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Accurate garlic identification and mapping are vital for precise crop

management and the optimization of yield models. However, previous

understandings of garlic identification were limited. Here, we propose an

automatic garlicmapping framework using optical and synthetic aperture radar

(SAR) images on theGoogle Earth Engine. Specifically, we firstlymappedwinter

crops based on the phenology of winter crops derived from Sentinel-2 data.

Then, the garlic was identified separately using Sentinel-1 and Sentinel-2 data

based on the winter crops map. Additionally, multi-source validation data were

used to evaluate our results. In garlicmapping, coupled optical and SAR images

(OA 95.34% and kappa 0.91) outperformed the use of only optical images (OA

74.78% and kappa 0.50). The algorithm explored the potential of multi-source

remote sensing data to identify target crops in mixed and fragmented planting

regions. The garlic planting information from the resultant map is essential for

optimizing the garlic planting structure, regulating garlic price fluctuations, and

promoting a healthy and sustainable development of the garlic industry.

KEYWORDS

garlic identification, phenology, multi-source image coupling, Google Earth Engine,
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Introduction

Garlic is one of the primary economic crops (e.g., garlic, peanut, rape, sugar beet,

sugarcane, and cotton) in China. According to statistics from the United Nations Food

and Agriculture Organization (FAOSTAT, 2020), garlic production in China reached

23.30 million tons in 2019, which made China the largest garlic planting and production

region in the world. Due to the small area and scattered distribution of garlic crops, few

studies have been able to map them accurately, which hinders their precise management

(Zhang et al., 2019; Guo et al., 2022b).

Traditionally, information about the garlic planting area is mainly obtained based on

a sampling or field survey. Suchmethods are not only vulnerable to subjective factors (Liu

et al., 2018a) but they also have a long cycle, are labor-intensive, and are time-consuming

(Siyal et al., 2015; Verma et al., 2017). Satellite imagery has become a viable cropmapping

data source, due to its highmapping efficiency and low cost (Massey et al., 2017; Vallentin

et al., 2021; Guo et al., 2022a), and it is widely used in many fine-mapping fields, such as

urban land mapping (Liu et al., 2018b), water surface area change (Xia et al., 2019; Zhao

et al., 2022), forest degradation (Bullock et al., 2020), cropland classification (Poortinga

et al., 2019), and wetland classification (Amani et al., 2019).
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At present, the accuracy of the garlic extraction based

on remote sensing data is mostly unsatisfactory. Qu et al.

(2021) attempted to map garlic distribution using the threshold

method and Landsat images. However, the limited temporal

resolution of the Landsat satellite makes it difficult to

obtain sufficient high-quality images during the growing

season, which can easily ignore spectral differences of crops.

Therefore, the accuracy and timeliness of the results are

difficult to guarantee. Lee et al. (2015) attempted to use ultra-

high-resolution Worldview-2 satellite images to map garlic

distribution. However, the high cost and limited coverage of

a single image restrict their application to a large region.

Similarly, although Unmanned Aerial Vehicle (UAV) imagery

provides more spatial details, it usually requires many images

to fully cover the study area and is difficult to apply to

large areas. The Sentinel-2 (S2) imagery provided a temporal

resolution of 5 days and a spatial resolution of 10m, providing

an opportunity for the identification of broken and scattered

garlic distributions.

The quality of Sentinel-1 (S1) imagery is independent of

weather conditions (Du et al., 2015; Oyoshi et al., 2016), which

compensates for the lack of optical observations due to bad

weather during the crop growth cycle (Torbick et al., 2017). In

addition, S1 SAR images are very sensitive to plant structure

(Chauhan et al., 2020; Schlund and Erasmi, 2020), which is

conducive to monitoring crops with different growth structures

in the same growth cycle. Agmalaro et al. (2021) attempted to

map garlic distribution based on Sentinel-1 images using the

support vector machine (SVM) approach. Similarly, Sentinel-1

images and the decision tree method were also used to identify

garlic distributions (Komaraasih et al., 2020). However, the

results show that the classification accuracy using only S1 images

is worrisome (76%−78%). This is due to the phenomenon of

“different objects with the same spectrum” (Cai et al., 2020),

which usually occurs in crops with a similar growth cycle, such

as garlic and winter wheat.

