filet temperatures

Raw chicken breast filets were used as a model for the study

as it is the most affordable and popular protein source (National

Chicken Council, 2022a,b) but at the same time it is also a highly

perishable food with low temperature storage (4◦C) being the

common way to preserve it.

Raw chicken breast filets packed in trays, placed in boxes

which in turn were stacked on a pallet were transported to

the Charles C. Miller Jr. Poultry Research Center at Auburn

University under refrigeration and stored in a walk-in cooler

(4◦C for 12–16 h) prior to experimentation. The boxes were

serially marked from 1 to 20 (layer 1: 1–5; layer 2: 6–10; layer 3:

11–15 and, layer 4: 16–20). The boxes comprising the pallet had

industry standard holes on the sides for moving, and the pallet

was wrapped in plastic wrap to provide stability. Temperature

at the center of a single representative breast filet in each box

was continuously measured every 1min for 24 h using TM500

12-channel thermocouple dataloggers with wire temperature

probes (Extech Instruments, Nashua, New Hampshire, USA).

The tray located approximately in the center of each box was

chosen. Next, the thermocouple wire was inserted through

the plastic film and into the center of the middle filet in the

tray, and the wire was secured via sous vide tape. In each

box, a second thermocouple wire was left loose to record air

temperature resulting in two wires per box. At the conclusion

of the experiment, temperature data was retrieved from the data

loggers using MS Excel (Version 16, Microsoft Corporation,

Redmond, WA). This experiment was repeated 5 separate times,

and the temperature patterns were analyzed using line graphs

generated using MS Excel.

Simulated temperature abuse

TA during LTL was simulated as follows: the pallet was

exposed to 2 h at 4◦C, simulating a refrigerated truck, and 2 h at

23 ± 2◦C, simulate hypothetical TA that occurs when the truck

doors are opened and closed. The experiments were conducted

by moving the pallet in and out of a walk-in cooler maintained
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FIGURE 1

Flow diagram of research methodology for the development predictive models of less-than-truckload temperature abuse.

at 4◦C for a total of 6 TA cycles (1 cycle = 2 h at 4◦C, then 2 h

at 25◦C). A separate representative box was kept in the walk-in

cooler for the duration of the 24 h experiment which acted as

the control. The temperature of the control box and the outside

room temperature were recorded with a probe thermometer

every 2 h.

Thermal imaging

During the TA trials, thermal images of the pallet were

taken using an infrared camera (BCAM 9Hz 120 x 120

Thermal Infrared Camera, Teledyne FLIR, Wilsonville, OR,

United States) every 2 h of the experiment. The camera was

pointed centrally at the pallet from all four sides at a distance of

4 ft when shooting images. Thermal images were always taken

when the pallet was in the outside room (either immediately

after being removed from the walk-in cooler or immediately

before). The images were saved to a removable memory card in

the camera and were retrieved at the conclusion of each trial of

the experiment.

Spoilage study

Microbiological sampling was conducted before (0 h) and

immediately after the end of the simulated TA (24 h) to

determine if TA immediately impacted the bacterial levels of

the raw poultry breast meat. Two predetermined boxes were

chosen from each layer to have microbial sampling. The boxes

sampled were as follows: layer one: boxes 1 and 4, layer 2: boxes

7 and 10, layer 3: boxes 12 and 14, and layer 4: boxes 17 and 19.

These boxes were selected based on their position within each

layer (1 perimeter box and the center box). Two tray packs were

randomly chosen from each box and 1 filet per tray was sampled

for microbiological analysis. One filet from each selected tray

pack was aseptically placed in a sterile bag (18 x 30 cm, 1,650ml,

VWR, Radnor, PA, United States) and manually rinsed with

50ml of sterile buffered peptone water (Neogen Corporation,

Lansing, MI) for 1min, and the rinsate was serial diluted and

spread plated in duplicate onto Standard Methods Agar Petri

plates (Neogen Corporation). The Petri plates were incubated

either at 37◦C for 24–48 h to estimate aerobic plate counts (APC)

or at 4◦C for 10 days to estimate psychrotrophic plate counts

(PSY). After the incubation period, viable colonies on the Petri

plates were counted and reported as log CFU/ml of rinsate.

