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Intensive pastoral farming has been linked to adverse environmental effects such as soil

degradation and increased fluxes of nitrogen, phosphorus, sediments, and pathogens

into waterways, resulting in their degradation. Stand-off pads are engineered structures

covered with bedding materials, available for occupation by stock to minimise those

adverse effects to soil and water bodies. Wood chips are ideal for bedding due to their

low cost, high water holding capacity, and stock preference as resting areas. While they

reduce the mobility of both nutrients and pathogens, their effectiveness depends on

the type of wood, size of the chips, pH, pad design, and feeding management used.

Dissolved organic carbon, present in wood residue, may slow nitrogen mineralisation

thereby decreasing loss via leachate. This effect depends on plant tannins and nutrients

already stored within the plant tissue. Poplar and willow have high concentrations of

tannins in leaves and bark with potential nitrification-inhibiting properties. When grown

on-farm, these deep-rooted trees also reduce nitrogen leaching and prevent soil erosion.

This review addresses the use of temporary stand-off pads within poplar or willow

silvopastoral systems. Harvested trees can provide suitable wood chips for constructing

the stand-off pad, while the deep rooting systems of the trees will reduce the moisture

content of the pad, preventing waterlogging. A key objective is to discuss the feasibility

and establishment of multiple temporary stand-off pads that allow for stock rotation from

pad to pad, and subsequent on-site composting of wood-wastes into fertiliser, reducing

both nutrient inputs and losses in agricultural systems. The review highlights the potential

suitability of poplar and willow tree species for such a system.
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NUTRIENT LEACHING FROM FARM
SYSTEMS

Growing concern around the environmental sustainability of
the dairy and beef industries has attracted scientific as well as
public interest, with worldwide media coverage around impacts
on water quality and the pollution of waterways (Gmür, 2015;
Van der Zee, 2018; Cardello, 2019; Praveen, 2019). In particular,
the leaching of nitrate (NO−

3 ) into ground- and surface water is
receiving increasing attention because of its adverse effects on
drinking water, rivers and streams (Fenton, 2012). The majority
of the nitrogen (N) input is derived from stock urine, which
is rapidly converted from ammonia (NH+

4 ) into nitrate (NO−

3 ),
once infiltrated into the soil. NO−

3 has a high potential for
leaching as it does not bind onto negatively charged soil colloids
due to its negative charge (Latifah et al., 2017).

Nitrogen leaching into waterways is a topic of major interest in
New Zealand (Ausseil andManderson, 2018), and due to ongoing
population growth and intensifying agriculture an issue of
international relevance (Mahmud et al., 2021). Whereas parts of
this review focus on agricultural systems in New Zealand, similar
systemsmay be adapted for other countries to overcome nitrogen
leaching problems and high nutrient loads in waterways and
groundwater. Literature around the use of woodchips in “stand-
off” pads or “corrals” has been published in the last decade,
however the wood species and the properties of phytochemicals
within the chipped material has attracted only minor interest.

This review hence aims to focus on timber species with plant
phytochemicals that may play a role in nitrification inhibition
pathways, and their potential inclusion into sustainable farming
systems in New Zealand, with international interest. Sections
Stand-off Pads in Agricultural Systems and Wood Residues in
Stand-off Pads provide an overview of the use of woodchips in
current stand-off pad designs and their role in management of
nitrogen leaching. Sections Poplars and Willows in NZ Farming
Systems and A Silvopastoral System Producing Woodchips for
Temporary Stand-off Pads discuss the establishment of poplar
and willows in farming systems to potentially mitigate nitrogen
loss and generate organic material for application as fertiliser.

Literature has been reviewed using various databases
with keywords “woodchips” in “stand-off pad”, “corral”
and “agricultural systems”, and focus on “plant secondary
metabolites” and “phytochemicals” in “poplar” and
“willow” species, including “biological nitrification
inhibition” compounds.