Garlic extraction approaches thus far can be roughly divided

into two types. The first approach is to use machine learning

methods with the spatial statistics of spectral bands, vegetation

indices (VIs), and texture in the single- or multi-date optical

images as input variables (Guo et al., 2022b). Lee et al.

(2015) extracted garlic locations using random forest (RF) and

maximum likelihood (ML) classifiers with the spectral features

of the garlic as input variables. VIs were also used as input

variables to distinguish the garlic and other vegetation types

through the ML classifier (Lee et al., 2016). Di et al. (2018)

constructed the garlic classification indexes using the digital

number (DN) characteristics of different ground object images

and extracted those of garlic by SVM. This approach requires a

large number of local training samples and is therefore limited

to large-scale accurate models. Additionally, complex feature

combinations and indices may lead to overfitting (Graesser

and Ramankutty, 2017). The second approach is to calculate

the temporal statistics of spectral bands, VIs, and backscatter

coefficients of synthetic aperture radar (SAR) data in the time

series data of individual pixels and use decision trees or rule-

based algorithms to identify the garlic (Qu et al., 2021). Different

crops have different phenological characteristics in a specific

period (Bargiel, 2017; Massey et al., 2017), which are recorded

in the time series data and can be used for the classification

of individual pixels. Moreover, the irregular interval of time

series is critical to support the complete development of

classification models (Qiu et al., 2017). Training samples of

the garlic, winter wheat, and other crops were overlaid with

these phenological characteristic layers to carry out a signature

analysis. Based on the results of signature analysis, classification

rules can be built and the garlic can be identified by a decision

classification approach. These phenology-based algorithms have

been successfully applied for mapping winter wheat (Song and

Wang, 2019), rice (Yang et al., 2021), corn (You and Dong,

2020), and soybean (You et al., 2021). As a winter crop, garlic

has significant phenological characteristics different from other

winter crops in specific growth stages. Therefore, it is necessary

to fully exploit these differences to achieve a fine mapping

of garlic.

We hypothesized that there are optimal combinations of

sensors and indices to achieve the best garlic recognition. To test

this hypothesis, we analyzed the combined effects of different

sensors and indices and aimed to understand how S1 and S2

contribute to garlic identification, which combination of satellite

sensors enables optimal mapping of the garlic, and which

indexes can optimize the recognition accuracy of the garlic and

improve the classification efficiency.

Cropping systems in China are characterized by smallholder

farms, whose majority of cropland field size is < 0.04 ha (Tan

et al., 2013). Therefore, complex mixed planting patterns and

small, fragmented blocks in Qi County present a challenge for

the remote sensing recognition of garlic in this region. The

crops in Qi County are mainly divided into winter crops and

non-winter crops, and its winter crops mostly consist of garlic

and winter wheat. Considering the above limitations of remote

sensing in garlic mapping and the actual demands of farmers

and the local government for timely and accurate information

on garlic plantations, we proposed an automatic garlic mapping

framework (Figure 1). This study had the following objectives:

(1) monitoring the phenological characteristics of garlic in

time; (2) developing an automatic mapping framework to map

the garlic at a 10-m resolution based on multi-source remote

sensing data and phenological characteristics; (3) exploring the

potential of the coupling of the optical and SAR images to

map the garlic in a mixed planting region; (4) providing a

guideline for future approaches of modern crop management

practices and giving an objective overview of suitable sensors

and indices.
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FIGURE 1

The framework for mapping the garlic.

FIGURE 2

(A) The location of Qi County in China, (B) Enlarged map showing Qi County, Henan Province (C) Spatial pattern of the land cover types, and (D)

Digital Elevation Model (DEM).

Materials and methods

Study area

Qi County lies in the east of Henan Province, the South Bank

of the lower Yellow River, and the hinterland of North China

Plain (Figures 2A,B). Qi County has a total area of 1,531 km2,

including 1,420 km2 of cropland (Figure 2C), and a temperate

continental monsoon climate. The total terrain is high in the

northwest and low in the southeast (Figure 2D). Its main winter

crops are garlic and winter wheat. According to statistics, garlic

production reached 84.8 tons in 2019 (https://data.cnki.net/

Yearbook/, last accessed [December 15, 2021]), ranking first at

the county level in China. Garlic and winter wheat are usually

sown around October and harvested around June in next year of

Qi County.
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FIGURE 3

Numbers of observations for individual pixels during the study period. (A,B) The spatial distributions of total observations for individual pixels for

S1 and S2. (C) The spatial distributions of good-quality observations for individual pixels for S2.