Shelf-life assessment of raw breast filets
after temperature abuse

The effect of TA on the changes in shelf-life of raw

chicken breast meat was assessed using 2 boxes from the TA
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abused pallet. The trays from the 2 boxes that crossed 4◦C

the fastest were pooled together, stored at 4◦C, and sampled

for microbiological analysis every 2 days until the APC counts

reached 7 logs. Control chicken trays were stored and sampled

in a similar manner. During each sampling time, 3 trays from

the TA and control samples were sampled in the same manner

as in the spoilage study. Plates were counted after 24 h (APC)

and 10 days (PSY) and a two-sample equal variance t-test was

performed using Excel at each sampling day to determine if

bacterial concentrations are significantly different at the chosen

sampling times.

Monte Carlo simulations

Two methods were developed using MC simulations. One

method predicts the risk of TA based on box number, and the

other predicts the remaining shelf-life according to the level of

TA experienced. The simulations allow us to take our existing

data at specific time points and increase it to a large degree.

The data generated through these simulations enabled us to

develop predictions based on 500 data points rather than only

using the limited amount of data acquired through physical

testing. For the first method, MC simulations using temperature

data from h 0, 6, 12, 18, and 24 were performed. Temperature

recordings from 4 or 5 of the trials at these time points was

used to calculate an average temperature and standard deviation

of temperature for each box at each time point. Next, using

the mean and standard deviation, we generated a random

number using the Excel formula: NORMINV(rand(),mu,sigma).

In this formula, rand() creates a random value between 0

and 1, mu is the sample mean, and sigma is the sample

standard deviation (Winston, 2022). When using this formula,

the user is calculating the pth percentile of a normal random

variable occurring with the chosen mean and standard deviation

(Winston, 2022). Following the initial number generation, 500

iterations were run at each timepoint for each box. From the 500

generated numbers, we obtained an average, standard deviation,

maximum, and minimum temperature for each box at each

time point. Lastly, we calculated what percentage of the 500

numbers was >4◦C at each time point. Formula 1 illustrates

how risk of TA was calculated with n>4 being the number of

simulations >4◦C.

%Risk of TA = n>4C ×
100

500
(1)

The second method used temperature data and APC data

from the control and TA filets. The remaining shelf-life was

calculated for 3 control filets (0 h >4◦C) and 3 TA filets (8 h

>4◦C). A graph was constructed with shelf-life graphed vs. time

>4◦C. Next, a trendline was fit to the data and a linear regression

equation was obtained (Formula 2).

Y = −0.379x+ 7.1597 (2)

Estimates of shelf-life were obtained for different levels of

TA by substituting values in for “x” (0, 2, 4, 6, and 8 h) and

solving for “y.” The shelf-life values (y) and a standard deviation

(1) were used to run MC simulations (500 iterations) in the

same manner as previously described using Excel. From the 500

generated numbers, the percentage <4 days was calculated. This

value is referred to as “risk-of-loss” because of the assumption

retailers cannot sale all the product before spoilage in under

4 days. Formula 3 shows how risk-of-loss was calculated with

n
<4days being the number of simulations that resulted in <4

days of shelf-life.

%Risk of Loss = n
<4 days ×

100

500
(3)

Results and discussion

Temperature profile

Temperature profiles of all the four layers of the pallet show

peaks and valleys reflecting TA and were more pronounced in

the top and bottom layers (Figures 2, 5) than in the middle

layers (Figures 3, 4). All the boxes in layer 1 crossed 4◦C by

∼12 h (Figure 2) likely because the top layer of the pallet is more

exposed than the other layers with the sides being in contact

with the air surrounding the pallet. Temperature profile of the

top layer indicates that product in this layer is most prone

to rapid spoilage and should be treated the most differently.

