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Rice is the most important staple food in the Philippines as it provides almost half

of the calorie requirements of the population. The domestic supply of rice, however,

is inadequate to meet local demand, making the Philippines one of the top five

rice-importing countries in the world. To close the domestic supply-and-demand

gap, agricultural planners and policymakers in the Philippines have been promoting

interventions to increase farm-level productivity. In support of the government efforts

to increase rice productivity, a stochastic frontier analysis combined with an optimized

spatial hot spot analysis was conducted to determine the factors that may influence

the increase in rice farm efficiency and also identify candidate areas for relevant

geographic-specific rice production interventions. Results show that enhancing access

to irrigation and farm inputs and increasing the producers’ technical capacity can help

address the local supply deficiency by potentially increasing yield per hectare to as

high as 5.50 metric tons per hectare. The approach to potentially increase rice farm

technical efficiency and productivity must consider the spatial nature of rice production

as suggested by the findings from the optimized hot spot analysis. It is important that

policy interventions consider areas with a high incidence of low levels of productivity and

technical efficiency. These are the locations where agricultural planners and policymakers

can make greater impacts on rice yields. Relevant policies and initiatives, therefore,

should take into account the geographical location of farms to ensure the greatest

contribution to attaining food production targets.

Keywords: food security, optimized hot spot analysis, Philippines, rice production, technical efficiency

INTRODUCTION

Rice is an important staple to the Philippines and a food constant to millions of Filipinos. Meals
in the Philippines will not be complete without some form of rice on the table. Across the
Philippines, about one-third of the country’s alienable and disposable lands cultivates rice (Navata
and Turingan, 2013). Because of its importance, rice has become the most socially, culturally,
economically, and politically sensitive commodity in the Philippines, and ensuring adequate, stable,
and affordable supply is paramount.
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For the above reasons, the government launched various
programs with the main objective to attain rice self-sufficiency.
The programs, however, fell short and the Philippines continue to
import rice to meet domestic demand. Dawe (2006) argued that
the Philippines is a rice importer mainly because of geography.
As an island nation with less arable land per capita and varying
landscape compared to its regional neighbors such as Thailand
and Viet Nam, the Philippines has limited land endowments and
expansive river deltas, which make it challenging for the country
to compete with the rice exporting countries in Southeast Asia.

Being consistent with historical paths in agriculture—the era
of expansion, the age of productivity, and the emerging epoch
of connectivity—the Philippines has been pursuing rice self-
sufficiency, with limited success. Despite more than doubling
the per hectare rice production between 1987 and 2019, local
supply has not been able to keep up with local demand, making
the Philippines a net importer of rice since 1995. In 2018, the
Philippines had a rice self-sufficiency ratio (i.e., the proportion
of domestic food produced to the total food consumed locally)
of about 86%, the lowest since 2013 (Simeon, 2019). Bruinsma
(2009) estimated that only a 20% increase in production
may come from land expansion, and increased productivity
can generate the remaining 80%. Therefore, if the Philippines
is serious about attaining rice self-sufficiency, stimulating an
upward shift in the production function by increasing efficiency
levels is crucial.

Because improvements in farmer agricultural efficiency enable
producing more given the same resource constraints, in this
paper, we seek to examine the economic geography of rice
yields and technical efficiency levels of farmers in Central Luzon,
Philippines, as well as the factors that influence the variation in
these levels. To complement the technical efficiency assessment
and to provide better guidance to decision makers, we evaluate
how the distribution of productivity and inefficiency estimates
can help design policy that addresses the specific geographical
production needs of rice farmers. With these objectives, we
organized the paper with the second and third sections describing
the data and analytical approach. The fourth section presents the
key findings of the analysis, and the final section concludes the
paper, recognizing the key results as well as their implications for
domestic food production policy and decision making.

DATA AND ANALYTICAL APPROACH

To estimate the technical efficiency levels of rice farmers
and to illustrate how geoeconomic information can help
identify priority initiatives to achieve food production targets,
we collected cross-sectional data from rice farming villages
in the provinces of Nueva Ecija and Tarlac in Central
Luzon, Philippines. Using an objective-oriented structured
questionnaire, the household survey elicited sociodemographic,
farm production, and geoeconomic data for 2013 dry (December
to May) and wet (June to November) seasons. The data
collected allowed us to assess the geographic distribution of rice
productivity and technical efficiency across the provinces.

Study Area
Central Luzon is the largest rice-producing region in the
Philippines. There are 12 cities and 118 municipalities from
the seven provinces of Central Luzon, namely, Aurora, Bataan,
Bulacan, Nueva Ecija, Pampanga, Tarlac, and Zambales (Lugos,
2009; DENR, 2014). Of these provinces, the Philippine Rice
Research Institute (PhilRice) ranked Nueva Ecija, Tarlac,
Bulacan, Pampanga, Aurora as five of the country’s major rice-
producing provinces based on average rice harvest area (Bordey
and Malasa, (n.d.)).

To determine the specific study sites, we followed the
approach that Mamiit et al. (2020) employed by considering
the rice harvest areas at the provincial, municipal, and village
levels. With the approach, we selected the municipalities of
Guimba in Nueva Ecija and Tarlac City in Tarlac. The Barangay
Agricultural Profiling Survey (BAPS) shows that out of the 32
municipalities in Nueva Ecija, 8% of the province’s rice area and
10% of rice farmers are in Guimba (BAS, 2012). In comparison
to 17 other municipalities, Tarlac City accounts for 13% of the
total provincial rice farmers and 11% of the rice area. These two
municipalities also have a wide representation of different farm
sizes as well as a diversity of irrigation sources.