Datasets and preprocessing

Sentinel-1 images

The European Space Agency (ESA) S1 is a SAR system

composed of S1A and S1B satellites, which were launched

in April 2014 and April 2016, respectively. They are

available at https://sentinel.esa.int/. We selected data from

the interferometric wide swath (IW) mode, which is the default

operational mode over land. The IW mode is in the dual

polarization of vertically transmitted and horizontally received

(VH) and vertically transmitted and vertically received (VV)

polarizations with a temporal resolution of 12 days and a spatial

resolution of 5 × 20m (Torres et al., 2012). From October 1,

2019, to July 1, 2020, 30 S1 images as Level-1 ground range

detected (GRD) were collected (Figure 3A), corresponding to

“COPERNICUS/S1_GRD” of the Google Earth Engine (GEE)

cloud platform.

Some preprocessing algorithms were applied to S1 images,

including orbital file correction, GRD border and thermal noise

removal, radiometric calibration, and terrain correction. First,

the orbit file was used to provide accurate satellite positions for

each scene. Second, GRD border and thermal noise removal

were applied to each scene to remove the additional noise and

reduce the discontinuity in the subsamples of each scene. Third,

the digital pixel value was transformed into a SAR backscattering

coefficient by radiometric calibration. Finally, terrain correction

was performed for each scene to correct the geometric distortion

caused by the side view geometry of the acquisition system, after

which shortened mask correction was performed.

Sentinel-2 images

S2 Multi-Spectral Instrument (MSI) data includes S2A and

S2B images provided by the European Space Agency (ESA), and

the revisit cycle of the two satellites is 5 days (Drusch et al., 2012).

Because top of atmosphere (TOA) data is sensitive to changes

in atmospheric composition over time, surface reflection (SR)

data was selected (Jin et al., 2019). Red, near-infrared (NIR), and

blue bands with a spatial resolution of 10m and red edge (RE)

bands with a spatial resolution of 20m were used. The RE bands

were resampled to 10m by bicubic resampling to match other

bands. FromOctober 1, 2019, to July 1, 2020, 576 S2 images were

collected, corresponding to “COPERNICUS/S2_SR” on the GEE

cloud platform.

The quality of S2 data was assessed by the quality assessment

band (QA60) in the metadata, which identifies the clouds and

cloud shadows in the image as bad-quality observations and

stored them as NODATA in the image (Wang et al., 2020).

Specifically, since dense clouds have a high reflectance in the blue

spectral region (B2), the method used to identify dense cloud

pixels is based on the B2 reflectance threshold (SWIR reflectance

in B11 and B12 are also used to avoid snow/cloud confusion).
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FIGURE 4

(A) Distribution of validation samples, including garlic, wheat, and non-winter crops. (B1–D1) Are the UAV images. (B2–D2) Are the ground

observations from the field camera photograph. (B1,B2), (C1,C2), and (D1,D2) correspond to b, c, d in (A), respectively.

B10 corresponds to a high atmospheric absorption band, which

means only high-altitude clouds can be detected. Additionally,

since cirrus clouds are semi-transparent, they cannot be detected

in the B2 blue band. Therefore, a pixel with low reflectance in

the B2 band and high reflectance in the B10 band has a good

probability of being cirrus cloud (a filter using morphology-

based operations is also applied on both dense and cirrus

masks performing). After preprocessing the image in the above

steps, the total observations and good-quality observations of

individual pixels were calculated, respectively (Figures 3B,C).

Ground reference data

The ground reference data of different crop types are

critical to verify the crop classification algorithm. Ground

reference data was collected considering the following three

aspects. First, based on the Google Earth image, the stratified

random sampling method was used to collect ground training

and validation samples. Google Earth images with 1-m spatial

resolution clearly show different ground feature types, such

as the garlic field, winter wheat field, bare land. Second, two

investigation routes were designed, and fieldwork was conducted

to collect geo-referenced field photos from March to June 2020.

These field photos include different crop types such as garlic,

winter wheat, and peanuts. Third, during the fieldwork, multiple

multispectral images were obtained through UAV. The spatial

resolution of these multispectral images is as high as 0.1m,

which facilitates the identification of garlic among other crop

types. Through the images obtained considering the above three

aspects, 412 garlic samples, 451 non-garlic winter crop samples,

and 453 non-winter crop samples were collected, and their

spatial distribution is shown in Figure 4.

