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The recent incorporation of bacterial whole-genome sequencing (WGS) into Public

Health laboratories has enhanced foodborne outbreak detection and source attribution.

As a result, large volumes of publicly available datasets can be used to study the

biology of foodborne pathogen populations at an unprecedented scale. To demonstrate

the application of a heuristic and agnostic hierarchical population structure guided

pan-genome enrichment analysis (PANGEA), we used populations of S. enterica lineage

I to achieve two main objectives: (i) show how hierarchical population inquiry at

different scales of resolution can enhance ecological and epidemiological inquiries; and

(ii) identify population-specific inferable traits that could provide selective advantages

in food production environments. Publicly available WGS data were obtained from

NCBI database for three serovars of Salmonella enterica subsp. enterica lineage I (S.

Typhimurium, S. Newport, and S. Infantis). Using the hierarchical genotypic classifications

(Serovar, BAPS1, ST, cgMLST), datasets from each of the three serovars showed varying

degrees of clonal structuring. When the accessory genome (PANGEA) was mapped onto

these hierarchical structures, accessory loci could be linked with specific genotypes.

A large heavy-metal resistance mobile element was found in the Monophasic ST34

lineage of S. Typhimurium, and laboratory testing showed that Monophasic isolates

have on average a higher degree of copper resistance than the Biphasic ones. In

S. Newport, an extra sugE gene copy was found among most isolates of the ST45

lineage, and laboratory testing of multiple isolates confirmed that isolates of S. Newport

ST45 were on average less sensitive to the disinfectant cetylpyridimium chloride than

non-ST45 isolates. Lastly, data-mining of the accessory genomic content of S. Infantis

revealed two cryptic Ecotypes with distinct accessory genomic content and distinct

ecological patterns. Poultry appears to be themajor reservoir for Ecotype 1, and temporal

analysis further suggested a recent ecological succession, with Ecotype 2 apparently
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being displaced by Ecotype 1. Altogether, the use of a heuristic hierarchical-based

population structure analysis that includes bacterial pan-genomes (core and accessory

genomes) can (1) improve genomic resolution for mapping populations and accessing

epidemiological patterns; and (2) define lineage-specific informative loci that may be

associated with survival in the food chain.

Keywords: Salmonella enterica, whole-genome sequencing, population genomics, foodborne pathogens,

pan-genome, food safety

INTRODUCTION

The Centers for Disease Control and Prevention (CDC) estimate
that ∼48 million people acquire foodborne-associated illnesses
annually in the United States (CDC, 2021a). Salmonella is
among the top five most common pathogens causing foodborne
salmonellosis in the United States (CDC, 2021a), with more
than one million infections, over 26,000 hospitalizations, and
400 deaths per year (CDC, 2021b). In general, foods of animal
origin are the major source of Salmonella outbreaks, although
multiple well-documented outbreaks have shown that plant-
based materials, such as leafy greens or peanut butter, can also
be vehicles of foodborne salmonellosis (Ferrari et al., 2019; CDC,
2021b).

The genus Salmonella comprises only two species: S. enterica
and S. bongori. Salmonella enterica is further sub-divided into
six genetically distinct sub-species, but a single subspecies
(S. enterica subsp. enterica lineage I—herein referred as S.
enterica lineage I) is estimated to be responsible for 99% of
zoonotic infections (Achtman et al., 2012). Within the S. enterica,
substantial genetic and phenotypic diversity exists, as evidenced
by > 2,500 serologically distinguishable variants (Issenhuth-
Jeanjean et al., 2014; Alikhan et al., 2018). These variants of
S. enterica, termed serovars, are differentiated by their unique
cell surface combinations of lipopolysaccharide and flagella-
associated proteins, which are detected and classified using sets of
anti-sera specific for the 46 different O-antigen structures and the
114 different H-antigens, known as the Kauffman-White scheme
(Rowe and Hall, 1989; McQuiston et al., 2011; Achtman et al.,
2012).

Serovars represent an important biological unit for
epidemiological inquiry because they co-vary with the S.
enterica lineage I population structure, and can have unique
ecological distributions. Specifically, the co-inheritance of
serotypic properties (i.e., phenotype) with genomic backbone
(i.e., shared-genomic content; genotype) allows for serovars
to be predicted with high accuracy solely using multi-locus
sequence typing (MLST) (Achtman et al., 2012). MLST is
a portable genotypic platform that classifies genomes into
sequence types (ST) using only seven genome-scattered loci,
that are ubiquitously spread across isolates (Maiden et al.,
1998). Ecologically, serovars can present varying patterns of host
tropism, such as host-restriction in the case of S. Dublin, which
is prevalent in bovine (Fenske et al., 2019); while generalists such
as S. Typhimurium typically colonizes different livestock animals
including poultry, swine, and bovine (Leekitcharoenphon et al.,

2016; Ferrari et al., 2019). The association of serovars with
MLST-based population structures and ecological traits have
important consequences for epidemiological surveillance. MLST
can be used for predicting serovars, while adding an extra
hierarchical layer of genotypic resolution to the population
(i.e., different STs of a serovar). Similarly, serovar-specific
hierarchically-classified MLST-based genotypes can also reflect
distinguishable ecological patterns, providing an additional layer
of epidemiological information.

More recently, the use of whole-genome sequencing (WGS)
in Public Health laboratories began to improve the accuracy of
outbreak investigations (Grad et al., 2012; Worby et al., 2014a,b).
The growing volume ofWGS data is also beginning to reveal new
insights into genetic diversity present in different populations, as
exemplified by the varying degree of genotypic diversity reported
across serovars of S. enterica lineage I (Joseph and Read, 2010;
Achtman et al., 2012; Land et al., 2015; Alikhan et al., 2018;
Zhou et al., 2018, 2020). WGS also generates large volumes of
publicly available datasets, allowing for population-based scalable
studies of Salmonella across environments and geographical
locations (Joseph and Read, 2010; Alikhan et al., 2018; Zhou
et al., 2018, 2020). However, current epidemiological inquiries
broadly focus on tracking ST lineages and cgMLST variants
while refining their clustering and traceback strategies through
single-nucleotide polymorphisms (SNP) mapping distributed
across the shared-genomic backbone (i.e., core-genome content)
(Grad et al., 2012; Worby et al., 2014a; Pightling et al.,
2018; Saltykova et al., 2018; Yang et al., 2019). Alternatively,
studies combining core- and accessory genomic components
are providing new levels of understanding of hierarchical and
familial genotypic relationships, higher degree of resolution
for distinguishing outbreaks, and potentiating the discovery of
causative genotypic and phenotypic traits underlying unique
niche tropisms (Sheppard et al., 2012, 2013; Chewapreecha et al.,
2014; Langridge et al., 2015; Earle et al., 2016; Laing et al., 2017;
Yahara et al., 2017; Bawn et al., 2020; Jiang et al., 2020; Rodrigues
et al., 2020; Mageiros et al., 2021). Hence, the combined use
of ST or cgMLST variant mapping, with accessory genomic
information, can substantially enhance the identification and
tracking of cryptic populations across reservoirs (Sheppard et al.,
2014; Gymoese et al., 2019).