Guimba is about 153 kilometers northwest of Manila, with a
land area of 25,853 hectares. There are 64 villages in Guimba lying
on relatively flat areas with slopes of 0–3% and elevation of 0 to
500m above sea level. More than 90% of the villages in Guimba
are rural farming villages, with rice as the main crop. From the
2010 census, 104,894 people reside in Guimba (National Statistics
Office, 2010; Municipality of Guimba, 2012).

The city of Tarlac is the provincial capital, with a land area
of 27,466 hectares, and has a population of 318,332 according
to the 2010 census (National Statistics Office, 2010). The city
is approximately 110 kilometers north of Manila. Although
categorized as an urban municipality, about 46% of Tarlac City’s
76 villages have a rural classification (National Statistics Office,
2010). These rural villages are still very agricultural, with rice and
sugarcane as the main products.

Farming Households
In choosing the sample villages, we adopted the right coverage
approach described in Mamiit et al. (2020). Through random
selection, that was contingent on the proportional zonal
distribution of the villages as well as the number of rice farming
households in the northeast, southeast, southwest, and northwest
regions of the two municipalities, we collected information from
471 rice farming households−301 in Guimba and 170 in Tarlac
City. We determined from the collected data that 294 (Guimba)
and 150 (Tarlac City) rice farm households constituted valid
household data. These data from 27 sample villages: 18 from
Guimba (Agcano, Balingog East, Banitan, Bantug, Caballero,
Caingin Tabing Ilog, Catimon, Cawayan Bugtong, Macatcatuit,
Manacsac, Nagpandayan, San Bernardino, Santa Cruz, Subol, and
Tampac I, II, and III) and 9 from Tarlac City (Armenia, Atioc,
Balibago II, Banaba, Care, De La Paz, Sapanag Maragul, Tibag,
and Tibagan).

In all villages, males are the dominant head of households,
with an average age of 54 years in Guimba and 51 years in
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Tarlac City. Most of the male farmers attained 8 years of formal
schooling, which is equivalent to 2 years of high school education.
In terms of rice farming experience, farmers in Guimba have (on
average) 4 additional years of farming practice compared to 28
years of farming experience for Tarlac City farmers. A typical rice
farming household of five members in Guimba generates about
USD 1,000 more in annual income from rice production than
similar households in Tarlac City.

Agricultural land accounts for more than 90% of total
landholding for most farmers in the two municipalities, who are
small-scale producers with an average rice landholding of <2
hectares per household. The largest rice parcels in Guimba and
Tarlac range from 1 to 1.35 hectares. With modest-sized rice land
parcels, farmers in Guimba produced 6.76 metric tons of rice
per hectare during the 2013 dry season and 4.63 metric tons per
hectare in the wet season. For Tarlac, rice farms produced 3.85
and 2.96 metric tons of rice per hectare during the dry and wet
seasons, respectively.

Stochastic Production Frontier Analysis
Globally, there are different methodologies proposed to measure
productivity and efficiency in terms of yield and inputs used
(Kumbhakar and Lovell, 2003; Coelli et al., 2005; Bravo-Ureta
et al., 2007; Iliyasu et al., 2014; Ogundari, 2014). One technique is
the stochastic frontier analysis (SFA), which Aigner et al. (1977)
and Meeusen and van den Broeck (1977) simultaneously yet
independently developed. As described in Mamiit et al. (2020),
this study also adopted an output-oriented stochastic production
frontier model [Eq. (1)] with an exponential distribution
assumption following a maximum likelihood framework to
estimate technical efficiency. This implies that with ui measuring
the output shortfall from its maximum possible value given by
the stochastic frontier, this study employs the estimation that
Jondrow et al. (1982) suggested in determining the level of
producer-specific inefficiency.

yi = A
∏n

i=1
X

βj
j eεi , where εi = vi − ui (1)

The variable yi denotes the potential output of a production
unit i, Xj is the inputs or resources used to produce yi, and
βj is the parameter for estimation. This model assumes that
production data are subject to some form of measurement
errors, statistical noise, and random shocks that are beyond
the control of the producer, such as weather, natural disasters,
and political instability. The variable vi captures the presence
of the measurement errors and noise in the data, which follows
the identical, independent, and normal distribution assumption,
vi∼iid N(0, σ 2

v ). The random variable ui, which is independent
of vi and exponentially distributed, ui∼ξ (σu) , refers to the
technical inefficiency of the producer (Belotti et al., 2012).

In the SFA, we used the Cobb-Douglas production function
following Bhanumurthy (2002), who revisited the applicability
of the Cobb-Douglas production function in stochastic frontier
analysis and found it to be an appropriate specification in
its handling of multiple inputs, market imperfections and
simultaneity. Bhanumurthy (2002) further noted that the
Cobb-Douglas production function exhibits explicit uniformity,
parsimony, and flexibility. As explained in Mamiit et al. (2020),

this study performed the likelihood-ratio (LR) test as well as
the Akaike and Bayesian information criteria (AIC and BIC)
to determine that the Cobb-Douglas production function is the
most suitable functional form for all the study sites.