Land cover data

Cropland data from the FROM-GLC10 land cover product

were used to mask all S2 datasets to delimit the cropland extent

(Chen et al., 2019). This product was generated by RF based

on S2 images and reported the cropland in 2017 with a 10-m

spatial resolution. The map can be freely accessed at http://data.

ess.tsinghua.edu.cn (last accessed December 15, 2021).

Methods

Figure 5 shows the algorithm framework for producing the

2020 garlic distribution map. Generally, the garlic is extracted

in two steps: (1) extraction of winter crops, which is the
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FIGURE 5

The algorithm framework for identifying garlic.

basis for identifying the garlic, and (2) identification of the

garlic within the winter crop map. Specifically, we determined

the winter crop field by monitoring phenological indices of

winter crops recorded in the normalized difference vegetation

index (NDVI) time series. Then, based on winter crop pixels,

we mapped the garlic using time series from S2 and S1.

Finally, we evaluated the performance of using optical images

only and coupling optical images to SAR images in mapping

the garlic.

Index calculation

Spectral indices that are sensitive to vegetation greenness can

be used to capture the physical differences of different land cover

types (Di Vittorio and Georgakakos, 2018) and characterize the

growth curves of different crop types (Wardlow et al., 2007).

NDVI (Tucker, 1979) and enhanced vegetation index (EVI)

(Huete et al., 2002), which are highly related to leaf area index

and chlorophyll in the canopy, are widely used in the remote

sensing inversion of vegetation phenology. Sentinel-2 red-edge

position index (S2REP) (Frampton et al., 2013) can effectively

monitor the growth stages of vegetation (Forkuor et al., 2018)

and shows higher performance in crop classification (Yi et al.,

2020). The calculation formulas are as follows:

NDVI =
ρnir − ρred

ρnir + ρred

EVI = 2.5×
ρnir − ρred

ρnir + 6.0ρred − 7.5ρblue + 1

S2REP = 705 + 35×
0.5× (ρre3 + ρred)− ρre1

ρre2 − ρre1

where the ρnir, ρred, and ρblue represent the NIR, red, and blue

bands, respectively. ρre1, ρre2, and ρre3 represent the RE1, RE2,

and RE3 bands, respectively.

Time-series construction

Compositing images at regular intervals can reduce the

impact of clouds and uneven observations in time (Griffiths

et al., 2019). Therefore, the VIs time series were constructed

at 10-day intervals. The maximum value of all good-quality

observations within a 10-day periodwas taken as the observation

value of the 10-day period. When there was no good-quality
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FIGURE 6

Temporal profile of average NDVI for winter crops and

non-winter crops with standard deviation.

observation in a 10-day period due to clouds, cloud shadows,

and snow effects, the linear interpolation method was used to

fill the data gap. The interpolated data depends on good-quality

observations before and after the 10-day interval. Further, VV,

VH, and standard deviation time series were reconstructed at

12-day intervals. However, even after the above steps, extremely

high or low outliers may still appear in the time series, which

is usually caused by cloud containment, atmospheric variability,

and bidirectional effects. Therefore, the Savitzky-Golay filter was

used to smooth the time series with a moving window of size 9

and a filter order of 2 (Chen et al., 2018; Pan et al., 2021a).

Annual map of winter crops in 2020

Because garlic is a winter crop, winter crops were firstly

extracted from the cropland. Compared with non-winter crops,

the chlorophyll content of winter crops increased continuously

after sowing and decreased slightly during the vernalization

period (Figure 6, October 2019 to January 2020). Therefore,

there was a lower peak in the NDVI time series of winter

crops during this period (Figure 6). Non-winter crops were

usually harvested or not sown during this period, so their NDVI

was low.

According to these unique phenological characteristics of

winter crops, the start date of peak (SDP), the number of peaks

(NP), NDVI_max, and NDVI_min phenological indices were

selected. Among them, SDP is the first peak identified from

October 1, 2019, to July 1, 2020; NP is the number of peaks

identified from October 1, 2019, to July 1, 2020; NDVI_max is

the maximum value of NDVI time series from October 1, 2019,

to January 1, 2020; and NDVI_min is the minimum value of

NDVI time series from June 1, 2020, to July 1, 2020.