Similarly, layer 4 had all but one box (box 19) cross 4◦C by

24 h (Figure 5) as the layer is in direct contact with the wooden

pallet which is in direct contact with the floor resulting in

more dramatic influence by the TA. The middle 2 layers of the

pallet (Figures 3, 4) were less impacted as shown by the less

dramatic increase in temperature. In the middle layers, most of

the boxes never reached 4◦C with only boxes 6 and 13 crossing

4◦C for layers 2 and 3, respectively. In layers 2 and 3 of the

pallet (Figures 3, 4) boxes are shielded by the top and bottom

layers. Also, the pallet has a plastic wrap (a standard industry

practice) applied around the perimeter of the box which may

be helping the middle 2 layers stay insulated and less impacted

by the TA. The deviation from the target temperature (4◦C)

seen in our simulated supply chain resemble those recorded

from an actual supply chain in South Africa (Emenike and

Hoffman, 2014). Similar to our study, Emenike and Hoffman

(2014) used dataloggers, however their target temperature was

2◦C, and the data loggers were placed along the periphery of a

reefer truck and not in individual boxes on a pallet. Emenike and

Hoffman (2014) reported average transportation temperatures

as high as 14.9◦C which could be due to the inadequate cold

chain in South Africa compared to other countries with more

developed cold chains. A similar mismatch of the target cold

chain temperature was reported by Ndraha et al. (2019) who

studied the temperatures of frozen shrimp in the last mile before
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FIGURE 2

Averaged temperature profiles (4 replications) of top layer (layer 1) boxes of palletized chicken breasts while experiencing simulated LTL cyclic

TA (2 h at 4◦C then 2h at 25◦C).

FIGURE 3

Averaged temperature profiles (4 replications) of second layer from the top (layer 2) boxes of palletized chicken breasts while experiencing

simulated LTL cyclic TA (2 h at 4◦C then 2h at 25◦C).

home deliveries. While the shrimp were not being shipped on

pallets at this stage, the temperature results had similar findings

to ours in that the target temperature (−18◦C) was often not

the temperature of the products being shipped. In fact, they

found the shrimp were above the target temperature over 50% of

the time.

Figure 6 shows a schematic of how the boxes are arranged

on the pallet. Figure 6 was rendered from the temperature

graphs for a rapid analysis of the boxes which crossed 4◦C

and the corresponding time (h). The boxes are color coded

for each layer according to the order in which they reached

4◦C. Regarding the severity of TA, the box order is as follows

from hottest to coldest: red, orange, yellow, blue, and purple.

The impact of box position is indicated by the colors in

each layer. In all layers, the centrally placed box is colored

purple indicating it was either the least abused box or it

never crossed 4◦C (Figure 6). Also, the most abused box was

always a perimeter box. In the case of layers 2, 3, and 4, the
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FIGURE 4

Averaged temperature profiles (4 replications) of third layer from the top (layer 3) boxes of palletized chicken breasts while experiencing

simulated LTL cyclic TA (2 h at 4◦C then 2h at 25◦C).

FIGURE 5

Averaged temperature profiles (4 replications) of bottom layer (layer 4) boxes of palletized chicken breasts while experiencing simulated LTL

cyclic TA (2 h at 4◦C then 2h at 25◦C).

most TA box were stacked at the same location of the pallet

(Figure 6). In layer 1, after only 9.68 h there is already a box

that has crossed into the temperature “danger zone.” While

in the middle layers (layers 2 and 3) 8 of 10 boxes never

crossed 4◦C (Figure 6). Our research indicates that not all boxes

experience equal TA and may indicate that the remaining shelf-

life of perishable products in each box is not equal. The results

of the temperature profiles indicate the need for more intense
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FIGURE 6

Cross sections of 4 layers of palletized boxes of chicken breasts with time required for each box to reach 4◦C.

FIGURE 7

Thermal images of all sides of a pallet of chicken breasts

immediately after being removed from a walk-in cooler (4◦C).

temperature recording because of the different levels of abuse

experienced by different boxes.

