AUTHOR=Im Sung B. , Gupta Sonali , Jain Mani , Chande Aroon T. , Carleton Heather A. , Jordan I. King , Rishishwar Lavanya TITLE=Genome-Enabled Molecular Subtyping and Serotyping for Shiga Toxin-Producing Escherichia coli JOURNAL=Frontiers in Sustainable Food Systems VOLUME=5 YEAR=2021 URL=https://www.frontiersin.org/journals/sustainable-food-systems/articles/10.3389/fsufs.2021.752873 DOI=10.3389/fsufs.2021.752873 ISSN=2571-581X ABSTRACT=
Foodborne pathogens are a major public health burden in the United States, leading to 9.4 million illnesses annually. Since 1996, a national laboratory-based surveillance program, PulseNet, has used molecular subtyping and serotyping methods with the aim to reduce the burden of foodborne illness through early detection of emerging outbreaks. PulseNet affiliated laboratories have used pulsed-field gel electrophoresis (PFGE) and immunoassays to subtype and serotype bacterial isolates. Widespread use of serotyping and PFGE for foodborne illness surveillance over the years has resulted in the accumulation of a wealth of routine surveillance and outbreak epidemiological data. This valuable source of data has been used to understand seasonal frequency, geographic distribution, demographic information, exposure information, disease severity, and source of foodborne isolates. In 2019, PulseNet adopted whole genome sequencing (WGS) at a national scale to replace PFGE with higher-resolution methods such as the core genome multilocus sequence typing. Consequently, PulseNet's recent shift to genome-based subtyping methods has rendered the vast collection of historic surveillance data associated with serogroups and PFGE patterns potentially unusable. The goal of this study was to develop a bioinformatics method to associate the WGS data that are currently used by PulseNet for bacterial pathogen subtyping to previously characterized serogroup and PFGE patterns. Previous efforts to associate WGS to PFGE patterns relied on predicting DNA molecular weight based on restriction site analysis. However, these approaches failed owing to the non-uniform usage of genomic restriction sites by PFGE restriction enzymes. We developed a machine learning approach to classify isolates to their most probable serogroup and PFGE pattern, based on comparisons of genomic k-mer signatures. We applied our WGS classification method to 5,970 Shiga toxin-producing