To demonstrate the application of a heuristic and agnostic
hierarchical population structure guided pan-genome
enrichment analysis (PANGEA), we used populations of S.
enterica lineage I to achieve two main objectives: (i) show how
hierarchical population inquiry at different scales of resolution
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can enhance ecological and epidemiological inquiries; and (ii)
identify population-specific inferable traits that could provide
selective advantages in food production environments. Our
results show that such a holistic population genomics approach
has the potential to (1) reveal a hidden layer of genotypic
resolution that can aid in mapping populations at scale; (2)
identify population shifts that are relevant both ecologically and
epidemiologically; and (3) define specific loci where genomic
variation (i.e., informative loci) confers unique phenotypic
traits that can be associated with unique epidemiological and
ecological patterns.

MATERIALS AND METHODS

Bacterial Genome Sequences
Publicly available (convenient samples) Illumina paired-end
genome sequences of S. Typhimurium, S. Newport, and S.
Infantis were all obtained from NCBI-Sequence Reading Archive
(SRA). A list of the genomes downloaded are available in the
following Figshare repository (log-in credentials required)
(https://figshare.com/account/home#/projects/100139) in
their corresponding serovar-specific folders (.txt file includes
downloaded SRA identifications for each serovar). Otherwise, the
list of genomes is available within each serovar-specific folder (S.
Infantis data: https://doi.org/10.6084/m9.figshare.14198984.v12;
S. Newport data: https://doi.org/10.6084/m9.figshare.14199410.
v4; and S. Typhimurium data: https://doi.org/10.6084/m9.
figshare.14199503.v3). All genomic sequences were downloaded
in 2019, as part of the development of our computational
platform ProkEvo (Pavlovikj et al., 2021). For S. Typhimurium,
genomic sequences were selected from “worldwide” data (i.e.,
not filtered for USA genomes only); whereas, for S. Newport and
S. Infantis only USA genomic sequences were downloaded. The
primary reason for selecting geographically restricted genomes
was to have datasets with a ten-fold difference in size, in order to
test the scalability of our computational approach as previously
shown (Pavlovikj et al., 2021). SRA identifications were manually
downloaded from the NCBI-SRA webpage (https://www.ncbi.
nlm.nih.gov/sra). Publicly available genome sequences for each
serovar were searched using the following terms: (1) “Salmonella
Typhimurium” for S. Typhimurium—the terms “O 1,4,[5],12:i:-
or Monophasic” were not used in the search; (2) “Salmonella
Newport ANDUSA” for S. Newport; and (3) “Salmonella Infantis
ANDUSA” for S. Infantis. Only freely available genomic Illumina
paired-end sequences were downloaded for this analysis. In order
to download all SRA identifications, we used the “Send to” tab,
and selected “file” as a “Choose Destination” with the “Accession
List” as “Format,” and ultimately pressed the button “Create
File.” This .txt file is the only input file needed to run with
ProkEvo, a computational genomics platform for population-
based analysis of bacterial whole-genomes. As mentioned above,
genomic data from 2,870 isolates of S. Infantis, 2,392 isolates of
S. Newport, and 23,045 isolates of S. Typhimurium were then
processed through ProkEvo. The S. Typhimurium dataset had to
be randomly split into 20 evenly distributed subsets (1,076–1,077
genomes each) due to two main algorithm limitations: (1)
Generation of core-genome alignment with Roary (Page et al.,

2015) in ProkEvo; and (2) Constructing reliable maximum
likelihood-based phylogenetic tree with many thousands of
genomes. Specifically, the S. Typhimurium dataset was shuffled-
split (i.e., randomized) when creating the Roary subsets (a total
of 20 evenly distributed subsets) using Prokka (Seemann, 2014)
outputs (i.e., genome annotation done inside ProkEvo using
Prokka). Prokka outputs are generated independently for each
genome that passes through the ProkEvo pipeline.

ProkEvo Processing of Illumina Paired-End
DNA Sequences
As abovementioned, all Illumina paired-end genomic sequences
were processed using the computational platform ProkEvo
(Pavlovikj et al., 2021). In brief, ProkEvo uses a single input file
(.txt) containing SRA identifications to generate the following
main outputs: (1) ST classification (.csv) using the mlst algorithm
that is available here (https://github.com/tseemann/mlst); (2)
Hierarchical Bayesian analysis of population structure (BAPS)
clustering using fastbaps which used six levels of population
stratification (BAPS1-6) and sub-group or haplotype labeling
within each level of resolution (.csv) (Cheng et al., 2013; Tonkin-
Hill et al., 2019); (3) SISTR-based serotyping and cgMLST
classifications (.csv) (Yoshida et al., 2016); (4) Core-genome
alignment (.aln) for phylogeny construction using FastTree
(Price et al., 2010) (.tree file as the output of FastTree); (5)
Antimicrobial resistance (AMR) loci and plasmidmapping (.csv);
and (6) Pan-genomic mapping file containing binary data for the
presence and absence of loci produced by Roary (.Rtab). One
peculiarity of ProkEvo is that it uses SISTR to predict serotypic
classification based on core-genome information. Hence, we
have used SISTR to identify the proportion of isolates that
are potentially misclassified, or those for which the NCBI
information did not match what SISTR infers. For this study,
across all S. Typhimurium genomes over 20 datasets, the SISTR
serovar-classifier estimated a minor fraction (proportion ∼

