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Vegetable food stuff produced under controlled and identical conditions from one farm of

identical “age” (batch) has a similar isotopic composition. This fact can be used to control

the origin of vegetables. This question is of special relevance when food-contaminations

have to be traced back to the producer, or certain production claims have to be

controlled. However, as vegetables are harvested, brought to whole-sale merchants

and to retail shops, where they remain until being bought by the consumer, one has

to consider possible changes in isotopic composition during this transfer period, when

comparing vegetables of questioned origin with reference samples taken directly from

the field/producer. We investigated changes in the isotope composition of vegetables

during storage by studying as an example cucumbers from one batch. We stored the

cucumbers in a vegetable storage under controlled conditions and removed one sample

every day and analyzed its isotopic composition. We found changes in the δ
15N and δ

18O

isotope values over the investigated period of 21 days, with both parameters showing

positive linear correlations, and maximum enrichments with time of more than 1.5‰ for

δ
15N and more than 2‰ for δ

18O. However, within the interval the samples remained

in a saleable condition the isotope variations remained more or less within the variability

of the sample batch. Our study demonstrates that changes in the isotopic signature in

vegetables might occur after harvest during storage and have to be taken into account

when (commercial) samples collected in a market are investigated.

Keywords: shelf life, oxygen isotopes, carbon isotopes, nitrogen isotopes, transpiration, maturation processes

INTRODUCTION

The control of the declaration of origin of food becomes a topic of increasing importance. One
reason is the willingness of consumers to pay more for products from a certain region or of
a certain brand. As this might lead to incorrect labelling of goods to increase the profit, there
exists the need to control declared origins. A special relevance has the control of geographic
origin of food, when products with contaminations are found in the market. Then it is absolutely
essential to be able to trace these products back to the respective producers. In 2011 there was an
outbreak of a new strain of Escherichia coli in Germany and western Europe and the suspicion
of having been caused by contaminated Spanish cucumbers (among other fresh vegetables as
tomatoes and lettuce) which lateron proved incorrect and organic sprouts were regarded as
source of contamination instead (https://en.wikipedia.org/wiki/2011_Germany_E._coli_O104:H4_
outbreak, last accessed 24.6.2021). Other, requests and needs for (back-) tracing of authenticity
of vegetables (and generally food) are control of the geographical and agricultural origin of
food, fertilization strategies and type of production system (organic/conventional). Such incidents
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require the means for quick back-tracing of food for the
protection of consumer health and the control of accusations
and claims.

Research about the geographic origin of food products has
been carried out on a wide variety of food products, as wine
(e.g. Christoph et al., 2004, 2015; Griboff et al., 2021; Horacek
et al., 2021; Leder et al., 2021), meat (e.g., Boner and Förstel,
2004; Camin et al., 2007; Horacek and Min, 2010), coffee (e.g.,
Serra et al., 2005; Rodrigues et al., 2009), vegetables and crops
(e.g., Horacek et al., 2010, 2015; Bontempo et al., 2011; Goitom
Asfaha et al., 2011; Opatić et al., 2018; Kongsri et al., 2021) among
many others.

Usually, stable isotope analysis is the preferred method of
choice for the control of geographic origin of food (see references
mentioned above). However, to be able to reliably track back
the geographic origin, or to control the fertilization strategy,
production system, or other declared qualities, one has to know
if storage of a product after the harvest can significantly alter the
isotope signature, or if the isotope pattern remains unchanged
within the period the respective food commodity is in a saleable
condition. A few studies on this topic have been carried out for
meat by investigating the meat water of meat samples. Thiem
et al. (2005) report an increase in δ

18O of meat samples stored
in a refrigerator, while Horacek et al. (2009) report no significant
changes in δ

18O and δD with time for meat samples stored
in a slaughter house cool storage. However, to our knowledge,
no such investigations have been carried out for plant food
materials. Therefore, in the present study we investigate the
changes in the isotope composition of cucumbers (Cucumis
sativus) during storage. Botanically, cucumbers belong to the
Cucurbitaceae family (gourd plants), conventionally/culinary
they are regarded as vegetables (https://fruitorvegetable.science/
cucumber, last accessed 24.6.2021). We test the hypothesis, that
during storage under controlled conditions the cucumbers will
not change their isotopic composition significantly.