STAND-OFF PADS IN AGRICULTURAL
SYSTEMS

Leaching of NO−

3 in agricultural systems is especially high during
winter months due to increased soil water content and limited
vegetation cover and growth. In those months, soil damage is also
significantly greater due to increased pugging, which results from
soil trampling (Arends, 2016). Moving stock out of open pastures
onto separate areas, so-called stand-off pads, out-wintering pads
or corrals, can reduce soil damage and NO−

3 leaching from

farm systems (Luo et al., 2004) without compromising animal
performance, health, or welfare. Using engineered stand-off pads
(Figure 1), the farmer can control the amount of animal effluent
deposited onto the soil and return the collected effluent onto
fields over at a rate that maximises pasture growth andminimises
NO−

3 leaching (Luo et al., 2004). The surface area of stand-off
pads is often covered with different types of bedding (Ferreira
Ponciano Ferraz et al., 2020), including wood materials, such
as wood chips, bark chips or sawdust. The bedding material in
stand-off pads has to be regularly replaced as cows avoid resting
in wet or waterlogged material (Longhurst et al., 2013). Coarser
material suffers less compaction over time, thus resulting in better
drainage and lower moisture content, which is preferred by stock
(Longhurst et al., 2013). To trap animal excreta and liquid wastes,
the surface layer is commonly built over an artificially-drained
system, allowing effluent to be collected and separated into solid
and liquid wastes (Augustenborg et al., 2008).

To avoid or mitigate adverse environmental effects and meet
animal welfare criteria, such engineered stand-off pads need
to meet legal requirements and have to be properly designed
and engineered, which can be associated with high costs. Such
requirements vary between regions, regulatory authorities and
countries, but often include: recommendations for the minimum
area (e.g., 4.0–12.0 m²/cow), setbacks from dwellings (e.g., 200m
distance from dwelling not located in the same landholding),
setbacks from watercourses and water abstraction points (e.g.,
not located within 100m of a water abstraction point), overflow
and stormwater regulations, and design requirements such as
impermeable lining material and thickness of padding material
(Dairy NZ, 2017; Environment Southland, 2018). In addition, for
medium to long-term use of a stand-off pad, building consents
may be required, highlighting the need for further research to
remove ambiguities (Ryan, 2009; Smith et al., 2010; AHDB, 2011;
Dairy NZ, 2017). Waterlogging in the pad leads to negative
impacts on stock health, and thus good maintenance of drainage
is essential in such systems (Stewart et al., 2002). Therefore,
engineered stand-off structures can require infrastructure that
may not be present in all areas of a farm or paddock.

As an alternative, short-term solutions have been investigated
where an adsorbent surface material overlies free-draining
soil, with no engineered structure to collect leachate (Vinten
et al., 2006; Smith et al., 2010; Christianson et al., 2017).
Although these “short-term” or “temporary” pads can reduce
costs and offer animal welfare and environmental benefits
(such as reduced soil pugging or the on-site “treatment” of
organic wastes), care has to be taken to avoid groundwater
pollution (CREH, 2005). “Short-term” pads are unlikely to pose
environmental risks if they are small, lightly stocked and at
some distance from wells and waterways. However, they will
still be subject to environmental regulation. Besides stocking
density and distance from waterways, many other factors such
as rainfall, slope, soil type, or surface material determine the
leachate NO−

3 load and volume (CREH, 2005). Lysimeter and
field studies in this context can further investigate different
bedding materials, their performance for animal welfare, and
their potential for absorbing nutrients and contaminants, hence
reducing pollution of waterways and groundwater. Lysimeter

Frontiers in Sustainable Food Systems | www.frontiersin.org 2 January 2022 | Volume 5 | Article 780890

https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org
https://www.frontiersin.org/journals/sustainable-food-systems#articles


Esperschuetz and Bloomberg Stand-Off Pads in Silvopastoral Systems

FIGURE 1 | Stand-off pad systems using wood waste bedding materials.

studies allow monitoring of different N speciation throughout
the soil and in collected leachate (Paramashivam et al., 2015;
Esperschuetz et al., 2017) and provide opportunities to test
such materials in different controlled environments. Field studies
equipped with sampling devices and drainage collection systems
can verify results from lysimeter experiments in situ (Al-
Marashdeh et al., 2017).