The analysis specified Cobb-Douglas stochastic production
frontier functions for the dry and wet cropping seasons [Eqs.
(2) and (3)], where ui = δj

∑12
j=1 Zj + ωi captures the

farm-specific technical inefficiency in production. The terms
δi and ωi respectively denote parameters to be estimated and
unobservable random variables assumed to be independently
distributed. Table 1 presents the descriptive statistics of the
production and inefficiency variables. Given that the expression
of the aforementioned Xjvariables is in different units, we
transformed Eqs. (2) and (3) into the logarithmic form for the
dry and wet seasons, ln yi = β0 +

∑n
j βjlnXj+vi − ui.

yidry = β0 +

∑8

j=1
βjXj + vi − ui (2)

yiwet = β0 +

∑9

j=1
βjXj + vi − ui, (3)

Optimized Hot Spot Analysis
The notion of how location factors influence agricultural
production has its roots from agricultural location theory that
started with the classical work of von Thunen (1826). Under
the limiting assumptions that (1) land is uniformly fertile, (2)
there is only a single population cluster in its center, (3) factors
of production are available at a given location with prices that
linearly increase with distance from input markets, and (4) fixed
agricultural product price and demand for all products are the
norms, von Thunen (1826) argued that for farmers to maximize
profit, the location of the farms must be at a strategic distance
from the market center. With these conditions and at certain
distances, the clustering of profit-maximizing farmers is likely
to occur.

Cognizant that rice production is a dynamic process that
takes place in areas with varying fertility levels, soil types,
and production resource endowments such as water, this study
contends that productive, efficient, and even inefficient farms
cluster in areas considered as hot spot or cold spot locations for
high or low yields or technical efficiency levels. Following the
complementarity argument made by Porter (1990, 1998, 2000)
on industrial clustering that the performance of a firm in a cluster
affects the performance of the other cluster members, this study
assumes that increased productivity at the farm level would be
similar to that of the agglomerated industries. Transmission of
information, as well as access to specialized inputs and labor, is
presumably more fluid in neighboring farms or dwellings than
those distant from one another.

Areal and Pede (2021) demonstrated that failing to account
for commonly overlooked spatial heterogeneity aspects of farm
production influences farm efficiency estimates and ranking. In
Bohol, Philippines, Aida (2018) used a spatial panel econometric
model to assess how farm-level pesticide use affects neighboring
farms pesticide utilization. The study found that pesticide
use depends not on the intensity of infestation but on the
behavior of neighboring farms. In the same region, Pede et al.
(2018) investigated spatial dependency in the technical efficiency
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TABLE 1 | Description of the variables in the production and technical efficiency models.

Variable Variable name Unit and description

Production model

yi Yield Rice yield in metric tons per hectare

Xj Inputs in the rice production process

Seeds Seed quantity in kilogram per hectare

Fertilizer Fertilizer quantity in kilogram per hectare

Pesticides Quantity of pesticides used in a gram of active ingredients per hectare

Irrigation Irrigation costs in Philippine pesos per hectare

Machinery Machinery costs (including rental and fuel) in Philippine pesos per hectare

Animals Costs of livestock used in farming (including purchase or rental costs) in Philippine pesos per hectare

Labor Person-days per hectare

Hybrid seeds Dummy variable (1 = hybrid seed user; 0 = otherwise)

Typhoon Dummy variable (1 = farm was affected by the typhon in the wet season; 0 = otherwise)

Inefficiency model

ui Technical inefficiency Farm-specific technical inefficiency in production

Zj Determinants of technical inefficiency

Age Age of farmer in years

Education Number of years of formal schooling of the farmer

Experience Number of years of rice farming experience of the farmer

Network Number of people in the farmer’s social-agricultural network

NIA connection Dummy variable (1 = connection to the National Irrigation Administration infrastructure; 0 = otherwise)

Technology adopted Number of technologies adopted in the rice farms

Distance Distance of the rice farm from input market in kilometers

Training Dummy variable (1 = farmer attended an agricultural training; 0 = otherwise)

Extension Dummy variable (1 = agricultural technician or extension agent visited the rice farm; 0 = otherwise)

High input prices Dummy variable (1 = farmer experienced high input prices; 0 = otherwise)

High labor costs Dummy variable (1 = farmer experienced high labor costs; 0 = otherwise)

Lack or shortage of water Dummy variable (1 = rice farm experienced a shortage in or lack of water supply; 0 = otherwise)

NIA, National Irrigation Administration.

estimates and determined a decrease in technical inefficiency
when the analysis considers spatial effects.

To complement the results from the stochastic production
frontier analysis and to provide better guidance to policymakers,
we carried out the optimized hot spot (OHS) analysis. OHS
analysis is a spatial statistics tool available from ArcGIS 10.2. It
is a tool that can help delineate areas having a high incidence
of data points representing specific ranges of productivity and
efficiency estimates. The focus of this analysis is the assessment
of the presence or absence of a range of estimates in a
geographical area rather thanmeasured attributes associated with
each observation. OHS is a suitable tool for the production
and technical efficiency estimates since they are incident
point data.