ranging from 1.3 to 3.8%, and ∼ mean of 2.4%—calculated
based on 20 shuffled-split subsets) to be miscalls. In the
case of S. Newport and S. Infantis, only 2.03% and 0.95%
of all isolates were misclassified by SISTR as belonging to
another serovar, respectively. For all analyses, we accounted
for that error rate by either grouping “misclassified” serovars
into “Other serovars,” or by completely removing them from
the dataset. Unless specified in the figure legend, the SISTR
version used for analysis was v1.0 with BLAST v2.5. To account
for differences between SISTR versions, a comparative analysis
between SISTR v1.0 and v1.1 was also done to demonstrate
potential differences in cgMLST variant calling patterns and
distributions across all three serovars (https://figshare.com/
account/projects/100139/articles/15125190). In the case of S.
Infantis (https://figshare.com/account/projects/100139/articles/
14198984?file=29069388), a comparative analysis between SISTR
outputs was used to demonstrate: (1) distribution of cgMLST
variants across Ecotypes; (2) temporal distribution of cgMLST
variants across hosts/reservoirs; (3) SNP-based pairwise distance
between genomes; (4) distribution of cgMLST variants based on
shell-genes or shell-loci; and (5) identification of unique loci
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present or absent across major cgMLST variants. Of note, more
detailed information on how to install, deploy, all parameters
used and how to customize them, version of programs,
and applications of ProkEvo to conduct a hierarchical-based
population structure analysis is available here (https://github.
com/npavlovikj/ProkEvo). ProkEvo was run on two different
computational platforms - the University of Nebraska high-
performance computing cluster (Crane) and the Open Science
Grid (OSG), a distributed, high-throughput cluster. Depending
on the platform and the dataset size, ProkEvo ran from 3 to 26
days producing up to 1.2 TB of output data (Pavlovikj et al., 2021).
If all the analyses would have been run sequentially, on a single-
core, and not in a modular and distributed way as provided with
ProkEvo, the runtime would have been from 115 days up to 13
years (Pavlovikj et al., 2021).

Serovar-Specific Dataset Repositories
All serovar-specific datasets generated by ProkEvo, and other
auxiliary programs, available at the following Figshare link,
which requires the user to be logged in: https://figshare.com/
account/home#/projects/100139. If the user does not have a
Figshare account, then all dataset links are available here: S.
Infantis https://doi.org/10.6084/m9.figshare.14198984.v12; S.
Newport https://doi.org/10.6084/m9.figshare.14199410.v4; S.
Typhimurium—general https://doi.org/10.6084/m9.figshare.
14199503.v3; S. Typhimurium—group 1 https://doi.org/10.
6084/m9.figshare.14199479; S. Typhimurium—group 2 https://
doi.org/10.6084/m9.figshare.14199563.v2; S. Typhimurium—
group 3 https://doi.org/10.6084/m9.figshare.14199578.v2; S.
Typhimurium—group 4 https://doi.org/10.6084/m9.figshare.
14199605.v1; S. Typhimurium—group 5 https://doi.org/10.6084/
m9.figshare.14199626.v2; S. Typhimurium—group 6 https://
doi.org/10.6084/m9.figshare.14199635.v1; S. Typhimurium—
group 7 https://doi.org/10.6084/m9.figshare.14199668.v1; S.
Typhimurium—group 8 https://doi.org/10.6084/m9.figshare.
14199689.v1; S. Typhimurium—group 9 https://doi.org/10.6084/
m9.figshare.14199899.v1; S. Typhimurium—group 10 https://
doi.org/10.6084/m9.figshare.14199905.v1; S. Typhimurium—
group 11 https://doi.org/10.6084/m9.figshare.14199959.v1;
S. Typhimurium—group 12 https://doi.org/10.6084/m9.
figshare.14199965.v1; S. Typhimurium—group 13 https://
doi.org/10.6084/m9.figshare.14199974.v1; S. Typhimurium—
group 14 https://doi.org/10.6084/m9.figshare.14199980.v1;
S. Typhimurium—group 15 https://doi.org/10.6084/m9.
figshare.14199992.v1; S. Typhimurium—group 16 https://
doi.org/10.6084/m9.figshare.14200001.v1; S. Typhimurium—
group 17 https://doi.org/10.6084/m9.figshare.14200007.v1; S.
Typhimurium—group 18 https://doi.org/10.6084/m9.figshare.
14200019.v1; S. Typhimurium—group 19 https://doi.org/
10.6084/m9.figshare.14200031.v1; S. Typhimurium—group
20 https://doi.org/10.6084/m9.figshare.14200043.v1.

Phylogenetic Methods
All phylogenies were constructed using the core-genome
alignment (.aln) generated by Roary within ProkEvo—(see
ProkEvo for program version and specifics at https://github.
com/npavlovikj/ProkEvo), and subsequently by using the

FastTree program. As previously done, we used the generalized
time-reversible model of nucleotide evolution without removing
genomic regions putatively affected by recombination (Pavlovikj
et al., 2021). The code used for running FastTree is available
here https://github.com/jcgneto/Frontiers_Micro_salmonella_
Infantis_Newport_Typhimurium_genomics/tree/main/code/fas
tTree_program. The output is a .tree file that can then be used to
visualize the phylogeny using programs such as ggtree (version
2.2.4) and phandango version 1.3.0 (https://jameshadfield.
github.io/phandango/#/) (Hadfield et al., 2018). Of note, for
the S. Typhimurium dataset, 20 independent phylogenies were
constructed due to the random split of the original data.

Core-Genome k-mer and SNP-Based
Distance Calculations
Serovar-specific core-genome alignments (.aln files) generated by
ProkEvo were used to calculate the following pairwise distance
matrices: (1) k-mer based pairwise distances using aKronyMer
(Al-Ghalith, 2018), which is available here (https://github.com/
knights-lab/aKronyMer); and (2) SNP-based pairwise distances
using the snp-dists algorithm (https://github.com/tseemann/
snp-dists). Specific scripts used for each program are available
here: aKronyMer (https://github.com/jcgneto/Frontiers_Micro_
salmonella_Infantis_Newport_Typhimurium_genomics/blob/
main/code/akronymer_program) and snp-dists (https://github.
com/jcgneto/Frontiers_Micro_salmonella_Infantis_Newport_
Typhimurium_genomics/tree/main/code/snp_dist_program).
Both programs generate a square matrix that needs to be adjusted
or transposed depending on the analysis performed. Of note, for
the S. Typhimurium dataset, all pairwise distance calculations
were done for each of the individual 20 random subsets.