Thermal images

Thermal imaging is a quick and non-destructive method

to measure temperature as the user can take an image from

a distance (Vadivambal and Jayas, 2011). The technology

has already proven to be useful in a variety of agricultural

appliations such as determining food grain quality, detecting

bruises on apples and grape decay (Varith et al., 2003; Nanje

Gowda and Alagusundaram, 2013; Ding et al., 2017). Perhaps

loading docks or cold storage facilities could benefit in the

investment in thermal imaging cameras because it will aide

in the decision making process of rotating their product onto

shelves. Images in Figures 7, 8 show the immediate and long

term impacts of cyclically removing the pallet of chicken

breast from the walk-in cooler. Images shown in Figure 7

were taken less than 5min after the pallet was pulled out

of the cooler for the first time. The darker colors in the

image (Figure 7) show where the pallet is the coldest and

the lighter colors show where it is the hottest. The center of

the pallet (layers 2 and 3) shows darker purples and blues

indicating colder areas (Figure 7). The outside edges have

already demonstrated lighter colors (hotter temperatures) after

only 5min of TA. Figure 8 demonstrates the thermal image

of the the same pallet after it experienced six TA cycles and

is at the conclusion of the 24-h TA experiment. Images in

Figure 8 show most of the pallet is reddish yellow indicating

the boxes, although had experienced 4◦C for every alternate

2-h, did warm up and may ultimately affect the product.

After 24 h of TA, thermal imaging shows heterogeneity in

box temperatures based on location exemplified by the darker

colors (colder temperatures) still visible in the central regions

while yellow-red on the preipheral boxes (higher temperature).

The results of thermal images (Figures 7, 8) are consistent

with the results of the temperature profiles (Figures 2–5). In

other words, layers 1 and 4 of the pallet are hotter than
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FIGURE 8

Thermal images of all sides of a pallet of chicken breasts after

24h of cyclic TA (2 h at 4◦C then 2h at 25◦C).

layers 2 and 3, and the interior boxes appear to be cooler

than the perimeter boxes. Also, it is important to note that

previous research has demonstrated that thermal imaging may

be affected by the types of covers on products (Badia-Melis

et al., 2017). Our research indicates that thermal imaging can

be incorporated in cold chains especially to rapidly identify

the TA without having to invest in expensive time/temperature

recording devices.

Microbiological spoilage

TA of the raw perishable poultry meat can initiate microbial

growth ultimately affecting the shelf-life of the product.

Experiments were conducted to determine the microbial

populations (APC and PSY) on chicken at 0 and 24 h of

TA. Microbial populations (APC and PSY) were similar when

sampled at hour 0 and hour 24 of TA. For APC and PSY, the

results were 2.2 and 2.8 log CFU/ml for 0 h of TA, respectively.

After 24 h of TA the results were 2.0 to 2.4 log CFU/ml for

APC and PSY, respectively. The lack of bacterial growth is likely

because the TA conditions used in the study were not severe

enough to cause the bacteria to immediately enter log phase.

However, microbial population differences are visible when the

TA and control filets were analyzed for shelf-life (Figures 9, 10).

The results of both the APC and PSY show a difference in shelf-

life of ∼2 days between TA and control filets (Figures 9, 10).

The APC and PSY of the TA and control filets reached spoilage

(7 logs CFU/ml) after ∼4.5 vs. 7 days (Figure 9) and 3.75 vs.

5.25 days (Figure 10), respectively. When values were compared

for the sampling days of the shelf-life experiment, only day 4

was significantly different (p < 0.05) for both APC and PSY.

Many similar bacterial studies have been completed with similar

results (i.e., TA leads to increased bacterial growth). However,

the temperatures and durations of abuse vary between studies. A

study by Senter et al. (2000) found that holding chicken meat

samples at a temperature of 13◦C for 48 h had similar APC

results to their TA scenario (3 days at 4◦C then 1 day at 13◦C

then 1 day at 4◦C). Senter et al. (2000) reported APC values

of 8.19 and 9.48 log CFU/ml for the 13◦C and TA scenarios,

respectively. Similarly, Casanova et al. (2021) demonstrated that

exposing inoculated chicken breast (Salmonella choleraesuis and

Staphylococcus aureus) to 15◦C for 2 h before 20 or 25◦C for 10 h

and finally storage at 5◦C reduced the shelf-life of raw chicken

from 12 days to 12 h. Ghollasi-Mood et al. (2016) exposed

chicken to 4◦C, 10◦C, and 15◦C for 8 h each and found that it

took∼125 h for total viable counts to reach spoilage levels under

ideal storage conditions, while TA (cyclic 8 h at 0◦C then 8 h at

10◦C then 8 h at 15◦C) chicken took∼50 h.