As described in ArcGIS 10.2, the OHS analysis is a tool that
uses the Getis-OrdGi∗ statistic [Eq. (4)] to estimate the associated
Z-score for each feature. A high Z-score indicates a higher
potential of being part of the hot spot areas. To aggregate the Z-
scores, OHS applies the average and themedian nearest-neighbor
calculations given incremental distances between observations
as estimated using the incremental spatial autocorrelation tool.
In the Getis-Ord Gi∗ statistic, xj is the attribute value for the
feature under consideration for observation j, wi,j represents

the spatial weights between observations, n is the total number

of observations, X is equal to

∑n
j=1 xj

n , and S is equivalent to
√

∑n
j=1 x

2
j

n − (X)2.

G
∗

i =

∑n
j=1 wi,j xj − X

∑n
j=1 wi,j

S

√

n
∑n

j=1 w
2
i,j−(

∑n
j=1 wi,j)

2

n−1

, (4)

To determine spatial weights representing spatial relationships
between observations and amongst attributes of interest (Anselin,
1988; Getis and Aldstadt, 2004; Getis, 2009), we used the geo-
referenced data—latitude and longitude of farm and dwelling
coordinates—collected during the field survey and adopted a
row-standardized inverse distance spatial weights matrix. Row
standardization means that we divided each weight by the row
sum of the weights given a certain distance band. As noted
by Getis and Aldstadt (2004), row standardization is helpful
in weighting observations equally. This selection of the matrix
form is mainly in support of the hypothesis that productivity
and efficiency at the farm level decrease with distance from the
best-performing producers.
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The focus of the OHS analysis for yield estimates is the
identification of hot spot locations and warm spot zones to
identify areas with enhanced productivity and at the same time
determine the cold spots, the sites that may need support to
enhance productivity. Cold spot locations refer to sites with a
high incidence of low production. Warm spot areas are zones
exhibiting a mix of high and low values of yield per hectare.

In terms of the technical efficiency levels, cold spot zones are
areas where there is an agglomeration of high inefficiency levels.
Hot spot areas, on the other hand, are the sites where there is
clustering of farms with high technical efficiency estimates. Areas
with mixed levels of high inefficiency and efficiency are the warm
spot locations.

RESULTS AND DISCUSSION

The following sections describe the empirical results of the
stochastic production frontier analysis. Specifically, we present
the estimation of yield and technical efficiency levels for the study
sites and identify the hot spot areas for production and levels
of technical efficiency in Tarlac and Guimba in the dry and wet
seasons. These sections also further investigate the geographic
effects of farm and dwelling locations on the productivity and
technical efficiency of rice farms and present findings from the
OHS analysis.

Productivity and Efficiency
We interpreted the estimated coefficients of inputs measured
in physical units from the stochastic Cobb-Douglas production
frontier as output elasticities. By using Stata 14.0 software and
the one-stepmaximum likelihood approach as proposed inWang
and Schmidt (2002), findings show that in Guimba, a 10%
increase in machinery expenditure resulted in yield per hectare
increasing by 1% during the dry season and by 0.80% in the
wet season, ceteris paribus (Table 2). Liu (2006) noted that the
one-step procedure reduces bias and provides more consistent
estimates as compared with the two-step process where one
estimates the frontier model first, followed by the estimation
of a linear regression of the inefficiency term as a function
of a set of explanatory variables. Bias results from the lack of
consistency in the assumptions about the distribution of the
inefficiency term, which leads to misspecification of the model
in the two-step procedure.

For the same level of increase in machinery expenditure at
10%, per hectare production in Tarlac increased by 3.70% and
3.80%, respectively, in the dry and wet seasons (Table 3). Other
than machinery, the use of fertilizer and hybrid seeds were
statistically significant, with positive coefficients, for both the dry
and wet cropping seasons in Guimba, implying that an increase
in the use of fertilizer and farms using hybrid seeds generated
an increase in production. On average, farmers in Guimba used
almost 200 kg more fertilizer than farmers in Tarlac.

The utilization of hybrid seeds or those rice cultivars that are
a product of crossbreeding, although significant, had negative
coefficients for Tarlac. One possible reason is the low adoption
of hybrid seeds in Tarlac, with only 2% of the farmers using
hybrid varieties, and that the varieties of hybrid rice cultivated are

not well adapted to the farm conditions in the area, resulting in
lower yields than expected. The use of hybrid rice seed varieties in
Guimba, however, exhibited positive and significant coefficients.
For Guimba, a 10% increase in the use of hybrid rice cultivars can
result in a 0.70% increase in yield per hectare in the dry season
and a 0.60% increase in yield per hectare in the wet season.

As expected, typhoons or some form of climate-related
devastation during the wet season significantly affected yield per
hectare, as shown by a 1.50% and 1.90% decline in yield per
hectare for a 10% increase in the number of farmers affected by
a typhoon in Guimba and Tarlac, respectively. In the cropping
period considered, there were 31 tropical depressions detected in
the Philippine Area of Responsibility, of which 13 formed into
full-blown typhoons. Two strong typhoons hit various parts of
Central Luzon during the wet season, leaving the region with
a combined total of almost PhP3 billion worth of agricultural
damages (Flora, 2013; Suarez, 2013).

The results also indicated that labor in person-days was
significant during the wet cropping season in Guimba. In Tarlac,
we found that the use of pesticides significantly influenced yield
during the dry season, whereas animal draft power was significant
for both seasons. In the field survey, Tarlac farmers expressed
problems with rodents and snails during the dry season. The
use of pesticides, although not directly influencing yield growth,
helps reduce losses from pest infestations, as expressed by Rola
and Pingali (1993) and Magallona (1989) in investigations of the
effects of pesticides in rice ecosystems.