Dimensionality Reduction Analysis for
Population Structure Assessment
A t-distributed stochastic neighbor embedding (tSNE) algorithm
was used to visualize serovar-specific core-genome distance
matrices in two-dimensions (i.e., the first two tSNE components),
in order to identify neighboring clusters as previously shown
(Abudahab et al., 2019). For that, we applied the tSNE analysis
for both k-mer (produced by aKronyMer) and SNP (produced
by snp-dists) pairwise based distance matrices. Distance matrices
were generated as described above (see core-genome k-mer
and SNP-based distance calculations). Conversion of distance
matrices to the appropriate diagonal format, and calculations
of the first two tSNE components, were achieved using custom
Python (version 3.7.6) scripts compiled on Jupyter notebooks for
both k-mer based matrix (https://github.com/jcgneto/Frontiers_
Micro_salmonella_Infantis_Newport_Typhimurium_genomics/
tree/main/code/k-mer_dist_program), and SNP-based matrix
(https://github.com/jcgneto/Frontiers_Micro_salmonella_
Infantis_Newport_Typhimurium_genomics/tree/main/code/
snp_dist_program). Specifically, k-mer or SNP-based programs
were provided in individual folders for each serovar. All
Python packages used, in addition to specific tSNE parameters,
are provided inside the GitHub links, within each serovar-
specific folder, in their corresponding Jupyter lab notebooks. In
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particular, for the tSNE analysis we used the scikit-learn (version
0.22.1) library in addition to the class sklearn.manifold, and
function tSNE within it. Of note, for the S. Typhimurium dataset,
tSNE calculations were carried out independently across all 20
random subsets.

Supervised and Non-supervised
Population Clustering Using tSNE
Core-Genomic Derived Data
As part of a phylogeny-independent analysis, core-genomic
distances generated either with k-mers or SNPs (see
Dimensionality reduction analysis for population structure
assessment), were converted to two tSNE components (i.e., two
dimensions), that were subsequently used for 2-dimensional
ordination of the data. Supervised clustering was achieved
by labeling (color-coding) the data points with either the
Bayesian analysis of population structure level 1 (BAPS1), ST, or
cgMLST genotypic information, as part of the hierarchical-based
population structure analysis. Non-supervised clustering was
done by using a k-means approach. The optimal number of
k-means clusters was determined using both: (1) the examination
of within cluster sum of squares across the number of clusters
used by the modeling algorithm; and (2) the Silhouette analysis.
Once the optimal number of clusters was determined for the
k-mer or SNP approaches, the 2-dimensional tSNE plot was
color-coded using the cluster information. The R libraries
used were cluster (version 2.1.0), factoextra (version 1.0.7),
and NbClust (version 3.0). The R markdown containing all
the code for it is available here https://github.com/jcgneto/
Frontiers_Micro_salmonella_Infantis_Newport_Typhimurium_
genomics/tree/main/code/supplementary_figures/phylogenetic_
independent_all_serovars. For the S. Typhimurium dataset,
tSNE-based clustering analysis was done independently for each
of the 20 random subsets.

Supervised and Non-supervised
Population Clustering Using Accessory
Genome Information
Clustering using the accessory genomic information for each
serovar was achieved by only selecting “shell-genes or shell-loci”
from the pan-genomic data. Shell-genes include both annotated
and hypothetical proteins associated loci, and are present in
≥15% and <95% of the genomes in the dataset, as defined by
Roary within ProkEvo. These genes can be filtered out of the
.Rtab file containing a binary matrix for loci distribution across
genomes, generated by ProkEvo. A logistic principal component
analysis (PCA) was applied to the binary data, and two PCs
were used for subsequent data ordination (Fenske et al., 2019).
Model deviance was calculated using 2-dimensions. Supervised
clustering was achieved by labeling (color-coding) the data
points with either BAPS1, ST, or cgMLST genotypic information.
Non-supervised clustering was done by using a k-means
approach and the optimal number of clusters was determined by
examining the within cluster sum of squares across the number
of clusters tested by the algorithm. The R library logisticPCA
(version 0.2) was used for all analyses. All R markdowns are

available here (https://github.com/jcgneto/Frontiers_Micro_
salmonella_Infantis_Newport_Typhimurium_genomics/tree/
main/code/pca_program). For the S. Typhimurium dataset, all
clustering analyses were done independently for each of the 20
random subsets.

BAPS-Based Analysis of Clonality
Core-genome alignments for each serovar and dataset were
generated within ProkEvo using Roary. BAPS was used to cluster
genotypes heuristically using fastbaps. In brief, fastbaps uses a
nested Bayesian clustering approach for population stratification
using core-genome sequences as an input. Our usage of fastbaps
comprised of using six levels (BAPS1-6) of resolution (i.e., layers
or strata) to examine the degree of clonality (i.e., genotypic
homogeneity) of a population. Specifically, the relative frequency
distribution of sub-groups or haplotypes present in each layer
or stratum was used in the final analysis. The R markdown for
the S. Infantis ecotype analysis is available here (https://github.
com/jcgneto/Frontiers_Micro_salmonella_Infantis_Newport_
Typhimurium_genomics/blob/main/code/figure_7/figure_7_
sal_paper_final.Rmd); for S. Typhimurium, the code used for
ST34 analysis is here (https://github.com/jcgneto/Frontiers_
Micro_salmonella_Infantis_Newport_Typhimurium_genomics/
tree/main/code/supplementary_figures/Typhimurium); and
lastly, the code for S. Newport ST45 analysis is available
here (https://github.com/jcgneto/Frontiers_Micro_salmonella_
Infantis_Newport_Typhimurium_genomics/tree/main/code/
supplementary_figures/Newport).

Haplotype Diversity Analysis
The Simpson’s D index of diversity (1- D) was used to calculate
the degree of homogeneity or clonality of a population for the
following genotypic schemes using their grouped frequencies
as data input: ST, cgMLST, and BAPS1-6. Specifically, we used
the diversity() function available in the vegan (version 2.5-6) R
library (Oksanen et al., 2019). The R markdown code for our
implementation of the program for each serovar is available
here (https://github.com/jcgneto/Frontiers_Micro_salmonella_
Infantis_Newport_Typhimurium_genomics/tree/main/code/
figure_2_and_3).