Overall, our shelf-life experiment demonstrates that TA

reduces shelf-life of raw chicken breast filets compared to the

non-TA control filets. If decision makers in the cold chain had

knowledge of the boxes that deviated the most from control

temperatures, perhaps new practices could be put in place to

sell temperature sensitive products more efficiently. It is possible

that a pallet received a day before may have boxes that will

keep for longer than boxes on a more recently received pallet.

However, under current conventions it is likely that the boxes

from a pallet that arrives first will be put on display first allowing

for spoilage-related food waste.

Monte Carlo and remaining shelf-life

MC simulations have been used for risk analysis in

agricultural sector previously in both spoilage and food safety

(Schroeder et al., 2006; Gougouli and Koutsoumanis, 2017). The

method has been well documented to predict microbial counts

for both spoilage microorganisms and pathogens (Schaffner

et al., 2003; Zeng et al., 2014; Lau et al., 2022). For our

first method the MC simulations focused on the temperatures

themselves rather than predicting the microbial counts as a

result of the temperatures. Table 1 shows the results of the first

method using MC simulations on the 4 layers of the pallet.

The table has the percent chance of each box reaching 4◦C at

5 different time points during the cyclic TA (0, 6, 12, 18, and

24 h). The results of these simulations are consistent with the

temperature profile results. The boxes comprising the middle

layers (boxes 6–15; Table 1) have lower risks than the boxes on

the top layer (boxes 1–5) and bottom layer (boxes 16–20). For

layer 1, there is an incremental growth in risk of reaching the

temperature “danger zone” as time goes on (Table 1). After 12 h,

all boxes are at ∼50% risk of having reached 4◦C. Also, all layer
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FIGURE 9

APC shelf-life of simulated less-than-truckload temperature abused (TA; 2 h at 4◦C then 2h at 25◦C) and control chicken breast filets kept in

simulated retail conditions.

FIGURE 10

Psychrotroph shelf-life of simulated less-than-truckload temperature abused (TA; 2 h at 4◦C then 2h at 25◦C), and control chicken breast filets

kept in simulated retail conditions.

1 boxes have at least an 86.5% chance of reaching 4◦C by the

end of the experiment (24 h; Table 1). Layer 2 boxes (boxes 6–

10) show a risk of less than 41% after 24 h (Table 1). However,

box 6 has a 91% risk level after 24 h (Table 1) probably because

of the peripheral location on the pallet but it does not explain

why the other perimeter boxes were not influenced in a similar

manner. MC simulations indicate that the boxes in layer 3 have

the lowest overall risk for reaching 4◦C (Table 1). At 12 h, layer 3

boxes were all below 11%with 4 of 5 boxes being below 4%. Only

1 box in layer 3 (box 13) crossed 50% after 24 h. Lastly, layer 4’s

results show 2 boxes above 10% after 12 h (Table 1). Four of the

boxes in layer 4 were above 64% with the remaining box being at

47.4% after 24 h. Layer 4 boxes were relatively similar to layers 2

and 3 after 12 h. However, after 18 h, the percentages spike and

results start appearing similar to those seen for layer 1 (Table 1).

This is in contrast to layer 1 where there was an incremental

increase in risk throughout the duration of the experiment.

Results from the second MC method are shown in Table 2.

Values for the prediction of shelf-life and risk-of-loss at 5

different TA scenarios (0, 2, 4, 6, and 8 h >4◦C) are shown.
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.8 TABLE 2 Monte Carlo derived shelf-life predictions for cyclically

temperature abused (TA; 2h at 4◦C then 2h at 25◦C) chicken breasts

filets determined by time (h) spent above 4◦C.

