
TYPE Original Research

PUBLISHED 22 December 2022

DOI 10.3389/fsufs.2022.1004450

OPEN ACCESS

EDITED BY

Abdul Wakeel,

University of Agriculture,

Faisalabad, Pakistan

REVIEWED BY

Yuanda Lv,

Jiangsu Academy of Agricultural

Sciences (JAAS), China

Lakshmi Narayana Vemireddy,

Acharya N. G. Ranga Agricultural

University, India

Tayyaba Shaheen,

Government College University,

Faisalabad, Pakistan

*CORRESPONDENCE

Senthil Natesan

senthil_natesan@tnau.ac.in

SPECIALTY SECTION

This article was submitted to

Crop Biology and Sustainability,

a section of the journal

Frontiers in Sustainable Food Systems

RECEIVED 27 July 2022

ACCEPTED 30 November 2022

PUBLISHED 22 December 2022

CITATION

Saha I, Rathinavel K, Manoharan B,

Adhimoolam K, Sampathrajan V,

Rajasekaran R, Muthurajan R and

Natesan S (2022) The resurrection of

sweet corn inbred SC11-2 using

marker aided breeding for β-carotene.

Front. Sustain. Food Syst. 6:1004450.

doi: 10.3389/fsufs.2022.1004450

COPYRIGHT

© 2022 Saha, Rathinavel, Manoharan,

Adhimoolam, Sampathrajan,

Rajasekaran, Muthurajan and Natesan.

This is an open-access article

distributed under the terms of the

Creative Commons Attribution License

(CC BY). The use, distribution or

reproduction in other forums is

permitted, provided the original

author(s) and the copyright owner(s)

are credited and that the original

publication in this journal is cited, in

accordance with accepted academic

practice. No use, distribution or

reproduction is permitted which does

not comply with these terms.

The resurrection of sweet corn
inbred SC11-2 using marker
aided breeding for β-carotene

Iman Saha1, Krishnakumar Rathinavel1, Bharani Manoharan2,

Karthikeyan Adhimoolam3, Vellaikumar Sampathrajan1,

Ravikesavan Rajasekaran4, Raveendran Muthurajan1 and

Senthil Natesan5*

1Department of Plant Biotechnology, Center for Plant Molecular Biology and Biotechnology, Tamil

Nadu Agricultural University, Coimbatore, Tamil Nadu, India, 2Department of Plant Molecular

Biology and Bioinformatics, Center for Plant Molecular Biology and Biotechnology, Tamil Nadu

Agricultural University, Coimbatore, Tamil Nadu, India, 3Department of Biotechnology, Agricultural

College and Research Institute, Tamil Nadu Agricultural University, Madurai, Tamil Nadu, India,
4Center for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, Tamil

Nadu, India, 5Center for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural

University, Coimbatore, Tamil Nadu, India

Sweet corn has dominated the urban market due to its sweetness, tenderness,

and ease of digestibility. It’s import and export values have dramatically

increased during the past 10 years as a fresh, processed, and preserved

commodity. However, the commercially available sweet corns are deficient

in β-carotene. In our study, we introgressed the favorable allele of crtRB1

(responsible for high β-carotene) into the recurrent sweet corn inbred SC11-

2 from maize donor parent UMI1230β1+ to develop the β-carotene-rich

sweet corn genotype by marker aided breeding. The crtRB1 3′TE InDel marker

was utilized for foreground selection of favorable genotype. A total of 103

polymorphic SSR markers were employed for background selection, resulting

in a 96% recovery of recurrent parent genome (RPG). We recorded high β-

carotene content (9.878–10.645µg/g) in the introgressed lines compared to

the recurrent parent, SC11-2 (0.989µg/g). The sugar content ranged from 18

to 19.10% and was on par with the recurrent parent (20.40%). These biofortified

inbreds can be used as a donor in maize breeding programs to develop sweet

corn genotypes with high β-carotene content.