MATERIALS AND METHODS

Fifty cucumbers from one batch from one greenhouse have been
weighed and put into a vegetable storage under controlled ideal
storage conditions at temperature of 10◦C and humidity above
90%. Every day over period of 21 days two cucumbers were taken,
weighed again, sealed in a plastic bag and freeze-stored at−16◦C
until processing and analysis. (Weight differences are given in
Supplementary Table 1).

During sample processing cucumber water was extracted
from the cucumbers using a kitchenware juice extractor. In the
extractor the entire cucumber is minced and falls into a rotating
cylindrical sieve, through which the juice passes due to the
centrifugal force and is caught in a glass. The duration for a
sample depends on its size but usually lasts <10 seconds. The
cucumber water was then pipetted into a glass flask and quickly
transferred to the oxygen isotope analysis, while the residue of the
cucumber was collected in a sample container.

Oxygen isotope values of the cucumber water samples
were measured using an isotope ratio mass spectrometer

Finnigan Delta+XL, coupled to an automatic equilibration
device equipped with pneumatic valves (Papesch and Horacek,
2009). For analysis an aliquot of 3ml is put into the glass vessel
and attached to the equilibration device at a bath temperature of
20◦C. Each vessel is equipped with a magnetic stirrer to speed
up initial degassing of the water sample and to attain isotope
equilibrium within 4 h. The evaluation of the raw data of ratios
of mass 46 to 44 to oxygen isotope values is accomplished by two
laboratory standards (Adriatic sea water and Vienna tap water)
which are measured alike with each batch of samples. These
standards have been calibrated by means of the international
standards V-SMOW and SLAP distributed by the IAEA.

The residue of the cucumber was dried at 40◦C in a dry-
oven and homogenized. Each sample is then weighed into a
tin capsule (ca. 2mg) for δ

15N and δ
13C analyses. The samples

were introduced into an elemental analyser (Elementar) where
the samples are combusted and the evolving gases transferred
via a ConFlo IV (Thermo) into a Thermo/Finnigan DeltaplusXP
mass spectrometer. The isotope ratio is expressed in the
conventional δ-value:

δ = (Rsample− Rstandard)/Rstandard,

with

R = heavy isotope/light isotope.

Long-term reproducibility of our instruments using in-house
laboratory standards was better than 0.1‰ for δ

18O and 0.2‰ for
δ
15N and δ

13C (1σ) (Horacek et al., 2008). In this paper δ
18Owater

refers to the oxygen isotope values of the extracted cucumber
water samples, and δ

15Npulp and δ
13Cpulp refers to the carbon and

nitrogen isotope values of the cucumber pulp samples.
All isotope results are reported as per mil (‰) deviation vs.

international standards. The δ
13Cpulp, δ

15Npulp and δ
18Owater

values are calibrated vs. the VPDB standard, air standard and
VSMOW standard, respectively.

Calculation of the population standard deviation was carried
out using a web-tool (https://miniwebtool.com/population-
standard-deviation-calculator/ last accessed 08.11.2021).

The data are statistically evaluated by the determination
coefficient (R2) and significance (p-value) of a simple linear
regression using the Microsoft program Excel, which shows the
strength of correlation of the respective parameters. R2-values
range between 0 and 1 with values close to 0 indicate a very
weak or no correlation between the evaluated parameters and
values close to 1 a very high correlation between the evaluated
parameters. Significance above the 95%-level is indicated
by a p < 0.05.

RESULTS

The cucumbers from the storage experiment yield the following
results (Supplementary Table 2): The initial isotope composition
was −6.8‰ for δ

18Owater,−0.3‰ for δ
15Npulp and−28.7‰ for

δ
13Cpulp (Figures 1A–C). The δ

13Cpulp values show a slight
increase in the averaged trend of about 0.7‰, however, the values
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FIGURE 1 | (A) δ
13Cpulp vs. storage days. (B) δ

15Npulp vs. storage days. (C) δ
18Owater vs. storage days. (D) Weight loss (weight %) vs. storage days. Red line denotes

average, whiskers show population standard deviation.

are scattered and range from−29.9 to−25.8‰ (Figure 1A). The
δ
15Npulp values show an increase from the initial value within
the observed period to a maximum value of+1.3‰ (Figure 1B).
The values are scattered and partially deviate from the averaged
trend. It is interesting to note that we observed in δ