The training samples of winter crops and non-winter crops

were overlaid with the four phenology index layers to carry

out a signature analysis (Figure 7). The results showed that

the SDP of winter crops occurs mostly in late October to late

January [day of the year (DOY) from 60 to 126]. NP is 2–4. The

NDVI_max mainly gathers between 0.5 and 1, and NDVI_min

mainly gathers between 0.2 and 0.6. Based on the results of

signature analysis, an algorithm was developed for winter crops:

60 ≤ SDP ≤ 126 & 2 ≤ NP ≤ 4 & 0.5 ≤ NDVI_max

≤ 1 & 0.2 ≤ NDVI_min ≤ 0.6

The algorithm was applied to extract the winter crops

in Qi County, and garlic mapping was performed from the

winter crops.

Annual map of the garlic in 2020 based on
optical images

The winter crops in Qi County were further divided into

garlic and winter wheat. Although garlic and winter wheat were

sown and harvested at almost the same time, the EVI and S2REP

of garlic in the growth period (Figure 8, December 2019 to April

2020) were lower than those of winter wheat, and its harvest

period was earlier than that of non-garlic winter crops.

According to these unique characteristics of garlic, the

EVI_median, S2REP_median, and start date of the valley (SDV)

phenological indices were extracted. Among them, EVI_median

is the median value of EVI from December 1, 2019, to April

1, 2020; S2REP_median is the median value of S2REP from

December 1, 2019, to April 1, 2020; and SDV is the first valley

identified fromMay 1, 2020, to July 1, 2020.

The training samples of garlic and winter wheat were

overlaid with the three phenology index layers to carry out

a signature analysis (Figure 9). The results showed that the

EVI_median of garlic mainly gathers between 0.5 and 3.0, and

the S2REP_median mostly gathers between 712 and 724. The

SDV of garlic gathers between 200 and 306. Based on the

results of signature analysis, an algorithm was developed for

identifying garlic:

0.5 ≤ EVI_median ≤ 3.0 & 712 ≤ S2REP_median

≤ 724 & 200 ≤ SDV ≤ 306

The algorithm was implemented to identify garlic over the

winter crops generated in section annual map of winter crops

in 2020.

Annual map of garlic in 2020 based on SAR
images

The backscattering intensities of S1 images are sensitive to

crop phenology and morphological development (Mandal et al.,

2020), which provides an unprecedented opportunity for garlic

monitoring. Unlike winter wheat, the distance between garlic

Frontiers in Sustainable FoodSystems 07 frontiersin.org

https://doi.org/10.3389/fsufs.2022.1007568
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org


Chen et al. 10.3389/fsufs.2022.1007568

FIGURE 7

Signature analysis of winter crops and non-winter crops at (A) SDP, (B) NP, (C) NDVI_max, and (D) NDVI_min using the histogram statistics

method.

plants is larger and therefore, the backscattering coefficient of

garlic is higher than that of winter wheat (Figure 10).

According to these unique garlic characteristics, the

VV_median, VH_median, the standard deviation of VV

(VV_stdDEV), and the standard deviation of VH (VH_stdDEV)

phenological indices were selected to extract the garlic. Among

them, VV_median and VH_ median are the median values

of VV and VH from March 1, 2020, to May 31, 2020, and

VH_stdDEV andVH_stdDEV are the standard deviations of VV

and VH from October 1, 2019, to July 1, 2020, respectively.

The training samples of the garlic and winter wheat were

overlaid with the four phenology index layers to carry out

a signature analysis (Figure 11). The results showed that the

VV_median of the garlic mainly gathers between −12 and −7

dB, and VH_median mostly gathers between −18 dB and −13

dB. The VV_stdDEV of the garlic mainly gathers between 1.8

and 3.4 dB, and VV_stdDEVmostly gathers between 2.6 and 4.2

dB. Based on the results of signature analysis, an algorithm was

developed for identifying the garlic:

−12 dB ≤ VV−median ≤ −7 dB & − 18 dB

≤ VH−median ≤ −13 dB & 1.8 dB ≤ VV−stdDEV

≤ 3.4 dB & 2.6 dB ≤ VH−stdDEV ≤ 4.2 dB

The classification algorithmwas implemented to identify the

garlic based on the winter crop pixels.
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FIGURE 8

Temporal profile of average EVI (A) and S2REP (B) for winter wheat and garlic with standard deviation.