KEYWORDS
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Introduction

Hidden hunger, caused by micronutrient malnutrition, is one of the prime

focuses in this era. Around 30 vitamins and minerals cannot be synthesized in

our body in sufficient quantity, but it has to be supplied through diet and

are termed “essential micronutrient.” Micronutrient malnutrition has appeared to

be a serious health issue worldwide (Bouis et al., 2019). Malnutrition affects all

age groups irrespective of geographical location and economic status. Nearly two

billion people suffer from micronutrient deficiency (Global Nutrition Report, 2018).
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Vitamin A deficiency (VAD) is a major cause of malnutrition,

and it leads to several diseases in humans viz., measles,

respiratory diseases, night blindness, xerophthalmia, growth

retardation, generative disorders, and low immunity (Lozano-

Alejo et al., 2007; Bouis and Saltzman, 2017).

Economic value of sweet corn increased due to its demand

for fresh and processed vegetables. Sweet corn is preferred due

to its sweet taste, tender nature, easy digestibility, and nutritional

value (Mehta et al., 2017). Sweet corn demand is higher in urban

cities where it is consumed as snacks, soups, and for preparing

main courses. It is an integral part of the diet in the countries of

South East Asia (Feng et al., 2015; Yang et al., 2018). Frozen sweet

corn is estimated to have a global import of $433.60 million and

an export of $426.25 million. Preserved sweet corn is estimated

to have an import of $957.09 million and $908.31 million in

export (FAOSTAT, 2022). Traditionally cultivated sweet corn

varieties possess a significantly low level of provitamin A (Feng

et al., 2015). Thus, traditional sweet corn does not make a

significant contribution to the daily Provitamin A requirement

in human beings.

Biofortification, medicinal supplementation, dietary

diversity, and food fortification are widely used to combat

malnutrition worldwide. Biofortification is an approach

for increasing nutrient density in food crops by breeding.

Biofortification is the preferred method to develop nutrition-

rich staple crops that provide a sustainable solution to control

malnutrition (Pfeiffer and McClafferty, 2007). The favorable

allele related to β-carotene hydroxylase1 (crtRB1) increases the

accumulation of proA in maize kernel endosperms by limiting

the conversion of β-carotene into further downstream products.

β-carotene acts as the precursor for vitamin A development

(Yan et al., 2010). The proA biofortified sweet corn could resolve

the problem of VAD, especially in urban areas. Hence, we need

superior sweet corn donor plants with crtRB1 favorable allele to

develop biofortified sweet corn hybrids.

Sweet corn is developed naturally through recessive

mutation in genes related to the starch biosynthesis pathway.

Mutation in the Shrunken2 (Sh2) allele, present in chromosome

3L of sweet corn, leads to the formation of recessive shrunken2

(sh2) (Baveja et al., 2021). Due to this sh2 loci, sweet corn

accumulates 2–4-folds more sucrose and reducing sugar than

maize (Nelson, 1980). This also determines the phenotypic

appearance of the sweet corn kernel by shrinking it (Lertrat

and Pulam, 2007). The development of commercial sweet corn

lines predominantly uses the sh2 gene (Wong et al., 1994).

Marker-assisted selection (MAS) has been successfully used for

developing agronomically superior cultivars (Singh et al., 2011).

MAS of the target allele shortens the breeding cycle and makes

the breeding program more efficient and precise (Ribaut and

Hoisington, 1998). Marker-assisted backcross breeding (MABB)

is themost effective approach for transferring the gene of interest

and improving the nutritional traits in maize (Singh et al., 2012;

Babu et al., 2013; Chandran et al., 2019; Pukalenthy et al., 2019,

2020; Sagare et al., 2019; Sarankumar et al., 2019; Natesan et al.,

2020; Das et al., 2021; Qutub et al., 2021; Talukder et al., 2022).

The current study describes the revival of sweetcorn-

inbred SC11-2. We used a MABB strategy, introgressed the

crtRB1 gene into sweetcorn inbred SC11-2, and developed

agronomically superior lines rich in β-carotene. The newly

developed lines will be valuable as a donor for the sweet corn

biofortification program.