15Npulp a jump
from day 0 to day 1 of∼0.6 to 0.3‰. However, when we repeated
this experiment by storing another batch of cucumber for 2 days,
no such jump could be observed (Supplementary Table 3). For
δ
18Owater the values increase within the 21 days of storage to
a maximum value of −4.8‰ (Figure 1C). Also for this system,
the increase is not steady but with some scatter, even showing
some values within the first days that are depleted with respect
to the initial value, with a minimum of −7.2‰. The weight
loss with time is almost completely continuous and without
much deviations from the averaged trend (Figure 1D; heavier
cucumbers do not necessarily have a lower weight loss than

lighter ones, see Supplementary Table 1). Only in the third week
the scattering increases to some extent. A maximum weight
loss of 19.7% was found. The weight loss correlates very well
with the increase in δ

18Owater, evidencing a direct link. The
cucumbers were in saleable condition (based on the appearance
of the cucumbers) until day 10 of the experiment (pers. comm. J.
Hobiger). The Population Standard Deviation for δ

13C, δ15N and
δ
18O for the first ten days are very close to the standard deviation
with+/– 0.62, 0.34 and 0.3‰, respectively.

The determination coefficient is shown for the isotope
parameters with respect to time and weight loss for the entire
storage duration and its first 10 days (Figures 1A–D, 2A–C
and Supplementary Tables 4A,B). For the entire period the
highest strength in correlation exists for δ

18Owater and weight
loss, and weight loss with time (with an R2 of ca. 0.8) and
δ
18Owater and time (R2 is ca. 0.7). Strength of correlation

Frontiers in Sustainable Food Systems | www.frontiersin.org 3 December 2021 | Volume 5 | Article 781158

https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org
https://www.frontiersin.org/journals/sustainable-food-systems#articles


Horacek and Papesch Cucumber Storage Isotope Change

TABLE 1 | (A) p-value for the investigated parameters δ
13Cpulp, δ

15Npulp, δ
18Owater

and cucumber weight loss correlated with time (days), and weight loss for the

entire duration of the experiment (21 days); (B) for the first 10 days, during which

the cucumbers remained in saleable condition.

(A)

21 days p p

time weight loss

δ
13C 0.162565561 0.369653499

δ
15N 5.8972E-05 0.001153983

δ
18O 2.71726E-07 1.69767E-10

weight loss 3.82401E-09 1

(B)

First 10 days p p

time weight loss

δ
13C 0.822027543 0.662438259

δ
15N 0.159385608 0.09918314

δ
18O 0.073343678 0.051963117

weight loss 3.76636E-06 1

Significant correlations are marked by bold values.

of δ
15Npulp and time is ca. 0.5, δ

15Npulp and weight loss
ca. 0.4, and strength of correlation of δ

13Cpulp with time
and weight loss is below 0.1. Strength in correlation of
the investigated isotope parameters vs. time and weight loss
are notably lower for the first 10 days of the experiment
(Supplementary Table 4B), but weight loss vs. time is already
quite high.

The determination of the p-value (significance) shows
(Table 1) significant correlations of δ

15N and δ
18O with time

(days) and weight loss over the entire experiment duration of
21 days, but no significance during the first 10 days, when the
cucumbers remained in saleable condition. Weight loss shows a
significant correlation with time for the 10 and 21 days intervals.
δ
13C has neither a significance during the 21 nor the first 10
days interval.

DISCUSSION

Which effects can influence the isotopic composition of the
investigated cucumbers during storage and thus time? We
assume photosynthetic processes, degradation and ripening
processes and water loss. Photosynthetic processes should
influence the 13C-signal, as the samples are cut-off from a water
supply (Farquhar et al., 1982, 1989). Degradation and ripening
processes should influence the 15N-value with time (O’Deen,
1989; Unkovich, 2013), and water loss results in weight reduction
and change in δ

18O, due to evaporation/transpiration processes
(Dansgaard, 1964; Roden et al., 2000; Yakir and Sternberg, 2000).

The R2-values of δ
13Cpulp with respect to weight loss

(Figure 2A) and time (Figure 1A) remain below 0.1, indicating
that there is only a very minor correlation (if at all), or that any
correlation is masked by the batch heterogeneity. Theoretically,

in the harvested cucumbers photosynthetic processes might
continue, which should be evidenced by an increase in δ

13C
(Farquhar et al., 1982, 1989; Horacek et al., 2015) due to closure
of the stomata because of drought stress, as the harvested
cucumbers are cut off from any water supply. However, the
absence of δ

13Cpulp correlating with storage time demonstrates
that this process did not occur, and all variations can be regarded
as dominantly due to the sample batch heterogeneity.