FIGURE 9

Signature analysis of garlic and winter wheat at (A) EVI_median, (B) S2REP_median, and (C) SDV using the histogram statistics method.

Accuracy assessment of the resultant
annual maps

Confusion matrices were used to assess the accuracy of the

winter crop and garlic distribution maps (Guo et al., 2021). It

is a method to characterize the classification performance in

terms of overall accuracy (OA), producer accuracy (PA), and

user accuracy (UA) by constructing a matrix of classification

results and sample data. It uses the following formulas,

OA =
T1 + T2

N
(1)

PA =
T1

T1 + F2
(2)

UA =
T1

T1 + F1
(3)

where N is the total number of multi-classes, T1 and T2 are the

numbers of correct classifications for class 1 and class 2, and

F1 and F2 are the numbers of wrong classifications for class 1 and

class 2, respectively. Firstly, the ground reference data obtained

in section ground reference data were loaded into Google Earth,

and the vector boundary of the homologous ground reference

points was plotted according to the actual size and shape of

the cropland. Secondly, the attributes of the vector polygons

were labeled by visual interpretation and field survey data. A

total of 412 garlic samples (30,658 pixels), 451 winter wheat

samples (34,121 pixels), and 453 non-winter crops samples

(65,112 pixels) were collected. Thirdly, these vector polygons

with attribute information (e.g., the garlic, winter wheat, or non-

winter crops) were converted into raster data with a spatial

resolution of 10m (Figure 12). These raster data were used as
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FIGURE 10

Temporal profile of average VV (A) and VH (B) for winter the wheat and garlic with standard deviation.

FIGURE 11

Signature analysis of garlic and winter wheat at (A) VV_median, (B) VH_median, (C) VV_stdDEV, and (D) VH_stdDEV using the histogram statistics

method.
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FIGURE 12

Flow diagram for validation data production. (A) The Google Earth image. (B) The results of vectorization, where the purple line is the garlic

cropland boundary. (C) The results for identifying the attributes of the vector polygon. (D) The raster converted from the vector polygon.

ground reference data to construct the confusion matrix with

the classification results in this paper.

Results

Annual map of winter crops in 2020

Figure 13 shows the distribution of winter crops with a 10-m

resolution across Qi County in 2020. There were 1062.27 km2 of

winter crop fields in Qi County in 2020, accounting for 74.81%

of the total cropland area. Four regions were randomly selected.

In region b, the main winter crop type was winter wheat, and

the main non-winter crop type was spring maize. There was

a forest farm in Qi County in region c. Most cropland here

was planted with trees and only a small part of the cropland

was planted with garlic. In regions d and e, the main winter

crop type was garlic, while spring peanuts were planted in

small fields.

Annual map of garlic in 2020

As described in sections annual map of the garlic in 2020

based on optical images and annual map of garlic in 2020

based on SAR images, the distribution of garlic in 2020 was

identified by analyzing phenological indices from October 2019

to October 2020. Annual maps of garlic in 2020 with a 10-

m resolution were produced (Figure 14). As per Figures 14A,B,

there were 624.95 km2 and 658.98 km2 of garlic fields in Qi

County in 2020, which accounted for 58.83 and 62.04% of

winter crop fields, respectively. Four regions were randomly

selected to compare the resultant annual map obtained using

the two datasets. In the garlic distribution map based on S2

(Figures 14C2,D2,E2,F2), there was a great loss of cropland

boundary information, and the commission and omission of the

garlic fields were more serious. In the garlic distribution map

based on S1 (Figures 14C3,D3,E3,F3), the cropland boundary

information was relatively complete. Small garlic fields and non-

garlic crop fields in the staggered distribution zone of cropland

and villages were well-identified, and the classification results

were better.

Accuracy assessment of the resultant
annual maps

Based on the raster data obtained in section accuracy

assessment of the resultant annual maps, the accuracy

assessment results using the confusion matrix are shown in

Table 1. The OA, UA, and PA of the winter crops distribution

map were 98.07, 96.02, and 99.30%, respectively. The kappa

coefficient was 0.96, which indicated a strong consistency

between the classification results and the ground reference data.

The accuracy assessment results showed that the algorithm

proposed in this study successfully extracts the winter crop

pixels in Qi County in 2020, which lays a foundation for the

recognition of garlic.