Materials and methods

Plant genetic materials and experimental
site

A sh2 based sweet corn inbred SC11-2 developed at the

Department of Millets, Tamil Nadu Agricultural University,

Coimbatore, India was used as a recurrent parent. UMI1230β1+

was used as a donor parent from the Center for Plant Molecular

Biology and Biotechnology, Tamil Nadu Agricultural University,

Coimbatore, India. The donor parent was used to introduce

the favorable target allele of crtRB1 into the recurrent parent

SC11-2. All the field experiments were done at Eastern Block

Farm, Tamil Nadu Agricultural University, Coimbatore, India,

during 2019–2020.

Generation of backcross and
self-progenies

The F1s were generated by a single cross between the

recurrent parent, SC11-2, and the donor parent, UMI1230β1+,

during Rabi, 2019 (November–March). The true F1s were

selected using crtRB1 gene-specific markers. In Kharif 2020

(June–September), the BC1F1 population was developed by

backcrossing the F1s with the recurrent parent. Only the

shrunken seeds from the BC1F1 cobs were selected for

forwarding into the next generation. These shrunken seeds

were grown, and the second backcross was performed on the

crtRB1 heterozygous plants in Rabi, 2020 (November–March)

to develop the BC2F1. We obtained all the seeds as shrunken

in this generation. The selected crtRB1 heterozygous plants in

BC2F1 were selfed to produce the BC2F2 generation. The crtRB1

positive homozygous plants were selected from the segregating

population of BC2F2 using the crtRB1 gene-specific marker and

were selfed again to develop the stabilized BC2F3 population

(Figure 1).

Foreground selection with gene-specific
marker

Genomic DNA was extracted from 3 weeks old young

seedlings of parents, backcrossed populations, and selfed BC2F2
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FIGURE 1

The selected flint kernel in the F1 generation is backcrossed with the recurrent parent (SC11-2). The shrunken kernel is selected (highlighted

with green color box) in BC1F1 and these shrunken kernels are selected and selfed in the subsequent generations.

population following the standard CTAB method (Murray and

Thompson, 1980). crtRB1 gene-specific 3′TE InDel marker

(Supplementary Table 1) was used for foreground selection (Yan

et al., 2010). The crtRB1 gene exhibits three allelic forms

due to crtRB1-3′TE polymorphism. Allele 1 (543 bp, without

TE insertion), which is attributed to increase β-carotene by

decreasing transcript expression of the crtRB1 gene, is the

favorable allele. Allele 2 (296 + 875 bp; with 325 bp TE

insertion) and allele 3 (296 + 1,221 + 1,880 bp; 1,250 bp TE

insertion) are the unfavorable alleles. crtRB1 gene was amplified

using polymerase chain reaction (PCR) (Eppendorf, Hamburg)

following the procedure as described by Natesan et al. (2020).

We screened for favorable allele at 543 bp and unfavorable allele

at 296 bp. Under heterozygous conditions, both alleles were

amplified. The PCR amplicons were resolved in 3% agarose

gel at 120V for 2 h. The resolved products in the agarose gel

were visualized using a gel documentation system (BioRad,

California, USA). This marker was used to select heterozygous

plants in the BC1F1 and BC2F1 generations, and homozygotes

in the BC2F2 generation.

Background selection with SSR markers

A total of 201 SSR markers covering 10 chromosomes

of the maize genome were retrieved from the maize genome

database (www.maizegdb.org). The SSR markers were custom

synthesized from Eurofins Genomics India Pvt. Ltd., Bangalore,

India. These SSR markers were used to screen the recurrent

and donor parents to identify the parental polymorphism. The

identified polymorphic markers were employed on foreground

favorable plants of BC1F1, BC2F1, and BC2F2 to calculate the

recovery of the recurrent parent genome (RPG). The polymerase

chain reaction (PCR) and agarose gel electrophoresis were done

following the method used by Chandrasekharan et al. (2022).

Recovery of RPG for the selected plants was estimated using

the formula:

RPG (in%) = {(A+ 0.5H)/(A+ B+H)}× 100% (1)

“A” is the number of SSR markers homozygous to the donor

plant, “B” is the number of SSR markers homozygous to the
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FIGURE 2

Foreground selection in backcross [(A) BC1F1, (B) BC2F2] and selfed generation [(C) BC2F3] of SC11-2 × UMI 1230β1+ using crtRB1 gene

specific marker crtRB13′TE. (M) Ladder (100 bp), (P1) SC11-2, (P2) UMI 1230β1+, (1–10) progenies from BC1F1, BC2F2, and BC2F3 generation.