Pan-Genomic Logistic Regression
Modeling for Loci Identification
Agnostic PANGEA was achieved with a custom Python program
that uses logistic regression modeling, in addition to generating
accuracy-based metrics derived from a contingency table, to
ultimately identify unique loci differentiating two populations
or lineages. This program requires two input files: (1) .csv
file containing the SRA identifications for genomes and a
“phenotype” column with binary values (0 for absence and 1
for presence), with 1 being designated for the lineage of interest
in the phenotype column; (2) .Rtab file containing a binary
distribution of loci for that dataset (i.e., each column represents
a locus, and either the locus is present and is coded as 1, or
absent and is coded as 0). Essentially, each locus is used as a
main predictor to run a univariate logistic regression analysis
(i.e., no random effects were added to any model), in addition to
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generating contingency tables to calculate accuracy, sensitivity,
specificity, positive and negative predictive values, Chi-squared
based p-values, and the proportion for the loci present in either
the targeted or non-targeted lineages. Out of each logistic
regression model, the program outputs a p-value, the effect size
measured by the odds ratio (OR) with 95% confidence intervals,
Akaike information criterion (AIC), and model deviance. All
calculated p-values are reported as generated by the model, in
addition to applying the Bonferroni correction. We have also
added a column in the .csv output to facilitate decision making
that includes “yes” or “no”, by locus based on the p-value passing
the Bonferroni’s corrected threshold for significance (i.e., that
also applies for both the logistic regression model and Chi-
squared associated p-values). Randomization of both outcomes
and predictors were used to construct stochastic statistical
models and contingency tables, in order to assess whether each
locus (i.e., predictor) would be associated with the outcome of
interest by chance (i.e., false positives). The Python code for
our agnostic PANGEA program is available here (https://github.
com/jcgneto/Frontiers_Micro_salmonella_Infantis_Newport_
Typhimurium_genomics/tree/main/code/glm_program). Non-
supervised PANGEA results identifying unique loci present
in ST34 for S. Typhimurium, and ST45 for S. Newport are
available here (https://figshare.com/account/projects/100139/
articles/14199503?file=26778821) and here (https://figshare.
com/account/projects/100139/articles/14199410?file=26778575)
respectively. For this study, the following threshold criteria were
used to agnostically identify unique loci differentiating STs (i.e.,
annotated as “Hits”—see below) for both the S. Typhimurium
and S. Newport datasets:

Hits = ([′lower_ci_odds_ratio′] > 1)

&([′upper_ci_odds_ratio′] > 1)&([′pass_sign_binomial_model′]

==
′ yes′)&([′pass_sign_chi_sq_pvalue′] ==

′ yes′)

&([′accur′] > 0.90)&([′pos_pred_value′] > 0.90)

&([′neg_pred_value′] > 0.90)],

&= and
lower_ci_odds_ratio= lower bound of the 95%OR confidence

interval needs to be above 1 (focus on finding loci uniquely
present in lineage coded as 1 in the phenotype column)

upper_ci_odds_ratio = upper bound of the 95% OR
confidence interval needs to be above 1 (focus on finding loci
uniquely present in lineage coded as 1 in the phenotype column)

pass_sign_binomial_model = whether or not the locus passed
the Binomial model Bonferroni corrected p-value

pass_sign_chi_sq_pvalue=whether or not the locus passed the
Chi-squared Bonferroni corrected p-value

accur= accuracy
pos_pred_value= positive predicted value
neg_pred_value= negative predicted value
For the S. Typhimurium dataset, all non-supervised PANGEA

was run independently for each of the 20 subsets, and
subsequently all outputs were combined at the end of the analysis.
Also, only loci present in at least 50% (10 out of 20) datasets
were selected to be considered a moderate to strong “signal”

in the S. Typhimurium data. The 50% value was determined
empirically based on the data characteristics and intrinsic biases
(i.e., uneven sampling and spatial-temporal distribution across a
country or worldwide).

Loci and Plasmid Mapping Onto the
Hierarchical-Based Population Structure
Loci differentiating between ST lineages were identified using
our comprehensive PANGEA approach which combines mining
of database-derived AMR loci and plasmid mapping (i.e.,
supervised pan-genomic analysis), and an agnostic search
for lineage-differentiating loci using pan-genomic data (see
section above). Targeted AMR loci and plasmids preferentially
occurring in a serovar-specific ST lineage vs. others, were
identified through pattern searching combining the genotypic
information with both Resfinder and PlasmidFinder files,
respectively; all generated by ProkEvo. Programs used for
exploratory data analysis and visualization are described below
(see Data processing and visualizations). R markdown files for
S. Typhimurium ST34 analysis are available here (https://github.
com/jcgneto/Frontiers_Micro_salmonella_Infantis_Newport_
Typhimurium_genomics/tree/main/code/figure_5); whereas,
the files for S. Newport ST45 are available here (https://github.
com/jcgneto/Frontiers_Micro_salmonella_Infantis_Newport_
Typhimurium_genomics/tree/main/code/figure_6). For S.
Infantis, the R markdown for analysis comparing Ecotypes is
available here (https://github.com/jcgneto/Frontiers_Micro_
salmonella_Infantis_Newport_Typhimurium_genomics/tree/
main/code/supplementary_figures/Infantis). The same approach
was applied for both training and validation/testing datasets.
Ultimately, .csv files were generated combining the hierarchical-
based population structure information, in addition to loci and
plasmids, to be visualized onto the core-genome phylogenetic
tree. For S. Typhimurium, loci and plasmid mapping onto the
population structure was done independently for each of the 20
data subsets.

Whole-Genome Pairwise Distance
Calculations
For the S. Infantis data, pairwise SNP-based whole-genomic
distances were calculated using Mash (Ondov et al., 2016).
The reference genome sequence used for it is available here
(https://www.ncbi.nlm.nih.gov/nuccore/NZ_CP016408.1).
Our Mash script is available here (https://github.com/jcgneto/
Frontiers_Micro_salmonella_Infantis_Newport_Typhimurium_
genomics/blob/main/code/mash_program/mash.sh). Mash is
freely available program, and can be downloaded or installed
using this link (https://github.com/marbl/mash).