Furthermore, the confusion matrix was calculated using

the garlic and non-garlic crop raster data obtained in section

accuracy assessment of the resultant annual maps (Tables 2,

3). The OA, UA, PA, and kappa coefficient of the garlic

distribution map based on S2 were 74.78%, 69.61%, 79.93%,

and 0.50, respectively, while those based on S2 and S1 were

95.34%, 95.33%, 95.79%, and 0.91, respectively. Comparing the

accuracy assessment results of the two algorithms, the garlic

extraction algorithm based on S1 had higher accuracy and

stronger consistency with the ground reference data.

Discussion

Integration of times series S1 and S2
images

Crops have unique spectral characteristics that make optical

images an important data source for remote sensing crop
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FIGURE 13

(A) Distribution of winter crops in Qi County in 2020. Four regions, denoted as b, c, d, and e in (A), were randomly selected. The 10-m resolution

views from Sentinel-2 (December 19, 2019) are shown in (B1,C1,D1,E1), and the zoom-in views in (A) for the four regions are shown in

(B2,C2,D2,E2).

recognition (Liu et al., 2017; Pan et al., 2021b). Therefore,

winter crops were extracted from cropland based on S2 optical

images. Compared with previous studies using MODIS images

or Landsat images to extract winter crops (Pan et al., 2021b), the

results provided a higher spatial resolution of 10m. However,

optical images have some limitations in distinguishing various

crop types. First, the number of available optical images is often

affected by clouds, cloud shadows, and snow (Ju and Roy, 2008),

so good-quality images vary greatly in time and space. Although

we attempted to extract the garlic using spectral differences at

specific growth stages, the accuracy assessment results were not

satisfactory (Table 2).

The S1 SAR images provide an opportunity to distinguish

garlic from non-garlic winter crops. As shown in Figure 10,

winter wheat was usually in the elongation and booting stage

around April. The number and length of stems increased

significantly during this period, which led to changes in the

winter wheat’s 3D structure. This was the main reason for the

decrease in the backscattering coefficient of winter wheat (Jia

et al., 2013), while garlic did not show these changes. The

classification effects of various indices that have been used to

develop a decision rule for classification analysis were compared,

and the indices with the best separability were selected

(Supplementary Figure 1). The results show that this study

provides useful data for identifying garlic by remote sensing.

Algorithm development and applications

In previous studies, VIs have been used to generate garlic

distribution maps (Guo et al., 2022b), but natural and human

factors may lead to certain deviations in these indices. Figure 8A

showed that the EVI of garlic was lower than that of winter

wheat from December to April, which may be one of the indices

to distinguish the garlic. However, farmers usually increase

the planting density of garlic to increase the planting income,
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FIGURE 14

(A) Distribution of garlic in Qi County in 2020 only based on S2. (B) Distribution of garlic in Qi County in 2020 based on S2 and S1. Four regions,

denoted as c, d, e, and f in (A,B), were selected randomly. The 10-m resolution views from Sentinel-2 (December 19, 2019) are shown in

(C1,D1,E1,F1), and the zoom-in views in (A,B) for the four regions are shown in (C2,D2,E2,F2,C3,D3,E3,F3).

TABLE 1 Results of accuracy validation for the winter crops.

Class Error matrix (Pixels) Accuracy (%) Kappa

Winter crops Non-winter crops Total User’s Producer’s Overall

Winter crops 47305 333 47638 96.02 99.30
98.07

0.96

Non-winter crops 1871 64779 66650 99.49 97.19

Total 49176 65112 114288 / / / /

which may increase the EVI of garlic and could cause the

similar EVIs of garlic and winter wheat. Although the harvest

time of garlic is earlier than that of winter wheat, the 10-

day resolution makes it difficult for S2 images to capture

this information on a large scale. Additionally, clouds, rain,

and snow may cause the fluctuation of EVI and S2REP time

series, which may lead to the overlap in the VI time series of

garlic and winter wheat. Therefore, it is difficult to accurately
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TABLE 2 Results of accuracy validation for the garlic crop based on Sentinel-2.

Class Error matrix (Pixels) Accuracy (%) Kappa

Winter wheat Garlic Total User’s Producer’s Overall

Winter wheat 23750 5965 29715 69.61 79.93
74.78

0.50

Garlic 10371 24693 35064 80.54 70.42

Total 34121 30658 64779 / / / /

TABLE 3 Results of accuracy validation for the garlic crop based on Sentinel-2 and Sentinel-1.