In both the dry and wet seasons for the two municipalities,
the returns to scale were less than unity, suggesting a decreasing
return to scale to the production process. This implies that if all
inputs increased by k percent, production increases by less than
k percent. In Guimba, a 10% increase in all inputs would result
in a 3% and 3.40% change in yield for the dry and wet seasons,
respectively. Correspondingly, the quantitative change in yield
per hectare in Tarlac is higher given the same proportionate
change in the level of inputs. In the dry season, the returns to
scale for Tarlac farmers imply a 4.80% increase in yield, whereas
in the wet season, the change in yield is 4.50%.

In light of supporting staple food production targets, the
findings of the present analysis support initiatives that may help
domestic rice production improve. For one, to raise productivity
and competitiveness, the country’s Department of Agriculture
(DA) advocates the adoption of suitable high-quality seeds and
increased use of fertilizers (Department of Agriculture, 2012).
The DA also promotes the mechanization of on-farm and
postharvest operations to help increase yield. As the results show,
fertilizer and hybrid seed utilization can increase rice yields.
Increased mechanization of rice production as expressed by
higher machinery utilization costs compared to all other factors
of production, as shown by the present analysis, has the largest
effect of increasing rice production.

Because of decreasing returns to scale observed in the two
municipalities, as well as to assess the actual potential of farmers
in supporting domestic rice production, it is necessary to examine
their levels of efficiency. Based on current production practices,
Guimba farmers are operating more efficiently than Tarlac
farmers, with an average technical efficiency of 0.92 in the dry
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TABLE 2 | Mean statistics and maximum likelihood estimates of the stochastic production and technical inefficiency models in Guimba.

Variables Guimba (n = 294)

Dry Wet

Mean (S.D.) Coefficient (S.E.) Mean (S.D.) Coefficient (S.E.)

Production function

Constant 0.23 (0.31) 0.21 (0.28)

Seeds 83.73 (42.42) 0.03 (0.04) 93.84 (35.35) 0.07 (0.04)*

Fertilizer 452.59 (214.38) 0.14 (0.04)*** 366.26 (196.07) 0.06 (0.04)*

Pesticides 665.28 (865.55) −0.01 (0.01) 720.43 (788.24) 0.00 (0.01)

Irrigation 2,544.43 (1,172.84) 0.01 (0.02) 1,951.97 (923.07) −0.00 (0.02)

Machinery 5,865.08 (2,539.74) 0.10 (0.02)*** 4,911.54 (2,308.81) 0.08 (0.02)***

Animals 796.94 (676.21) 0.00 (0.01) 631.74 (527.46) −0.00 (0.01)

Labor 59.45 (25.30) −0.04 (0.03) 58.32 (25.92) 0.07 (0.03)**

Hybrid seeds 0.18 (0.39), n = 54 0.07 (0.02)*** 0.02 (0.14), n = 6 0.06 (0.04)*

Typhoon (wet season only) 0.29 (0.45), n = 85 −0.15 (0.03)***

Inefficiency function

Constant −13.121 (8.939) −10.911 (11.684)

Age 53.55 (12.35) 0.02 (0.03) 53.55 (12.35) 0.03 (0.02)

Education 8.46 (3.00) 0.08 (0.10) 8.46 (3.03) −0.04 (0.05)

Experience 31.62 (14.49) −0.01 (0.03) 31.62 (14.49) −0.02 (0.02)

Network 32.33 (40.39) 0.00 (0.01) 32.33 (40.39) −0.00 (0.00)

Irrigation 0.99 (0.08), n = 292 5.66 (8.70) 1.00 (0.06), n = 293 7.86 (11.64)

Technology 7.08 (2.98) −0.12 (0.12) 7.03 (2.90) −0.05 (0.06)

Distance 6.58 (5.02) 0.04 (0.04) 6.60 (5.00) 0.02 (0.03)

Training 0.51 (0.50), n = 149 −0.27 (0.62) 0.49 (0.50), n = 149 −0.58 (0.33)*

Extension 0.34 (0.48), n = 100 −0.58 (0.72) 0.34 (0.47), n = 100 −0.38 (0.34)

Prices 0.70 (0.46), n = 207 1.10 (0.88) 0.68 (0.47), n = 200 −0.18 (0.36)

Labor 0.44 (0.50), n = 129 0.58 (0.63) 0.50 (0.50), n = 146 0.27 (0.34)

Water 0.30 (0.46), n = 89 1.44 (0.68)** 0.24 (0.43), n = 71 0.17 (0.39)

σu 0.08 0.21

σv 0.18 0.15

Log likelihood 53.63 0.07

Tabulated data are from the author’s own calculation. The respective coefficients and the standard errors of the coefficients are correct to two significant digits.

* Significant at 10%.