Moving stock out of paddocks into barns (henceforth referred
to as “ MOOtels”) can further reduce soil damage and N
leaching from farm systems, simultaneously increasing animal
performance, animal health and welfare. “MOOtels” describe
open-barn structures with bedding materials to absorb urine
and dung, which is turned daily to allow a maximum of
animal welfare (Piddock, 2015). The bedding material in such
“MOOtels” could be sourced from trees on-farm or nearby
wood processing industries. This material immobilises nutrients,
especially N from stock excrement. Maintained properly, the
bedding material can be turned into compost and used within
the farm system or sold as a nutrient-rich compost product with
beneficial properties for soil and stock health, depending on plant
materials used in the bedding.

WOOD RESIDUES IN STAND-OFF PADS

For stand-off pads, many surface materials have been
investigated, including sand, gravel, rubber mats, shredded
newspaper, cardboard, wood residues and crop residues such as
shredded chestnuts or oilseed rape straw residues (Ward et al.,
2001; HCC, 2010; Logan, 2011; Dairy NZ, 2017). Woodchips
may have certain benefits over other materials due to their low
cost, good water absorption capacity, and provision of a soft

and warm stock bedding, which is preferred by stock compared
with other materials (Gregory and Taylor, 2002; Mills et al.,
2016; Dairy NZ, 2017). Stand-off pad designs using woodchips
as a bedding material are common in the UK, Ireland and New
Zealand (Christianson et al., 2017).

The volume of wood chips required for an engineered stand-
off pad can be calculated on the basic space recommendation of 5
m²/cow, the number of cows, and the pad chip depth of 500mm.
For example, a total volume of loose wood chips of 750 m3 is
required for a pad area of 0.15 ha for 300 cows.

Wood chips are commonly sourced from commercial
providers. However, an unexplored alternative is obtaining wood
chips directly from roundwood harvested from farm woodlands
and chipped on-site (CREH, 2005; Dairy NZ, 2017). Assuming
a ratio of loose woodchip to roundwood volume of 2.6 and an
annual forest roundwood yield of 40 m3/ha, a forest area of 7.2
ha is required to provide a roundwood volume of 288 m3 which
is equivalent to 750 m3 of wood chips.

To maximise the efficacy of the stand-off pad, the wood
chips require monthly renewal: scraping-off of the top
100mm off the surface is recommended by Dairy NZ
(2015). Additionally, a woodchip top-up may be required
to maintain the pad’s recommended 500mm woodchip depth.
The woodchip area should also be well-drained to prevent
waterlogging or bedding material from becoming too wet
(Dairy NZ, 2015). Stand-off pads that are in poor condition
are likely to result in stock disorders and diseases. However,
processes within and below the woodchip bedding that may
potentially influence the health and wellbeing of stock are
not well researched. This lack of reliable information poses
difficulties in making management recommendations for
stand-off pads.
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The use of woodchips has become popular, especially in
temporary stand-off solutions, where the surface material is
directly applied to soil— either with or without topsoil removed
(CREH, 2005). In such scenarios, the woodchip-soil bedding
needs to capture and adsorb a significant amount of the
stock effluent and potentially harmful compounds therein.
Depending on woodchip size, the depth of the woodchip
layer and the thickness and soil type underlying such pads,
some of the nutrients or even contaminants and pathogens
may be leached out of the pad and enter waterways and
groundwater (Fenton, 2012). The woodchip-soil matrix in
temporary stand-off pads with no engineered drainage should
ideally be capable of capturing all liquids that result from stock
inputs, or at least adsorb nutrients and contaminants within
the pad structure, so the leachate output does not pose risks to
the environment.