TABLE 1 Segregating pattern of crtRB1 alleles in the backcross and selfed populations derived from SC11-2 × UMI 1230β1+.

Cross Generation N Allele 1 Allele 2 Allele 3 df χ 2
P-value

SC11-2× UMI 1230β1+ BC1F1 96 35 61 0 1 7.04 0.0080

BC2F1 110 53 57 0 1 0.15 0.7029

BC2F2 152 32 78 42 2 1.42 0.4914

Allele 1- 296 bp; Allele 2- (296+ 543 bp); Allele 3- 543 bp.

recurrent parent, and “H” is the number of SSR markers in

the heterozygote state. Polymorphic information content (PIC)

for each pair of SSR markers was estimated using the formula

described by (Botstein et al., 1980; Supplementary Table 2).

Characterization of morphological traits

Morphological traits were recorded among the foreground

positive plants with high recovery of RPG in BC1F1, BC2F1,

and BC2F2 generation following the descriptors suggested by the

International Board for Plant Genetic Resources (CTA, 1992).

The traits recorded were 50% days to tasseling, 50% days to

silking, plant height, ear height, tassel length, number of tassels,

leaf length, leaf breadth, cob girth, number of kernel row per cob,

number of kernel row, and single plant yield.

Sugar and β-carotene contents

Selfed cobs from BC2F3 generation were harvested 24 days

after pollination (DAP) to check the total soluble solids (TSS)

using the portable Brix meter (Neuffer and Sheridan, 1997).

Total sugar was estimated following the Anthrone method

(Hodge, 1962), and reducing sugars were estimated by the

Nelson-Somogyi method (Nelson, 1944; Somogyi, 1952). Non-

reducing sugar was estimated by the difference between the

estimated value of total sugar and that of reducing sugar. To

estimate the β-carotene, the matured BC2F3 cob kernels were

dried in dark conditions before grinding into fine powder. The

extraction solvents for the estimation were prepared according

to the Harvest Plus protocol (Rodriguez-Amaya and Kimura,

2004). Quantification of β-carotene in the introgressed lines,

recurrent, and donor parents were performed using Shimadzu

HPLC Analytical C18G column 250 × 4.6mm. Samples were

eluted using YMC carotenoid C18 column. A photodiode array

detector was used to detect the peaks. The mobile phase

consisting of Acetonitrile: Methanol: Ethyl acetate at a ratio of

80:10:10 was made to pass through the column, under high

pressure, at a flow rate of 1mL min−1. Five standards (0.1, 1, 10,

50, and 100µg/g) (Kurilich and Juvik, 1999) of β-carotene (M/s.

Sigma Aldrich India) were used to make the standard curve. β-

carotene content was calculated in the inbreds and parents at

453 nm. The chromatograph was compared with the standard

curve to calculate the β-carotene level in the kernels of the

inbreds and the parents.
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TABLE 2 Recovery percentage of recurrent parent genome in backcross and selfed populations derived from SC11-2 × UMI 1230β1+.

Cross Generation No. of polymorphic markers screened RPG (%) Average RPG (%)

SC11-2× UMI 1230β1+ BC1F1 94 72.30–76.60 74.45

BC2F1 94 84.30–89.36 86.95

BC2F2 94 91.20–94.68 92.94

BC2F3 103 94.00–96.00 95.00

RPG, recurrent parent genome.

Statistical analysis

The Chi-square test was performed to test the goodness of fit

in the segregation pattern of the crtRB1 alleles in BC1F1, BC2F1,

and BC2F2 generations. A t-test was performed to assess the

significance of the increase in β-carotene level in the introgressed

lines over the recurrent parent.

Results

Marker polymorphism

The recurrent (SC11-2) and donor (UMI 1230β1+) parents

were screened with a crtRB1 gene-specific marker which

revealed an unfavorable allele (296 bp) in the recurrent parent

and a favorable allele (543 bp) in the donor. Out of 201

SSR markers used for screening parental polymorphism, 103

markers showed polymorphism (51.24%), and the number of

polymorphic markers in each chromosome ranged from 5 to 10.