Metadata Information for S. Infantis
To extract S. Infantis freely available NCBI-linked metadata for
all isolates used herein, Entrez Direct (Kans, 2013) was used as a
command-line utility that provides access to the various NCBI
databases using different search terms. The SRA identifications
from the selected genomic sequences were used as search terms
to extract multiple metadata fields such as host disease, isolation
source, geographical location, collection date, collected by,
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among other attributes. Entrez Direct version 11.0 with utilities
such as “esearch,” “elink” and “efetch” were used to get the
needed metadata (https://github.com/jcgneto/Frontiers_Micro_
salmonella_Infantis_Newport_Typhimurium_genomics/tree/
main/code/Infantis_metadata). However, the metadata available
from NCBI for the selected genomes was incomplete, and while
these commands worked for a fraction of all genomes, for others
the metadata provided by NCBI needed to be manually curated.
After only extracting the collection date and isolation source,
the isolation source was further classified into five categories
(Environmental/Others, Swine, Bovine, Poultry, Human) using
custom Python scripts (https://github.com/jcgneto/Frontiers_
Micro_salmonella_Infantis_Newport_Typhimurium_genomics/
tree/main/code/Infantis_metadata). By using this approach, the
metadata for 2,870 S. Infantis genomes was able to be extracted.

Computational and Phenotypic
Validation/Testing Datasets
Given the phenotypic predictions made for either the S.
Typhimurium or S. Newport datasets, representative isolates
were collected for computational and laboratory validation. A
total of 18 S. Typhimurium clinical isolates were used for
mapping of the Salmonella-genomic islands 3 or 4 (SGI-3/4)
and zinc-resistance conferring loci. Among those, 12 human
clinical isolates of known genotypic information obtained from
University of Nebraska Medical Center (UNMC) were selected
to include: 5 isolates of ST34, 1 isolate of ST2379, 5 isolates of
ST19, and 1 isolate of ST2072. Furthermore, 6 genotyped bovine
clinical isolates (5 isolates of ST19 and 1 isolate of ST2072)
were collected from the Veterinary Diagnostic Center located
at University of Nebraska-Lincoln (UNL). All STs belong to the
same eBURST Group (eBG), namely eBG1 (i.e., same clonal
complex—highly related), which means that they share at least
five of the seven MLST loci allelic sequences (Feil et al., 2003).
For S. Newport, a total of 13 genotyped human clinical isolates
(2 isolates of ST5, 5 isolates of ST118, 1 isolate of ST31, and 5
isolates of ST45) were obtained from UNMC. Only two isolates
of ST45 contained an extra copy of the sugE locus, namely
sugE-2. STs 5 and 118 belong to eBG2, ST31 belongs to eBG7,
and ST45 belongs to eBG3. For both S. Typhimurium and S.
Newport, isolates were selected based on the STs of interest,
while selecting distinct cgMLST variants, in attempt to avoid
the impact of high degree clonality (i.e., identical cgMLSTs)
of phenotyping.

Heavy Metal-Based Phenotypic Assays for
S. Typhimurium
Frozen stocks of all 18 S. Typhimurium clinical isolates were
prepared by aerobically growing each in tryptic soy broth (TSB;
Remel, Lenexa, KS) at 37◦C for 24 h, and subsequently adding
glycerol (IBI Scientific, Dubuque, IA) at 20%, and storing at
−80◦C. Prior to phenotyping, isolates were streaked ontoMueller
Hinton agar (BD Difco, Franklin Lanes, NJ), and incubated
for aerobic growth at 37◦C for 18–24 h. After incubation, one
colony was picked and inoculated intoMueller Hinton broth (BD

Difco, Franklin Lakes, NJ) and grown aerobically at 37◦C for 18–
24 h. The inoculum was adjusted to 105 colony-forming units
(CFU)/ml by ten-fold dilutions, and cell counts were verified
by plating onto Mueller Hinton agar. Zinc chloride (Sigma-
Aldrich, St. Louis, MO) and copper sulfate (Acros Organics,
Geel, Belgium) were dissolved in autoclaved de-ionized water
to prepare stock solutions. The stock solutions were filter-
sterilized using a 0.2µm pore size, 28mm sterile syringe filter
(Corning, Corning, NY) and diluted with Mueller Hinton
Broth (MHB). Then, two-fold serial dilutions of each metal
were prepared in MHB in 50ml centrifuge tubes, ranging
from 1 to 640mM for each metal. Dilutions were prepared
at twice the required final concentration and 100 µL were
dispensed into sterile 96 well plates (Thermo Fisher Scientific,
Waltham, MA). Plates were inoculated with 100 µL of 105

CFU/ml of each bacterial isolate and then incubated at 37◦C.
Two sets of plates were prepared. One set was incubated
aerobically and the other was incubated anaerobically using
the Pack-Anaero system (Mitsubishi Gas Chemical America,
New York, NY). Aerobic plates were incubated for 24 h;
whereas, anaerobic plates were incubated for 48 h. At the end
of the incubation period, absorbance (OD—optical density)
at 600 nM was measured using a microplate reader (Biotek
model Synergy H1, Winooski, VT). Absorbance was also
measured at time 0 h to use as blank values and to account
for background noise generated by the heavy metal solutions.
Growth was defined as present if OD values were >0.20.
The minimum inhibitory concentration (MIC) was recorded as
the lowest concentration of heavy metal at which growth was
not observed (OD600 < 0.20). All assays were performed in
triplicate, and MIC values were calculated for each replicate.
The mode value across all triplicates was used to report the
final MIC value for that sample. Absorbance, or OD600, cut-
off points were used as previously described (Branchu et al.,
2019).

Cetylpyridinium Chloride Phenotypic
Testing for S. Newport
Frozen stocks of 12 out of the 13 S. Newport clinical isolates
were prepared by aerobically growing each strain individually
in tryptic soy broth (TSB; Remel, Lenexa, KS) at 37◦C for
24 h, adding glycerol (IBI Scientific, Dubuque, IA) at 20%, and
then storing at −80◦C. Although genome sequences for all 13
isolates from UNMC were available, an isolate for one of the
five ST118 isolates was not available. Prior to the assay, all
12 isolates were inoculated into Mueller Hinton broth (MHB)
(BD Difco, Franklin Lakes, NJ), and grown aerobically at 37◦C
for 18–24 h. The inoculum was adjusted to 105 CFU/ml by
ten-fold dilutions, and cell counts were verified by plating
onto Mueller Hinton agar (BD Difco, Franklin Lakes, NJ).
A cetylpyridinium chloride (CPC, Spectrum Chemical, New
Brunswick, NJ), a cationic quaternary ammonium compound,
stock solution (128 mg/ml) was prepared in distilled water
and sterilized using a 22µm syringe filter (Corning, Corning,
NY). Equal volumes (25ml) of CPC stock solution and 2X
MHB were mixed to obtain a solution with 640 ug/ml final
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concentration. Further two-fold dilutions were prepared using
single strength MHB (Humayoun et al., 2018). The solutions
were dispensed into sterile 96 well plates (Thermo Fisher
Scientific, Waltham, MA), using a final volume of 100 µl per
well. Plates were inoculated with 100 µl of 105 CFU/ml of
each bacterial isolate and then incubated for aerobic growth
at 37◦C for 24 h. Two sets of plates were prepared. One
set was incubated aerobically and the second was incubated
anaerobically using the Pack-Anaero system (Mitsubishi Gas
Chemical America, New York, NY). OD values were measured at
600 nm every 2 h during the incubation period using amicroplate
reader (Synergy H1, Biotek, Winooski, VT). An OD600 value
>0.20 was considered as growth. The assays were performed
in triplicate.