Studies that are available from trials investigating free-
draining stand-off pads show contradictory results, and the
leachate quality depends on a variety of factors, including stock
density (Smith et al., 2010; Fenton, 2012), woodchip species
(Ward et al., 2000, 2001; Molnar and Wright, 2006; Vinten
et al., 2006; Luo et al., 2008), woodchip size (Shukla et al.,
2002; Smith et al., 2010) and soil type (CREH, 2005; Camberato,
2007). Woodchips have been shown to absorb moisture and
bind solids, and enable the formation of biofilms on woodchip
particles that can assist in N-transformation processes, hence
biologically treating leachate passing through the woodchip
surface (Smith et al., 2010; Fenton, 2012). Materials with a high
cation exchange capacity (CEC) can be capable of retaining
contaminant particles, including N as well as faecal bacteria (Luo
et al., 2008), but research around processes at the woodchip-
soil interface is scarce, and contaminant removal by bedding
materials in stand-off pads needs further research (Fenton, 2012).
However, leaching of environmental contaminants, such as N,
P and faecal microorganisms, can be high—especially if such
temporary pads are overstocked (Smith et al., 2010; Fenton,
2012) and/or located in areas with high rainfall or sandy soils
(CREH, 2005). A risk assessment considering all individual
factors in the farm scenario can help to assess the potential loss
of contaminants through a system (Fenton, 2012). Depending on
the size and the tree species from which they were manufactured,
wood chips can hold between 200 and 300% of their weight
in water (Smith et al., 2010). Smaller chip sizes have a higher
water holding capacity than larger ones, likely due to their higher
specific surface area. Site restrictions must be considered in areas
prone to frost since effluent flow through the woodchip surface
may be impeded (Smith et al., 2010).

Wood Residues to Adsorb Nitrogen
Different wood residues have been widely used as soil
amendments in agricultural systems and investigated regarding
their water holding capacity and use as animal beddings
(Schofield, 1988; Deininger et al., 2000; Ward et al., 2000; Molnar
and Wright, 2006; Vinten et al., 2006). Wood material, such as
sawdust, bark or wood shavings, can adsorb nutrients, especially
nitrogen (N), hence minimising the risk of these leaching into
groundwater and waterways. The (dry) wooden material can act

as a filter for up to 90% of animal N and phosphorous (P) inputs
(Christianson et al., 2017) due to a large number of negatively-
charged binding sites called the cation exchange capacity (Shukla
et al., 2002; Dumont et al., 2014). CEC indicates the amount
of negatively charged binding sites available to adsorb positively
charged ions, such as NH+

4 . The adsorption ability of such wood
residues mainly depends on the CEC and surface area since this
controls the capacity to hold water (Dumont et al., 2014). In
conjunction with CEC variations, pH can potentially affect the
absorbency rate of NH+

4 - into the woodchip matrix, where an
increase in pH would result in lower adsorption rates (Özacar
and Sengil, 2005 as supported by Shukla et al., 2002). In addition,
studies have suggestedmicrobial immobilisation plays a large role
in removing N from leachate (Bolan et al., 2004).

The N removal capacity of different wood chips varies
depending on the size and type of the woodchip and other factors
such as pad design and feeding management (O’Driscoll et al.,
2007; Murnane et al., 2016). Depending on diet and feeding
management, there may be variations in the dry matter content
of the dung and N concentration in the effluent (Smith et al.,
2010). Also, the wood residue type (tree species, particle size) can
influence the capacity to remove N and other contaminants in
agricultural systems (O’Driscoll et al., 2007; Dumont et al., 2014).
However, contradictory results have been published concerning
the NH+

4 -N retaining capacity of wood chips and its correlation
to particle size. Luo et al. (2004) reported NH+

4 -N as the most
common form of N in drainage in a lysimeter study investigating
the effect of animal effluent on leachate quality through soil,
bark, wood chips and zeolite. In contrast, sawdust and bark
have been shown to retain >90% of the applied N, indicating
that the N loss through leaching is almost negligible (Luo et al.,
2008). Vinten et al. (2006) observed no effect of woodchip particle
size on N retention, contradicting the assumption that NH+

4
retention by wood residues is correlated to the particle size
of the material.

Other studies propound the importance of osmotic pressure
since it has been suggested that high osmotic pressure in a
solution (e.g., effluent) may force NH+

4 -N into the low-osmotic
pressure woodchip material until the point of equilibrium
(Abdoun et al., 2003). Therefore, using wood residues in stand-
off pads that are high in NH+

4 -N themselves may not result in any
significant N adsorption, thereby resulting in leachate containing
high N concentration that subsequently enters the environment
(Dumont et al., 2014).

Nonetheless, Smith et al. (2010) suggest that temporary stand-
off pads result in less N leachate per animal than an overwintering
grass field. However, after dung and effluent have been filtered
through the woodchip pad, the nutrient content within the
leachate may still exceed maximum allowable values for receiving
waters (Murnane et al., 2016).