The polymorphic markers were used to screen the foreground

favorable plants from BC1F1, BC2F1, and BC2F2 generation to

trace the high RPG plants.

Accelerated development of SC11-2 with
crtRB1 gene

F1 generation

The crtRB1 gene-specific marker was used to confirm

heterozygosity in the F1s of SC11-2 × UMI 1230β1+. A total

of 46 plants were screened in this generation, of which 42

were found to be heterozygous for crtRB1. The heterozygote

F1 plants were backcrossed with the recurrent parent (SC11-2),

and well-set BC1F1 cob designated as DBT 17-1 was selected for

advancing it to the BC1F1 generation.

BC1F1 generation

A total of 96 plants from DBT 17-1 cob were screened

in this generation using the crtRB1 gene-specific foreground

marker. A total of 35 plants with unfavorable allele (296 bp)

and 61 plants in heterozygous condition (296 + 543 bp) were

confirmed (Figure 2). The segregation pattern for crtRB1 alleles

FIGURE 3

Background selection using SSR markers for selected improved

lines from BC2F3 generation of SC11-2 × UMI 1230β1+. (M)

Ladder (100 bp), (P1) UMI 1230β1+, (P2) SC11-2, (1) DBT

17-1-1-1-35-1, (2) DBT 17-1-1-1-35-2, (3) DBT

17-1-1-1-35-3, (4) DBT 17-1-1-1-35-4.

deviated significantly from the expected Mendelian ratio (1:1)

(Table 1). Recovery of RPG ranged from 72.30 to 76.60% in the

crtRB1 heterozygous plants (Table 2). Three plants designated as

DBT 17-1-1, DBT 17-1-6, and DBT 17-1-47, with higher RPG

recovery, were selected and advanced to the next generation by

backcrossing with the recurrent parent, SC11-2.

BC2F1 generation

In this generation, 110 plants were screened for the crtRB1

foreground marker, where 53 and 57 plants were detected

as unfavorable and heterozygous, respectively (Figure 2). The
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FIGURE 4

The morphological traits [(A) tassel, (B) silk, and (C) cob] in parents and improved line (DBT 17-1-1-1-35-1) from BC2F3 generation of SC11-2 ×

UMI 1230β1+.

segregation ratio of the alleles in this generation was as per the

Mendelian ratio of 1:1 (Table 1). Recovery of RPG ranged from

84.30 to 89.36% (Table 2) in this generation. Three heterozygous

plants, DBT 17-1-1-1, DBT 17-1-1-29, and DBT 17-1-1-71,

with high recovery of RPG, were further selected and selfed to

advance to BC2F2 generation.

BC2F2 generation

In BC2F2 generation, 152 segregating plants from DBT

17-1-1-1 cob were screened for crtRB1 alleles (Figure 2). The

segregation of the crtRB1 alleles into 42 favorable positives (543

bp), 78 heterozygous (543+296 bp), and 32 unfavorable (296

bp) alleles were as per the Mendelian ratio of 1:2:1 (Table 1).

Recovery of RPG in the foreground positive plants ranged

from 91.20 to 94.68% (Table 2). Three positive plants with high

recovery of RPG and phenotypic similarity with the recurrent

parent were selected and selfed to forward to BC2F3 generation.

The plants were designated as DBT 17-1-1-1-13, DBT 17-1-1-1-

35, and DBT 17-1-1-1-101.

BC2F3 generation

In this population, a crtRB1 gene-specific marker was used

to ascertain the presence of a positive allele (543bp) (Figure 2).

Recovery of RPG was 94–96% in this generation. Biochemical

analysis for sugar estimation and β-carotene was carried out in

kernels of four positive plants with high recovery of RPG. The
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plants were designated as DBT 17-1-1-1-35-1, DBT 17-1-1-1-35-

2, DBT 17-1-1-1-35-3 and DBT 17-1-1-1-35-4 (Table 1, Figure 3,

Supplementary Figure 1).