The δ
18Owater-values show a clear trend towards higher

values with time (Figure 1C, Supplementary Table 4A) and,
even better correlated (evidenced by a higher R2-value), with
weight/water loss (Figure 2C), indicating a plausible explanation
of passive enrichment in 18Owater of cucumber water by
evaporation/transpiration (Dansgaard, 1964; Roden et al., 2000;
Yakir and Sternberg, 2000). During evaporation/transpiration the
light water isotopes (1H, 16O) preferably go into the gaseous
phase and evaporate (a process which is temperature dependent
and gets stronger the lower the ambient temperature), thus
passively enriching the remaining water with time. However,
within the first ten storage days (Supplementary Table 4B),
which was the period of saleable condition for the investigated
cucumbers, evaporation/transpiration only accounts for ca. 30%
of the variation in δ

18Owater (R2 around 0.3). As within these 10
days transpiration resulted in a weight loss of <6%, this value
is, on the one hand a limit for the saleable condition of the
cucumbers, and a kind of threshold for transpiration having a
minor, insignificant effect (Table 1B) on the isotope pattern with
respect to the isotope variability of the batch. Onemight speculate
that the change in δ

18O might be due to equilibration with the
ambient water vapour. Two reasons speak against this possibility:
(I) the cucumber water is confined within the cucumber and thus
separated from the water vapour (and therefore this also does
not happen during the time the cucumber is still attached to the
plant), and (II) the almost perfect fit of δ

18O with weight loss
(Figure 2C).

The δ
15Npulp-values demonstrate a trend towards increasing

values with time (Figure 1B). As the correlation of δ
15N with

time is better than with weight loss (Figure 2B), as the respective
R2-value is higher, the responsible degradation and ripening
processes (O’Deen, 1989; Rodrigues et al., 2009) do not seem
to be connected with transpiration. Similar to δ

18Owater, within
the period of saleable condition of the cucumber samples the
degradation and ripening processes only account for aminor part
of the variations in 15Npulp (R

2
∼ 0.2).

Generally, within a storage period under ideal storage
conditions of 10 days, during which the cucumbers remained in
saleable conditions, the isotopic changes within the cucumber
with storage remained insignificant (Table 1). Water loss,
however, shows a significant correlation with time from the
beginning of the experiment. After passing a threshold of ca.
10 days under ideal conditions, storage has a notable influence
on the isotope pattern of cucumbers. If the storage conditions
are less favourable, which most likely will be the case in
most supermarkets and food stores, this threshold will be
significantly shorter.

Cucumbers that are stored in plastic foil will have a longer
shelf life, as the saleable condition mainly depends on the weight
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FIGURE 2 | (A) δ
13Cpulp vs. weight loss. (B) δ

15Npulp vs. weight loss. (C) δ
18Owater vs. weight loss. Red line denotes average, whiskers show population standard

deviation.

loss, which is reduced in foiled cucumbers. However, it will be
necessary to investigate the behaviour of the N-isotopes, as the
ripening and degradation processes should not be hampered by
the foil.

CONCLUSIONS

During saleable condition (10 days, based on the appearance of
the cucumber, approximately limited to a weight loss of <6%
under ideal storage conditions in a cool-house) the variations in
the isotope composition remain insignificant and approximately
within the initial range. Samples exceeding this weight loss limit
get notably enriched in δ

18Owater due to transpiration. δ15Npulp
also tends towards higher values, but the scattering also is larger
and erratic. The variation in δ

13Cpulp of the cucumber samples
investigated in the present study are almost exclusively related to
batch variability. Thus, our hypothesis of cucumbers remaining
isotopically almost unchanged and thus can be used for control
of declared provenance is correct for cucumbers in saleable
condition, which means <6% weight loss, and a maximum of ten
days from harvest under ideal conditions (cool-house). Under
less favourable conditions shelf life will be shorter and thus the
period of isotope patterns unchanged by storage. Thus, when
investigating cucumbers or other vegetables for the control of
(declared) geographic origin, the condition of the investigated
samples have to be closely inspected and taken into account to
avoid incorrect conclusions.

Cucumbers shrink-wrapped in plastic foil will have to be
investigated separately to control the extent to which the
correlation of δ

15N and weight loss will be decoupled, together
with potential other influencing factors.
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