NH4-N has been reported as the dominant proportion of N
in leachates from woodchip pads (Luo et al., 2004; CREH, 2005),
which may be a result of high NH4-N loading rates (dung, stock
effluent) followed by rainfall so that there is not enough time
and surface area within the woodchip matrix for adsorption to
prevent N from leaching. In some studied woodchip pads, NH4-
N concentrations of leachate range from 76.1 to 399.1mg l−1
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per day during stocked periods (CREH, 2005). The potential and
capacity of wood residues for removing N has been investigated
in mixtures where wood residues have been either turned into
biochar or blended with biochar (Sironi et al., 2009; Ruane et al.,
2010; Christianson et al., 2011). These studies have tested the N
removal capacity in leachate by reducing NO3-N via enhancing
N2O losses via denitrification or enhancing the adsorption of
NH4-N onto negative binding sites. Reyes-Escobar et al. (2015)
have investigated the use of biochar as a matrix to adsorb plant
extracts, generating a complex that prolonged the nitrification
inhibition at field condition.

Contradictory results have been reported as to what extent
N adsorption takes place in woodchip materials (Dumont et al.,
2014). Nutrient dynamics in the woodchip-soil matrix and
at the woodchip-soil interface are likely to be different from
a soil profile, where nitrification and denitrification usually
occur in the upper soil layers (CREH, 2005). The removal of
N from the woodchip-soil matrix via denitrification involves
bacteria that convert NO−

3 -N to N2O and N2 and may reduce
N compounds in the leachate. However, N2O is known as a
greenhouse gas and ozone destroyer, so its formation must be
taken into account when mitigating NO3-N loss at the cost of
N2O production, hence causing potential adverse environmental
impacts (Abusallout and Hua, 2017). Nevertheless, N removal
mechanisms in woodchip filters have been suggested as being
of physical rather than biological origin (Murnane et al., 2016).
The role of condensed tannins in wood residues and plant parts
may be strongly related to N transformation, complexation and
leaching processes out of stand-off pads hence further research
will help to identify better woodchip-stand-off-pad designs.
Mixing woodchips with other materials and farm wastes such
as biochar may provide further possibilities to improve bedding
systems (Christianson et al., 2017) and enable more sustainable
farming practices.

Phytochemicals in Wood Residues
All plants contain chemical compounds necessary to assist
in their metabolism, defend against pathogens or give
them a competitive advantage (Joanisse et al., 2007). Such
“phytochemicals” are commonly characterised by hydroxylated
aromatic rings and are categorised as secondary metabolites
(Swain, 1979; Julkunen-Tiitto, 1986; Nichols-Orians et al.,
1992; Orians, 1995; Orians et al., 2000). Among secondary
metabolites, tannins are considered as one of the largest groups,
including condensed tannins and hydrolysable tannins as
subgroups (Adamczyk et al., 2013). Secondary metabolites are
commonly synthesised in leaves and enter the soil via litterfall
and subsequent decomposition. Cupressus macrocarpa, for
instance, produces monoterpenes such as α-pinene and myrcene
(Malizia et al., 2000), which are known to interfere with the
nitrogen cycle and terpinen-4-ol, a monoterpenoid alcohol
that has high antimicrobial activity (Carson and Riley, 1995).
High levels of phenols have been extracted from radiata pine
(Pinus radiata D.Don) bark, and these inhibited nitrification
and mineralisation, and decreased soil respiration and microbial
biomass (Suescun et al., 2012). Some of these chemicals may also

be present in other woody plant tissue and, therefore, within the
woodchip material of a stand-off pad.

Tannins, lignin and other phenolic substances that may be
present in the woodchip matrix as a result of the chipped
plant species could potentially cause adverse effects in waterways
when these are leached out of the stand-off pad system and
enter waterways in the form of dissolved organic carbon (DOC)
(Abusallout and Hua, 2017). Concentrations of DOC in the
leachate may vary depending on the chipped tree species and
could potentially reduce oxygen concentrations in waterways due
to stimulated biological activity (Schipper et al., 2010; Shih et al.,
2011; Warneke et al., 2011). In addition, DOC in waterways can
impact the colour of receiving waters resulting in reduced light
penetration (Svensson et al., 2014). Although high concentrations
of DOC in woodchip leachate have been detected in an initial
flush, concentrations seem to decrease over time (Abusallout and
Hua, 2017).