Morphological traits

A high degree of resemblance was found between the

introgressed inbred and recurrent parent line concerning

morphological characters and yield attributing traits. Four

improved lines showed phenotypic resemblance from 87.63%

(Cob girth) to 100% (Tassel length and number of kernel rows

per cob). Among the four lines, DBT 17-1-1-1-35-3 showed

maximum resemblance with the recurrent parent. For instance,

days to tasselling, days to silking, plant height, ear height,

number of tassel branches, lead length, cob length, and single

plant yield showed more than 95% resemblance with SC11-2

(Figure 4, Table 3).

Sugar and β-carotene contents

TSS was estimated at 24DAP using the Brix meter and was

found to be 19.00% in the recurrent parent kernels and 10.00% in

the donor plant kernels. The introgressed inbred had an average

TSS ranging from 16 to 18.5%. Total sugar (TS) in the recurrent

parent was 20.40%, and in the donor parent, it was 5.25, whereas

TS in the introgressed lines ranged from 18.35 to 19.65%.

Reducing sugar (RS) in the recurrent parent and donor parent

was estimated to be 3.5 and 2.1%, respectively, whereas RS in

the introgressed lines was between 2.45 to 3.35%. Non-reducing

sugar (NRS) was estimated to be 16.90% in the recurrent parent

and 3.15% in the donor parent. NRS in the introgressed lines

ranged from 15.30 to 17.20% (Figure 5, Table 4). The β-carotene

level in the matured kernels of the recurrent parent was 0.989

and 11.608 ppm in the donor parent kernel. The β carotene

level in the kernels of the introgressed lines ranged from 9.878

to 10.645 ppm. This result suggests that there was an average

of 10.37-fold higher β-carotene levels in the introgressed lines

compared to the recurrent line (Figure 5, Table 4).

Discussion

Sweet corn demand has increased over the last decade and is

preferred for its tenderness and sweet taste all over the world

(Mehta et al., 2017). Sweet corn is eaten fresh in the milky

stage which helps to retain the nutritional quality (Cabrera-Soto

et al., 2018). Many commercially grown sweet corn is deficient

in proA to meet the minimal daily requirement (Feng et al.,

2015). Development of vitamin A biofortified sweet corn will

provide essential vitamin A rich food (Hossain et al., 2019). In

this study we developed vitamin A biofortified sweet corn inbred
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TABLE 4 Details of sugar and β-carotene contents in parents and BC2F3 improved lines of SC11-2 × UMI 1230β1+.

Parents/Improved lines TSSa (%) TSb (%) RSc (%) NRSd (%) β-carotene (µg/g)

SC11-2 19 20.40 3.50 16.90 0.989**

UMI 1230β1+ 10 5.25 2.10 3.15 11.608**

DBT 17-1-1-1-35-1 16 19.10 3.35 15.75 10.645**

DBT 17-1-1-1-35-2 18 18.35 3.00 15.35 10.320**

DBT 17-1-1-1-35-3 17.5 19.65 2.45 17.20 9.878**

DBT 17-1-1-1-35-4 18.5 18.00 2.70 15.30 9.935**

aTSS, total soluble solids; bTS, total sugars; cRS, reducing sugars; dNRS, non reducing sugars. Asterisks (**) indicate significant different from the recurrent parent β-carotene (µg/g)

content using t-test (p < 0.01).

by marker assisted introgression of crtRB1 favorable allele in a

promising sweet corn inbred, SC11-2.