** Significant at 5%.

*** Significant at 1%.

season and 0.82 in the wet season (Figure 1). The efficiency levels
of rice farms in Tarlac are lower by 0.07 and 0.12 points for the
wet and dry seasons, respectively. These efficiency differences are
statistically significant at the means. Despite the relatively high
average efficiency levels in the two municipalities, there remains
a number of rice farms that can make substantial improvements
in their production operation and farm management to increase
their efficiency levels. In Guimba, for instance, during the
wet season, about 28% of the rice farms have efficiency levels
lower than 0.80. In Tarlac, this number grows to 35 and 48%,
respectively, in the dry and wet seasons.Given the variation in the
levels of technical efficiency among Guimba and Tarlac farmers,
there is definitely potential and opportunity for them to produce
more efficiently and improve their productivity. For instance,
farms in Guimba can potentially increase production to 7.32 and
5.63 metric tons per hectare at the maximum in the dry and wet

seasons, respectively. Equivalently, in Tarlac, farmers can increase
rice yield to 4.78 metric tons per hectare in the dry cropping
season and 3.90 metric tons in the wet cropping season.

Farm-specific technical efficiency estimates are important
because they can provide information to farmers and
policymakers on the nature of operation and management
practices implemented in various farm locations. This allows
farmers and decision makers to assess ways to increase
productivity without increasing the levels of input application.
As the findings show, there is variation in the range of technical
efficiencies of farmers in Guimba and Tarlac. To understand the
divergence in the efficiency rankings, it is imperative to examine
factors that could be causing the inefficiency of the farms across
the two municipalities.

From Tables 2 and 3, it is apparent that farm operation
and management practices, as well as production-specific
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TABLE 3 | Mean statistics and maximum likelihood estimates of the stochastic production and technical inefficiency models in Tarlac.

Variables Tarlac (n = 150)

Dry Wet

Mean (S.D.) Coefficient (S.E.) Mean (S.D.) Coefficient (S.E.)

Production function

Constant −2.25 (0.38)*** −1.87 (0.42)***

Seeds 102.28 (49.76) 0.08 (0.05)* 87.22 (34.11) 0.04 (0.02)**

Fertilizer 279.15 (122.26) 0.05 (0.05) 195.50 (142.74) 0.06 (0.04)

Pesticides 638.71 (692.49) 0.03 (0.01)** 623.37 (796.45) 0.00 (0.01)

Irrigation 1,605.96 (2,277.67) −0.00 (0.01) 796.47 (1,102.09) 0.00 (0.01)

Machinery 3,657.35 (1,999.05) 0.37 (0.05)*** 2,307.49 (1,892.96) 0.38 (0.05)***

Animals 94.13 (398.41) 0.02 (0.01)** 72.63 (321.01) 0.02 (0.01)*

Labor 41.11 (20.16) −0.01 (0.04) 45.64 (27.67) 0.01 (0.01)

Hybrid seeds 0.02 (0.14), n = 3 −0.06 (0.03)** 0.01 (0.12), n = 2 −0.06 (0.04)*

Typhoon (wet season only) 0.41 (0.49), n = 61 −0.19 (0.05)***

Inefficiency function

Constant −5.83 (2.44)** −1.60 (1.62)

Age 50.67 (12.01) 0.02 (0.03) 50.67 (12.01) −0.02 (0.02)

Education 7.79 (2.98) 0.09 (0.08) 7.79 (2.98) 0.03 (0.07)

Experience 27.73 (14.79) −0.02 (0.02) 27.73 (14.79) 0.01 (0.02)

Network 32.09 (31.35) 0.01 (0.01) 32.09 (31.35) −0.01 (0.01)

Irrigation 0.49 (0.50), n = 73 −1.88 (0.50)*** 0.47 (0.50), n = 70 −0.14 (0.47)

Technology 3.75 (2.27) 0.04 (0.12) 3.30 (2.64) 0.07 (0.10)

Distance 6.05 (8.74) 0.03 (0.02) 5.38 (8.26) 0.04 (0.03)*

Training 0.50 (0.50), n = 75 −0.47 (0.54) 0.50 (0.50), n = 75 −0.12 (0.53)

Extension 0.39 (0.49), n = 59 0.42 (0.48) 0.39 (0.49), n = 59 0.50 (0.44)

Prices 0.97 (0.16), n = 146 0.29 (1.47) 0.97 (0.16), n = 146 −0.25 (1.17)

Labor 0.93 (0.26), n = 139 0.17 (0.85) 0.092 (0.27), n = 138 −1.12 (0.72)

Water 0.88 (0.33), n = 132 1.65 (0.95)* 0.81 (0.40), n = 121 1.08 (0.52)**

σu 0.26 0.33

σv 0.15 0.15

Log likelihood −10.76 −34.41

Tabulated data are from the author’s own calculation. The respective coefficients and the standard errors of the coefficients are correct to two significant digits.

* Significant at 10%.

** Significant at 5%.

*** Significant at 1%.

problems, greatly influence the inefficiency of farmers in the
two municipalities. Across Guimba and Tarlac, water shortage
during the two cropping seasons increased farmer inefficiencies.
In Tarlac, rice farms not connected to the National Irrigation
Administration’s (NIA) water infrastructure amplified this
finding. Consistent with the finding of Rola and Quintana-
Alejandrino (1993), the present analysis shows that in the
dry season, the inefficiency of Tarlac farmers significantly
decreased when more farms have connection with the NIA
irrigation systems. This implies the possibility of increasing rice
production in the Philippines and the achievability of domestic
rice production targets are more likely since improved water
availability can help manage two or more cropping per year.