Phytochemicals can interfere with the nitrogen cycle,
influence nitrifying microbes, and affect soil organic matter
degradation (Fierer et al., 2001; Kraus et al., 2003; Kanerva et al.,
2006). In this context, tannins play a major role because they can
form proteins and N compounds, necessary to form recalcitrant
N complexes, which may reduce N leaching into waterways
(Adamczyk et al., 2013, 2017). The effects and interactions of
tannins can be related to their polymer structure, where different
chain lengths, hydroxylation patterns and the stereochemistry
of links between monomers may trigger different reactions with
nutrient complexes and microbes (Kraus et al., 2003). It has been
shown that tannins affect carbon (C) and N mineralisation by
providing C sources for microorganisms, but also possibly acting
as toxins for microbes (Cadisch and Giller, 1997; Kraus et al.,
2003; Adamczyk et al., 2013) or decreasing enzyme activities
(Adamczyk et al., 2009; Joanisse et al., 2009). Adamczyk et al.
(2017) and Wu (2011) reported a complexation of dissolved
organic N into protein-tannin complexes, hence increasing the
long-termN-storage pool in soils (Verkaik et al., 2006). Although
such protein-tannin complexes are not easily accessible by plants
and microbes, these complexes can serve as a temporary storage
pool for later access if needed (Hättenschwiler and Vitousek,
2000; Joanisse et al., 2009). Tannin production varies between
and within plant species and with nutrient availability during
plant growth (Cadisch and Giller, 1997; Dalzell and Shelton,
2002). Therefore, woodchips from different tree species may
vary in their tannin composition and thus exert different effects
on the amount of N or DOC that is leached out of a stand-
off pad (Cadisch and Giller, 1997). Experiments with purified
tannins added to soil have shown an inhibitory effect that scales
with increasing tannin concentration and has decreased soil
respiration (Kanerva and Smolander, 2008).

Tannins that have been extracted from pine needles inhibit
nitrification in soil (Zhang et al., 2010). This has been related to
high concentrations of epigallocatechin, which has been shown to
inhibit nitrification, mainly due to its chemical structure (Zhang
et al., 2010). Black spruce (Picea mariana (Mill.) BSP) and kalmia
(Kalmia angustifolia L.) tannins have been found to inhibit
important soil enzymes, depending on their concentrations
(Joanisse et al., 2007). Talbot and Finzi (2008) have reported
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the inhibition of N mineralisation after the addition of sugar
maple tannins.

Willows and poplars belong to the family Salicaceae and can
synthesise low molecular phenolic glycosides and condensed
tannins (McWilliam, 2004), which have been linked to important
pharmacological activities and medicinal uses (El-Shazly et al.,
2012). The most common compounds associated with poplars
and willows are salicin and salicortin (McWilliam, 2004). Salicin
can be isolated from willow bark, and the substance is known
as “aspirin”, commonly used to relieve pain and fever. These
chemicals have been reported as beneficial in removing organic
and N loads within the soil matrix via stimulating microbial
activity (Duggan, 2005; Randerson et al., 2010).

POPLARS AND WILLOWS IN NZ FARMING
SYSTEMS

Wood residues from poplars and willows could be an
easily sourced material from trees planted within the farm
environment. Poplar and willow trees were introduced to
New Zealand by European settlers and are commonly planted
as shelterbelts or riparian plantings for erosion control and
emergency stock feed in times of drought (Dickmann and
Kuzovkina, 2014). In New Zealand, most poplar and willow
plantings are located in hill country, but silvopastoral adaptation
into dairy systems could be feasible (McGregor et al., 1999). In
contrast, in many parts of the world poplar and willow plantings
are located on alluvial plains or other flat or low relief terrain,
and therefore use of machinery for economic harvesting and
chipping of wood material is quite feasible and has already been
implemented (see for example Spinelli et al., 2020).