Data Processing and Visualizations
Datasets were processed for quality control all the way
to tabular formatting and filtering using base R (version
4.0.3) and tidyverse (version 1.3.0). Quality control of the
data was also achieved by using the following R libraries:
forcats (version 0.5.0) and naniar (version 0.5.2). All missing
values were filtered out from datasets across all serovars,
and all R markdowns explicitly show that approach in the
code. For phylogenies, misclassified serovars (i.e., serovar
predicted by SISTR that did not match the classification
based on the downloaded data using that serovar as “key-
word”) or missing values/information were coded as “Other
serovars,” since ggtree (version 2.2.4) does not accept missing
data for phylogenetic plotting. Graphical visualization of
quantitative data in tabular formats was achieved using
ggplot2 (version 3.3.2), including all analysis done for S.
Infantis metadata (source and temporal information—https://
github.com/jcgneto/Frontiers_Micro_salmonella_Infantis_
Newport_Typhimurium_genomics/tree/main/code/figure_
7; https://github.com/jcgneto/Frontiers_Micro_salmonella_
Infantis_Newport_Typhimurium_genomics/blob/main/code/
supplementary_figures/Infantis/cgmlst_Infantis_temporal.
Rmd). Phylogeny-based visualizations were generated by
combining trees with genotypic and metadata information,
while using both ggtree (version 2.2.4) and phandango version
1.3.0 (https://jameshadfield.github.io/phandango/#/). All R
based analysis were done using version 4.0.3, and the necessary
R markdown files to generate both main and supplementary
figures are available here (https://github.com/jcgneto/Frontiers_
Micro_salmonella_Infantis_Newport_Typhimurium_genomics/
tree/main/code).

Statistical Analysis
An analysis of variance (ANOVA) was applied to determine
the significance of main and interactive effects across
factors used in the experimental designed to test for
growth of both S. Typhimurium or S. Newport isolates.
In the case of the S. Typhimurium dataset, the effect
of individual treatments (population size at time 0,
oxygen status, and the presence or not of the SGI-
3/4 Integrative and Conjugative Element—ICE) and

their interactions, for both the zinc and copper data,
were accounted for in the model. The ANOVA model
was stated as follows for both the zinc and copper
S. Typhimurium datasets:

od_values∼ pop_size ∗ oxygen ∗ ice ∗ concentration ∗ st,

od_values = OD600 (optical density) or absorbance
measured at 600 nM as an indicator for
population growth

pop_size= inoculum or population size at time zero expressed
as CFU/ml

oxygen= growth under aerobic or anaerobic condition
ice= the presence (1) or not (0) of the ICE or SGI-3/4 element

in each isolate
concentration= zinc or copper concentration (mM)
st = representative STs used in the experiment
The ANOVA model used for the CPC S. Newport dataset was

stated as follows:

absorbance∼ ST ∗ Treatments ∗ time,

absorbance = OD600 (optical density) or absorbance measured
at 600 nM as an indicator for population growth

ST = representative STs used in the experiment
Treatments= growth under 0 or 25µg/ml of CPC
time= hours of growth or incubation
For all ANOVA models, the aov() function of the R stats

library (version 4.0.3) was used. ST-based frequency distribution
analysis comparing S. Typhimurium Biphasic vs. Monophasic
was done using a Chi-squared test (chisq.test function using the
R stats library version 4.0.3). Differences between Biphasic vs.
Monophasic for their degree of clonality, using the Simpson’s
D index of diversity, within the S. Typhimurium population
was done using a two-sided t-test(y ∼ x, where y is a numeric
outcome, and x is a categorical predictor) function using the
R stats library (version 4.0.3). Differences in growth between
STs for the S. Typhimurium dataset, across population sizes
vs. oxygen status vs. metal concentration for each timepoint,
were calculated using a pairwise t-test using Bonferroni p-
value adjustment. In particular, all pairwise t-tests done for
the S. Typhimurium datasets were done using a Bonferroni
correction. Also, for the S. Typhimurium phenotypic analysis,
differences between ST groups were depicted using differing
letters for each group (i.e., same letter indicates the absence
of significant difference between two ST groups). Growth
differences between ST groups for the S. Newport dataset
using the treated group (25µg/ml of CPC) were also examined
using a pairwise t-test without p-value adjustment. For the
pairwise t-test analysis, a two-sided pairwise.t.test() function
of the stats package (version 4.0.3) in R was used. In
the case of S. Newport in vitro data, all ST groups were
compared to the reference ST45 sugE-2 positive group. Across
all analyses, unless a family-wise p-value adjustment was
used, a significant effect was determined using a threshold
of p < 0.05.
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RESULTS

Overview of Hierarchical-Based Population
Structure Analyses to Facilitate Mapping
and Tracing of Genotypes at Scale
To illustrate the utility of hierarchical-based population genomics
approaches that combine mining of core- and accessory
genomic contents, populations of S. enterica lineage I (i.e., S.
Typhimurium, S. Newport, and S. Infantis) were used to achieve
two main goals (Figure 1): (1) demonstrate how hierarchical
population inquiry at different scales of resolution can enhance
epidemiological surveillance and ecological inquiries by
identifying canonical (i.e., MLST-derived genotypes), and cryptic
variants (i.e., hidden genotypic units or clusters); and (2) identify
population-specific inferable traits that could provide selective
advantages in food production environments, and drive the
spread of niche-adapted genotypes. For our analyses, ProkEvo,
a freely-available, automated, and scalable population genomics
platform that generates hierarchical genotypic classifications
and pan-genomic data including database-driven annotations of
AMR loci and plasmids was used (Pavlovikj et al., 2021).