Class Error matrix (Pixels) Accuracy (%) Kappa

Winter wheat Garlic Total User’s Producer’s Overall

Winter wheat 32529 1429 33958 95.33 95.79
95.34

0.91

Garlic 1592 29229 30821 95.34 94.83

Total 34121 30658 64779 / / / /

distinguish garlic and winter wheat only based on S2 data. Some

studies have input the characteristics of the garlic backscattering

coefficient in a specific time window into the RF classifier to

extract the garlic. However, the time windows of crops with

different spatial distributions vary greatly, and it is difficult to

determine accurate time windows. Moreover, complex feature

combinations and indices may also cause the model to overfit

(Graesser and Ramankutty, 2017).

In this study, the complete growth cycle of the garlic was

monitored for 1 year and several phenological indices were

extracted based on the unique phenological characteristics of

garlic in different growth periods. Using these phenological

indices, the classification rules were established for garlic.

Only pixels that meet these classification rules could be

identified as garlic. Compared with other methods, the proposed

algorithm simulates the growth of the garlic more realistically

(Supplementary Figure 2). Furthermore, this study only took

2020 as an example of mapping the garlic distribution in

Qi County. The Sentinel satellite database of the past few

years is provided free of charge on the GEE cloud platform.

Therefore, the algorithm can also generate garlic distribution

maps from other years or regions based on these images

(Supplementary Figure 3). This is because relatively consistent

environmental factors such as planting mode, management

mode, and climate may make garlic grow in the same cropland

for many years. It is worth noting that S2 TOA data was used

in the garlic distribution map in 2019 (Supplementary Figure 3),

as S2 SR data for the study area over the entire 2019 were not

available on the Google Earth Engine (GEE) platform. However,

TOA data may lead to greater errors (Supplementary Figures 4,

5). Additionally, the algorithm proposed in this study can also

generate distribution maps of other crop types by adjusting

the classification indices and their threshold using local

training samples.

Potential sources of uncertainty

Several factors may affect the classification results of

this study. First, reliable land cover data is an important

factor to improve the accuracy of the garlic distribution

map. The FROM-GLC10 land cover product was used

with a 10-m resolution to distinguish cropland from other

land types. However, there were some classification errors

in this product, especially for the staggered distribution

zone of cropland and villages (Figure 12). Additionally,

the product reflects the land cover in 2017, which is

inconsistent with that of the study year (2020). These

errors are easily propagated to the final garlic distribution

map output. The publication of more reliable land cover

data is expected to further improve the accuracy of the

research results.

Second, for the missing values in the VI time series,

linear interpolation was used based on neighboring pixels.

When good-quality observations are missing at the peaks

(valleys), the interpolation cannot reflect the real positions

of crop growth (Guo et al., 2021). Third, in the process

of extracting winter crops, the NDVI < 0.6 was used from

June 2020 to July 2020 as one of the classification indices.

However, there were mixed pixels of deciduous forest and

winter crops on both sides of the road through fieldwork.

The deciduous forest has lush branches and leaves and high

chlorophyll content from June to July, which may lead to

the NDVI > 0.6 of the mixed pixels. Finally, winter crops

include winter wheat, winter canola, and winter vegetables,

and the differences between them were not discussed in this

study. A comprehensive analysis of image characteristics of

different types of winter crops and improving the universality

of the algorithm proposed in this study are warranted in

further research.
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Conclusion

In this study, an automatic mapping framework was

proposed to identify and map the garlic distribution using

time series optical images (Sentinel-2) and microwave images

(Sentinel-1). The NDVI time series dataset was obtained from

Sentinel-2 images and used to map winter crop distribution.

Garlic was identified by Sentinel-2 (EVI and S2REP) and

Sentinel-1 (VV, VH, and the standard deviation of VV and VH)

images. Using the algorithm framework, the distribution maps

of winter crops and garlic in Qi County in 2020 were generated

with a 10-m resolution. The OA of the winter crop distribution

map was 98.07%, with a Kappa coefficient of 0.96, laying a

foundation for the recognition of garlic. The OAs of the garlic

distribution map based on S2 and S1 were 74.78 and 95.34%,

and the kappa coefficients were 0.50 and 0.91, respectively.

The garlic distribution map obtained in this study could help

stakeholders optimize the garlic planting systems for sustainable

garlic production.
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