TA > 4◦C

(h)

Risk-

of-Loss

(%)

Shelf-Life

remaining

(days)

Shelf-Life

remaining

(%)

Shelf-Life

reduction

(%)

0 0 7.2 100 0

2 0.8 6.4 89.4 10.6

4 5.8 5.6 78.8 21.2

6 17.8 4.9 68.2 31.8

8 43.8 4.1 57.6 42.4

The risk-of-loss increases dramatically after 6 h at>4◦C (17.8%)

and reached a maximum of 43.8% after 8 h >4◦C. Also, shelf-

life reduction increased by ∼10% every additional 2 h spent at

>4◦C with a maximum value of 42.4% after 8 h. Lastly, the

shelf-life decreased by ∼3 days if filet temperature was > 4◦C

of rover 8 h (Table 2). MC simulation method has been used to

predict shelf-life of various perishable products (Hutter et al.,

2001; Schaffner et al., 2003; Giannakourou and Taoukis, 2019)

including various foods (Ndraha et al., 2019; Lau et al., 2022)

and pharmaceuticals (Su et al., 1994; Waterman et al., 2007).

However, there are not many studies completed using MC to

estimate the shelf-life of poultry. The information provided by

this study and others completed previously demonstrates the

complexity associated with the TA that might occur in the

supply chain and why more intense temperature monitoring

is needed. Perhaps a retailer could have a program already in

place at the store and have the temperature history uploaded

via other technologies (e.g., RFID) allowing the retailer to take

advantage of the information at their disposal. Once this data

is observed, the managers could easily and quickly make the

most beneficial decision regarding product spoilage. Having

simulations or predictive models at their disposal would allow

the end user in the cold chain to make decisions without having

to have an in depth understanding of microbiology. There would

be no microbiological sampling involved, and it would not be

necessary to have a lab to perform tests on the samples to

determine the remaining shelf-life. The risk-of-loss predictions

viaMCmethods indicate that ∼44% of chicken breast filets will

have a shelf-life of less than 4 days after 8 h >4◦C. This method

is assuming a retailer will be unable to sale product fast enough

once a minimum acceptable shelf-life is reached. Therefore, the

product would have to be discarded leading to food waste. In this

experiment, 4 days was chosen, but the method could be altered

to predict risk-of-loss at a different value for minimum shelf-life.

The significance of a 44% loss becomes evident when observing

the financial impact. If a pallet of chicken breasts weighs 1,000

pounds, 440 pounds could potentially be wasted. According to
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the United States Department of Agriculture (2022b) , the price

of tray packed chicken breasts is $3.06/pound. Therefore, 1 pallet

could result in a financial loss of $1,346.40 if 8 h of LTL TA

occurs. This highlights the need for a reliable prediction method

to mitigate this food waste and associated financial loss.

Conclusion

The last mile presents challenges to cold chain management

in LTL scenarios. However, limited research has been conducted

on the impact of LTL TA at the pallet level of perishable goods.

Our study demonstrates the heterogeneity in temperature profile

of different boxes on the pallet with or at different layers and the

need to use time/temperature data to understand the potential

spoilage risks of each box. MC simulations demonstrated an

increased risk to reach abuse level temperatures in the boxes

located on the top and bottom layers (layers 1 and 4) of

the pallet with the top layer being the highest risk (>86%)

after 24 h. Lastly, shelf-life and risk-of-loss predictions were

completed. After 8 h of exposure to temperatures >4◦C, the

risk-of-loss reaches nearly 44%, and shelf-life reduces from

7.2 days to 4.1 days. This study demonstrates how a “break”

in cold chain can influence the shelf-life at the retail level.

Simulations can be useful tools for managers when deciding

how to treat their stock of temperature sensitive products, and

they can allow them to more accurately judge which products to

sell first.

In the future, more research is needed in last mile TA

with more scenarios regarding the duration and levels of

TA are needed. Also, merging new technologies into similar

experiments will be essential. For example, the use of RFID

technology to record temperatures is a more realistic way of

collecting TA data in the cold chain. Time/temperature data

collection with RFID combined with cloud computing would

aid in real-time prediction of remaining shelf-life as the product

is moving through the supply chain and help in better decision

making about the product prior to its arrival at the retail store.
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