Most poplar and willow clones can be easily propagated
vegetatively from unrooted poles and/or rooted cuttings and
have shown a superior growth rate to other tree species
(McWilliam, 2004). Poplars and willows may provide a range
of different uses within an agricultural system and enhance
agricultural productivity while simultaneously mitigating adverse
environmental effects. Studies have shown the beneficial use
of poplars to minimize pasture production loss due to soil
conservation measures, fodder and animal welfare (McGregor
et al., 1999; Dominati et al., 2014). Their large root systems
can access nutrients and water from deep soil layers, thereby
providing a safety net, preventing the nutrients from leaching
into groundwater (Guevara-Escobar et al., 2000). High organic
C inputs in the form of leaves could potentially increase
denitrification and alter the soil’s physical, chemical and
microbial properties, thereby influencing the N cycling in the
system and minimising NO3-leaching into waterways (Haycock
and Pinay, 1993; Randerson et al., 2010).

Nutrients accumulated in leaves can be fed back to the
stock to prevent nutrient deficiencies, especially in times of
drought. Poplar and willow trees can provide leaves with a high
concentration of condensed tannins, proteins and trace elements
(Moore et al., 2003; McWilliam et al., 2005; Robinson et al.,
2005), that may be beneficial for livestock health. Both willow
and poplar leaves showed high concentrations of condensed

tannins (Matheson, 2000), which may enhance protein digestion
in animals. Carulla et al. (2005) have shown a decrease in the
urine N concentrations due to high levels of tannins in fed willow
leaves, which can minimise N inputs into the farm system and
reduce nutrient loss via leaching. Condensed tannins have been
reported to shift N excretion from urine to faeces, reducing N
loss due to reducing the NH+

4 concentration in urine where it
would be subsequently converted to NO3- and potentially nitrous
oxide (N2O) (Whitehead, 1995). However, depending on the tree
species and concentrations of tannins present in the fodder parts,
suchmitigation effectsmay vary (Carulla et al., 2005; Beauchemin
et al., 2007; Getachew et al., 2008; Grainger et al., 2009; Aboagye
et al., 2018).

Compared with poplar, willow tree fodder showed higher
concentrations of condensed tannins (Matheson, 2000), but both
tree species have been reported to provide tree fodder with
the ability to improve protein digestion in grazing ruminants
(McCabe and Barry, 1988). Willow leaves fed to cows have
proven health benefits and have been shown to enhance growth
and fecundity due to high protein, tannin and trace element
concentration (Isebrands et al., 2014). Willow leaves can reverse
weight loss of cows when fed in times of drought, and high
levels of tannin may efficiently de-worm stock (Isebrands et al.,
2014). Tannins may also reduce the N concentration in the
urine of ruminants (Carulla et al., 2005), which could benefit the
environment and reduce N leaching from urine patches. Such
benefits have resulted in the successful inclusion of poplar and
willow tree fodder into beef, sheep and deer farming systems
(Charlton et al., 2003).

Especially on hills and in riparian zones, poplars and willows
reduce soil erosion through their extensive root systems and
high evapotranspiration rates (Douglas et al., 2010), which helps
drying out waterlogged soil (Guevara-Escobar et al., 2000; Ball
et al., 2005; McWilliam et al., 2005). Erosion control may result in
an increase in livestock carrying capacity and mitigating soil and
nutrient losses into nearby streams and catchments (McWilliam,
2004).

Poplars and willows can also minimise nutrient runoff from
farms when planted in shelterbelts or wide-spaced plantings
on pasture (silvopastoral forests) while providing shade and
shelter for livestock. Sheltered farms can result in less need for
irrigation (Douglas et al., 2013; Millner et al., 2013), which could
minimise nutrient runoff caused by excess water. Poplar and
willow silvopastoral plantings can reduce wind speeds, provide
shade in summer and positively affect animal welfare (Bloomberg
and Bywater, 2007). However, tree canopy cover has to be
carefully managed so as to not excessively shade understorey
pastures (Wall et al., 2006).

A SILVOPASTORAL SYSTEM PRODUCING
WOODCHIPS FOR TEMPORARY
STAND-OFF PADS

Poplars and willows are proven agroforestry species on New
Zealand farms, and their woodchips have high suitability
for stand-off pad bedding. Here we propose an integrated
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FIGURE 2 | Temporary stand-off bedding in a silvopastoral scenario. Livestock are moved sequentially from one temporary pad to the next (A,B) once a pad becomes

fully loaded with water or animal wastes. The used bedding material will be subject to composting processes (C) for subsequential use within the farm environment.

silvopastoral system, where woodchips are produced by chipping
branches and small stems. This material could be used to build
up a stand-off area within the silvopastoral site, where beneficial
properties of poplar and willow-woodchips are combined with
other properties, such as NO3- leaching reduction, reduced water
content, animal shelter and biofortified fodder. This also has the
advantage of minimising handling and transport of the woodchip
material, as handling and transport are a high proportion of the
cost of woodchip material.