Rice production in the Philippines has two cropping seasons,
the wet or rainy season and the dry season. Typically, rice
production for the wet season commences at the beginning of

the summer monsoon, which is around May of each year. Right
after the harvest for the wet season, the dry season production
immediately follows as farmers want to utilize the rainfall at
the end of the wet season (Koide et al., 2013). The year-round
multicropping production, particularly during the dry season, is
possible only if there is a sufficient water supply (Hafeez et al.,
2007; Antiporda, 2014). The acceleration of irrigation service
areas under the plans of the DA is therefore very relevant and
promising as far as reducing the inefficiencies of farmers.

Farm distances to input markets and attendance in
agricultural training programs also significantly affected
farmer inefficiency in the wet season in Tarlac and Guimba. The
influence of distance is consistent with the findings of DeSilva
(2011) and Evenson et al. (2000) in Bicol, Philippines. In the
present analysis, if farms are 6 km or more away from the input
market, inefficiency increases. This is particularly important in
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FIGURE 1 | Distribution of levels of technical efficiency of farms in Guimba and Tarlac during the dry and wet cropping seasons.

Tarlac during the wet season because the locations of most input
markets are in the city center while farms are on the outskirts. In
support of the domestic rice production targets, the government
may want to introduce some form of mobile agricultural input

store program that is similar to the mobile library program

that some municipalities promote. With this program, farmers
in remote areas need not go to the city center to acquire the

most needed inputs, which in turn can help reduce the overall

transportation and hauling costs of inputs.
The noticeable significance of attendance at agricultural

training sessions, specifically during the wet season in Guimba,
is interesting. As the results indicate, attendance at training

programs decreased inefficiency. Speculation suggests that the

pertinence of such a factor during the wet season is due to
the possibility that there were more training programs offered
to the farmers in the cropping year of interest relative to
other periods.

The results of the one-step stochastic production frontier
analysis are in accord with the findings from similar studies
on rice in the Philippines, such as that of Rola and Quintana-
Alejandrino (1993), Villano and Fleming (2004, 2006), Odchimar
and Tan-Cruz (2007), Pate and Tan-Cruz (2007), Yao and
Shively (2007), Gomez and Neyra (2010), Mariano et al. (2011),
Koirala et al. (2014a,b), Michler and Shively (2015), Villano
et al. (2015). As shown in the current analysis, increasing the
technical efficiency of farmers in Guimba and Tarlac can lead
to an increase in rice yield per hectare. Under the DA’s rice
production program, the campaign to construct and modernize
new irrigation systems should continue, as well as strengthen
rehabilitation and restoration of existing irrigation facilities
as access to reliable water sources can help increase farmers’
efficiency, especially in Tarlac.

Geographic Priorities for Productivity and
Efficiency
With the application of the OHS analysis, we determined the
areas where there are incidences of high values of yield per
hectare in the dry and wet seasons given farm and dwelling
locations. The separation of geolocation is crucial for dwellings
or residence and farms because during the data collection, it
became apparent that farmers who are residential neighbors are
not necessarily farm neighbors. There were cases where farmers
are farm plot neighbors but reside in separate and distant villages.
The approach is similar to the separate geolocation assessment
that Pede et al. (2018) and Tsusaka et al. (2015) conducted to
examine spatial dependency and technical efficiency as well as
the neighborhood effects among irrigated and rainfed farmers in
Bohol, Philippines.

From these geographical representations, we derived three
categories—hot spot areas, warm spot locations, and cold spot
sites. With the yield per hectare attribute, hot spot areas are the
residential or farm neighborhoods where there is a prevalence of
high production values. The determination of these high-value
areas is with respect to the local yield average as compared to the
overall average for all the observations.

Villages that are hot, warm, and cold spots vary depending
on geolocation reference—farm or dwelling areas. As such,
in the dry season for Guimba, for instance, we detected that
farm neighborhoods in the villages of Agcano, Balingog West,
Banitan, Bantug, Cawayan Bugtong, Manacsac, Nagpandayan,
San Bernardino, Tampac II and III, and Triala are in cold spot
areas, which signifies the presence or high incidence of relatively
lower yields. For dwelling neighborhoods, these cold spot villages
are in three areas—Agcano, Banitan, and Tampac II and III
(Figure 2).
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FIGURE 2 | Production (yield per hectare) hot spot and cold spot for farm areas (left) and dwelling places (right) in Guimba for the dry (top) and wet (bottom)

seasons. Although the maps are visually distinct, the locational and seasonal difference between the yield hot spot maps in Guimba is statistically not significant.

Conversely, the results of the OHS analysis are consistent for
Tarlac across seasons and geolocations. The villages of Armenia,
Care, De La Paz, and Tibag are the cold spot localities regardless
of which geolocation is under consideration, farm or dwelling
areas. Despite these coherent findings in terms of cold spot
locations, geolocation discrepancy persists with hot spot and
warm spot areas in Tarlac (Figure 3).

It is evident from Supplementary Appendix Tables 1 and
2 that the decision on which geolocation to consider is

crucial, as this will influence the development of policies
and geographical prioritization, particularly in Guimba, where
the discrepancy is very striking. If the intent is to enhance
farm production relative to the production rate of the leading
farms, policies should take into consideration the geographic
patterns of cold spot areas given the rice field geolocations
in Guimba. Targeting cold spot villages may have a greater
effect on production than focusing on areas where yield is
already high.
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FIGURE 3 | Production (yield per hectare) hot spot and cold spot for farm areas (left) and dwelling places (right) in Tarlac for the dry (top) and wet (bottom)

seasons. Although the maps are visually distinct, the locational and seasonal difference between the yield hot spot maps in Tarlac is statistically not significant.