Introgression of crtRB1 gene into sweet
corn inbred SC11-2

The crtRB1 3′TE favorable allele is responsible for effecting

a 2–10-fold increase in β-carotene content in maize (Babu et al.,

2013). In this study, we developed sweet corn inbred with crtRB1

favorable allele using maize UMI1230β1+ as the donor parent

and sweet corn inbred SC11-2 as a recurrent parent. crtRB1-

3′TE-InDel markers located within the target genes facilitated

selection of individual plants with favorable alleles of crtRB1

in the segregating populations (Gupta et al., 2013; Zunjare

et al., 2018). Marker assisted selection of favorable progenies

in the seedling stage before pollination resulted in saving time

and resources (Sarika et al., 2018). The segregation pattern of

the crtRB1 alleles in BC1F1 showed a significant segregation

distortion (SD) due to the diverse backgrounds of the parents

(Babu et al., 2013; Muthusamy et al., 2014). This could be due

to the presence of naturally occurring gene mutants like dek

(defective kernel) (Neuffer and Sheridan, 1997), gametophytic

factors (ga) (Mangelsdorf and Jones, 1926), and embryo-specific

mutation (emb) (Neuffer and Sheridan, 1997). In our study,

MABB led to the high recovery of RPG in the introgressed

progenies. The SSR markers used for background selection were

distributed across the genome. This attributed to the selection

of positive progenies with high recovery of RPG (Singh et al.,

2012; Gupta et al., 2013). The recovery of RPG is responsible

for the similarities in the agronomical traits of the introgressed

lines and their recurrent parent (Muthusamy et al., 2014). Due

to the fixation of various recurring parent allele proportions in

the foreground positive plants, there is diversity in RPG recovery

among the introgressed progenies (Muthusamy et al., 2014).

Previous studies suggest a high recovery in RPG within two

generations in the MABB program (Muthusamy et al., 2014; Liu

et al., 2015; Hossain et al., 2018; Sarika et al., 2018). Background

selection assisted in the indirect selection of loci corresponding

to different phenotypic characteristics (Hossain et al., 2018).

Kernel sweetness and nutritional quality

The selection of shrunken kernels in BC1F1 helped to

indirectly select the sh2 allele in the progenies (Khanduri

et al., 2011; Mehta et al., 2017). As a result, the introgressed

lines retained their sweetness and were on par with the

recurrent parent. The Sh2 gene is located in chromosome

3 and is responsible for coding a large subunit of ADP-

glucose pyrophosphorylase (AGPase), which synthesizes

ADP-glucose from glucose-1-phosphate and adenosine

triphosphate (Baveja et al., 2022). This conversion is

blocked by the recessive sh2 allele, which restricts the

starch biosynthesis of amylose and amylopectin. The

sweetness was estimated and found to be maximum at 24

DAP (Chhabra et al., 2019). The variation in the sweetness

across the introgressed lines may be due to the presence of

loci influencing the sh2 gene (Qi et al., 2009; Mehta et al.,

2020).

A significant increase of β-carotene in the introgressed

inbred suggests that introgression of favorable allele (543 bp)

alone has a major effect on the accumulation of β-carotene

in the sweetcorn kernels. The crtRB1 gene is responsible

for hydroxylation of β-carotene and β-cryptoxanthin into

zeaxanthin. This reduces the proA concentration in the kernels.

A natural variant of crtRB1 with no TE in the 3′ UTR

reduces this conversion. This leads to more accumulation

of proA carotenoids in the kernels (Yan et al., 2010). In

China, four sh2 based sweet corn lines were developed

by introgression of lcyE (Yang et al., 2018). But they

reported a low increase in the proA (2.07–3.86 ppm)

over traditional inbreds. In this study, we have reported a

10.7-fold increase in β-carotene content in the developed

lines compared to the original inbred. This was achieved

through the MAS of plants containing the favorable allele 1

of crtRB1.

The traditional sweet corn lines are low in proA. In

our study, we introgressed crtRB1 gene encoding proA into

traditional sweet corn inbred using marker-aided breeding. The

crtRB1 gene-specific marker facilitated the precise identification

of favorable genotypes from the segregating populations.
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FIGURE 5

Total sugar (%) and β-carotene (µg/g) content in parents and improved lines from BC2F3 generation of SC11-2 × UMI 1230β1+. Error bars

indicate means ± SE. Asterisks (**) indicate significant di�erent from the recurrent parent β-carotene (µg/g) content using t-test (p < 0.01).

SSR-based background selection expatiated the selection

process, resulting in higher recovery of recurrent parent genome

within two backcrosses. The marker-assisted breeding thus

helped to develop biofortified sweet corn inbred with a 10.7-fold

increase in β-carotene levels. This inbred can be used as a donor

parent for crtRB1 favorable allele in developing vitamin A

biofortified sweet corn hybrids. ProA biofortified sweet corn can

help to mitigate the problem of hidden hunger in a sustainable

manner in the urban areas of developing countries.
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