Thus, woodchips would be chipped directly onto certain areas
of a farm system, to be used as a temporary stand-off pad
as long as animal welfare conditions are adequate. Once the
temporary pad becomes fully loaded with water or animal wastes,
the chipping can be repeated for the next farm section to create a
new temporary stand-off pad (Figure 2).

The freshly chipped, new temporary stand-off pad ensures
adequate conditions for animals again. Building up a stand-off
system with built-in trees could potentially obviate the need
for engineered drainage structures since (1) root systems of
surrounding trees can uptake soil moisture and keep themoisture
content at levels favoured by the cows and (2) the deep tree roots
would act as a “safety net” for nutrients that have leached from
the woodchips into the soil.

The top 100mm woodchip/soil layer of the soiled pad could
be recycled by application to fields, simultaneously providing
organic fertilisation for new pasture growth. Timber residues of
such temporary stand-off pads can contain significant nutrients
and be beneficially recycled back to land (Smith et al., 2010).
The resulting mixture of woodchips and manure may have
the potential to be used for on-farm biogas production via

anaerobic digestion (Bolan et al., 2009; Massé et al., 2011;
Victorin et al., 2019), or be turned into fertiliser by using
aerobic composting techniques (Food Fertilizer Technology
Center, 2001; Augustin and Rahman, 2016), hence increase
revenue through saleable products or the reduction of costs
for mineral fertilisation. However, application rate and amount
have to be considered since the application of larger quantities,
or larger chip sizes may potentially impact grass response
and silage quality (Smith et al., 2010). Both processes have
benefits and disadvantages, and future studies that directly
compare these in the context of farm operations would
help provide management advice to farm owners for manure
treatment options.

Repeated chipping on the same area on a rotational basis
could build up a bedding system over time, creating a compost
stock with beneficial inputs of cow urine and tree bark, suitable
for use to promote plant growth in other riparian plantings,
shelterbelts or stand-off areas. Such composting systems need
accurate management since the composting process works
best at 45–55% moisture content, a minimum depth of 45–
60 cm, and temperatures between 43–60◦C (Dairy NZ, 2015).
However, due to the usually high C/N ratio of the woodchip
matrix, optimum composting temperatures may not always
be achieved (Airaksinen et al., 2001), hence resulting in a
compost product that is low in available N (Sommerfeldt
and MacKay, 1987; Sommer and Dahl, 1999; Smith et al.,
2010). Furthermore, maintaining the composting systems can be
labour intensive and, if not managed properly, may endanger
stock health or milk quality due to high levels of bacteria in
the bedding.
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CONCLUSIONS

Trees on farms provide several benefits, including supplementary
stock fodder, animal shelter, erosion control and revenue through
timber products. In addition, deep root systems act as a safety net
to mitigate nutrient loss. Waste material from timber harvesting
can be turned into bedding material for stand-off pads, barns,
and open barn systems, further reducing paddock damage and N
leaching and contributing to animal welfare. Absorbed nutrients
in the woodchip matrix may contain beneficial plant compounds
to further inhibit nutrient leaching, improve soil structure, and
increase organic matter when subsequently reused in a farm
environment. More studies, especially lysimeter experiments,
could assist in developing guidelines and recommendations to
support designing temporary stand-off pads and assessing risks
associated with individual farm scenarios. Bedding material
chipped from poplar and willow trees may provide a suitable
alternative to commonly available pine bedding, but a wide range
of materials should be investigated to identify plant compounds
in woodchips beneficial for reducing contaminant leaching.
Studies addressing various plant materials regarding composting

strategies will be important to improve and accelerate the
recycling of bedding materials on farms. Properly designed
stand-off pads may improve both environmental and economic
outcomes of animal husbandry by reducing both the nutrient
inputs and losses from farming systems.
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