As previously argued, achieving the domestic rice production
target is contingent on improving the overall levels of technical
efficiency of farmers. In this regard, it is necessary to develop
programs and initiatives that target areas exhibiting high levels
of inefficiency. To guide such policy, decision makers need to
know the areas where to implement the needed technical support.
Figures 4 and 5 spatially show the distribution of technical
inefficiency hot spots in the dry and wet seasons in Guimba and

Tarlac given farm and dwelling geolocations. These locations are
areas for potential government intervention or assistance that
likely requires location-specific strategies.

In contrast with the degree of variation found in the
production cold spot regions, the results of the OHS analysis for
the technical inefficiency attribute conform across seasons and
geolocations. For the two seasons in Guimba, considering farm
and dwelling locations, the villages of Balingog East, Caballero,
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FIGURE 4 | Technical inefficiency hot spot and cold spot for farm areas (left) and dwelling places (right) in Guimba for the dry (top) and wet (bottom) seasons. The

visually distinct features between the hot spot maps for technical inefficiency according to geolocations and seasons in Guimba are statistically not significant.

Santa Cruz, and Tampac I are consistent locations for producers
with high inefficiency rates. The villages of Sapang Maragul,
Tibag, and Tibagan in Tarlac are technically inefficient hot spot
areas. If the policy goal is to increase farm-level efficiency, then
priority interventions should primarily target these hot spot
locations, followed by the warm spot areas.

It is interesting to note from the results of the OHS analysis
that in certain villages, low production does not necessarily
imply high inefficiency. The villages with high incidences of low

yields are not necessarily the same as the hot spot locations
for technical inefficiency. Taking note of this location-specific
disassociation between production and efficiency hot spots is
important and can affect policy design. Considering the results
of the stochastic production frontier, for instance, the findings
clearly suggest the potential for improving efficiency in the two
study areas, which can eventually lead to yield increases that help
achieve the domestic rice production target. In this regard, the
suitable policy may be one that accounts for inefficiency that
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FIGURE 5 | Technical inefficiency hot spot and cold spot for farm areas (left) and dwelling places (right) in Tarlac for the dry (top) and wet (bottom) seasons. Note:

The visual difference in the technical inefficiency hot spot maps in Tarlac according to geolocations and seasons is statistically not significant.

specifically addresses the needs of those villages in the inefficiency
hot spot locations.

CONCLUSION AND RECOMMENDATIONS

In the last two decades, rice demand in the Philippines has
exceeded local supply, making the Philippines one of the

top five rice-importing countries in the world. Because of
this reliance on imports to sustain domestic rice demand,
the Philippines has become vulnerable to the volatility of
the global rice market. To address the domestic supply-
and-demand gap, the Government of the Philippines has
been promoting classical approaches such as expanding
land and irrigation areas, increasing productivity through
cropping intensification and introducing high-yielding varieties,
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and strengthening food system connectivity by reducing
rice wastes.

In support of increasing productivity and farm efficiency,
we performed a stochastic frontier analysis showing that there
is potential among farmers to produce more efficiently and
improve yields to increase rice production. It is apparent that
farm operation and management practices as well as production-
specific problems greatly influence the efficiency of farmers.
The findings show the relevance of access to irrigation water
in increasing farm efficiency. This implies a need to improve
water availability for rice production if the Philippines is to close
the rice supply-and-demand gap as year-round multicropping
production, particularly during the dry season, is possible only
if there is a sufficient water supply.

By addressing the inefficiencies related to access to water
and relevant inputs as well as technical capacity development
of farmers, it is important to note that in the Municipality of
Guimba, farms can potentially increase production to 7.32 and
5.63 metric tons per hectare at the maximum in the dry and wet
seasons, respectively. On the other hand, Tarlac City farmers can
respectively maximize rice yield at 4.78 and 3.90 metric tons per
hectare in the dry and wet cropping seasons. With these site-
level potentials, with adequate provision of agricultural water to
farmers and training programs, it is possible to increase yield to
6.52 metric tons per hectare in Nueva Ecija and to 4.35 metric
tons per hectare in Tarlac.

While increasing the level of farmer efficiency is imperative,
policy and decision makers must take a prudent approach in
implementing the relevant interventions. As shown in this study,
it is important to account for the dwelling and farm locations
in strategically addressing the production gaps and variation
in inefficiency levels. By considering the geolocations of rice
producers, agricultural planners and stakeholders may be able
to identify specific geographical locations where enhanced
production is possible without increasing resource allocation.
With the limited resources available to catalyze wide-scale
agricultural development specifically for rice production, it
is reasonable to envisage a more targeted approach at the
geographic level. As this study demonstrated, in Tarlac province,
for instance, instead of rolling out interventions across its 76
villages, agricultural decision makers may want to prioritize
the villages of Balingog East, Santa Cruz, and Tampac I,
where there are much-needed rice production interventions.
In Guimba, the priority villages are Sapang Maragul
and Tibagan.

The OHS analysis makes a compelling case for policies aimed
at enhancing both yield and production efficiency i,e., to take
into account the appropriate geographical planning level. Policies
need not necessarily be all-encompassing strategies that are
implementable from a national scale. Instead, farm- or village-
specific interventions might be more pertinent.
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