An overview of the ProkEvo computational platform is
depicted in Supplementary Figure 1. In brief, combinations
of core-genomic information and all pan-genomic data were
processed and analyzed, in order to generate both a phylogeny-
dependent and -independent population structure analysis.
Canonical lineages and variants were identified within each
serovar, resulting in ST, BAPS1, and cgMLST genotypes being
mapped onto phylogenetic trees, followed by a detailed analysis
of their distributions, genetic relationships, and degree of
clonality. Cryptic clusters were identified with a scalable
computational approach by defining population structure using
k-mer or SNP-based pairwise distance approaches (i.e., “Kmer-
cluster” or “SNP-cluster”). The accessory genomic information
was also mined to i) search for co-varying patterns of core-
genomic variation and “shell-loci” distribution (genes present
in ≥15% and <95% of all genomes); and ii) identify cryptic
population structure that was driven by co-inheritance of
common sets of accessory genes among distantly-related core-
genomic variants.

Of note, the use of publicly-available databases for WGS
data from isolates can be inherently biased, as it can occur
by an overrepresentation of clinical vs. environmental isolates.
While recognizing this limitation, the present work focused on
(i) demonstrating how scalable hierarchical-based population
structures can potentially inform epidemiological and ecological
inquiries; and (ii) illustrating how inferential computational
genomics can be used to predict traits associated with specific
populations that could influence ecological fitness. Consequently,
in the context of biased datasets, these case studies were designed
to illustrate the potential value of our unique approaches for
informing specific activities of public health and regulatory
agencies, where regulatory or surveillance sampling activities
are less subject to bias. Indeed, in certain regulatory and
surveillance sampling strategies, the frequency of genotypes may
directly relate to ecological fitness in production environments or
zoonotic potential, which in turn can facilitate the identification

of genetic determinants associated with the emergence and
spread of such lineages or variants.

Phylogeny-Dependent Mapping of
Hierarchical Population Structure Reveals
Unique Genetic Relationships Across
Serovars
Through our population-based analysis of three distinct zoonotic
serovars of S. enterica lineage I (i.e., S. Typhimurium, S. Newport,
and S. Infantis), with distinct sample sizes (∼2,000–20,000
isolates), our heuristic and agnostic hierarchical-based genotypic
mapping illustrated relevant epidemiological applications for
each serovar. These serovars were specifically chosen based
on the following set of criteria: (1) they were among the
serovars recently (last 5 years) associated with well-documented
human outbreaks (CDC, 2021c); (2) these serovars have distinct
population structures with different degrees of clonality (Alikhan
et al., 2018)—factors that can directly confound a hierarchical-
based pan-genomic analysis for both genotype and trait-based
discoveries (Earle et al., 2016; Power et al., 2017); and (3)
these serovars have >10-fold variation (S. Typhimurium being
the largest due to genomic sequence availability) in WGS
available in the public databases, enabling us to assess the
scalability of the ProkEvo platform (Pavlovikj et al., 2021).
Serovar-specific core-genomic based phylogenetic mapping of
the hierarchical population structures (Serovar -> BAPS1 -
> ST -> cgMLST) is presented in Figures 2A–C. Phylogeny-
guided population structure visualizations were oriented from
less clonal populations of S. Typhimurium and S. Newport,
to the highly clonal S. Infantis serovar. Specifically for
S. Typhimurium, data generated for subset 1 out of 20
randomly created groups, is presented in Figure 2A; while the
remaining phylogeny-guided genotypic mappings are available
here (Supplementary Figures 2A–S).

Salmonella Typhimurium was comprised of two divergent
lineages (Figure 2A): Biphasic (major STs include ST19, ST36,
and ST313) and Monophasic (mostly ST34). The Monophasic
lineage, which is a zoonotic pathovar typically found in livestock
animals (Sun et al., 2020), was recently shown to harbor a unique
integrative and conjugative element (ICE) called Salmonella
genomic island (SGI)-3/4 containing loci capable of conferring
resistance to heavy-metals such as copper, arsenate, and silver
(Arai et al., 2019; Branchu et al., 2019). Below the ST-level, ST34-
Monophasic was comprised of two major cgMLST variants (i.e.,
cgMLST 1652656062 and cgMLST 860079270). By examining
the relationships of STs and cgMLST variants above the ST-
level, our BAPS1-based haplotype analysis showed that, with the
exception of the distinct phylogroup ST36 (BAPS1 sub-group
4), all major STs (ST19, ST34, and ST313) of S. Typhimurium
belonged to BAPS1 sub-group 5. Comparably, an eBG-based
analysis corroborates our BAPS1 findings, with ST36 belonging
to eBG138, while all the other three major STs represent a single
clonal complex eBG1 (Zhou et al., 2020). In short, both BAPS
level 1 and eBG mapping imply that ST19, ST313, and the
Monophasic ST34 have recently shared a common ancestor, most
likely derived from an immediate ancestor of ST19.
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FIGURE 1 | Systems-deployable heuristic and hierarchical-based population genomics analysis of Salmonella whole-genome sequences for discovery of novel

actionable food-safety related information. Illumina raw paired-end genomic sequences were processed through the computational pipeline ProkEvo in order to

generate two main outcomes: (1) A hierarchical-based population analysis of genotypes, at different levels of resolution, used to reveal unique lineages/variants and

their genetic structure and relationships; and (2) Loci and plasmid mapping using pan-genomic information to predict traits of interest. For S. enterica lineage I, we

used a top-down hierarchical-based system of classification comprised of serovars at the lowest level, followed by BAPS1 sub-groups or haplotypes, ST, and

cgMLST at the highest level of resolution. Unique loci differentiating between lineages were found using our PANGEA approach, and by agnostic and

statistically-based pattern searching across pan-genomic data, in addition to outputs from databases such as Resfinder. Lineage-associated plasmids were found by

data mining results from genomic mapping using plasmid-related database. Ultimately, genotypic classifications and predicted traits were combined to obtain two

levels of potentially actionable information, including (i) surveillance cues for mapping and tracking canonical and cryptic populations; and (ii) phenotypic inference of

traits related to food safety that may in turn result in practical applications across the food chain.

Although S. Newport population structure was more diverse
than S. Typhimurium at the BAPS level 1 (Figure 2B), most of its
population was formed by ST5, ST45, and ST118. The ST5 and
ST118 populations both belonged to BAPS1 sub-group 8 (eBG2);
whereas, ST45 formed a discrete phylogroup that belongs
to clonal complex eBG3, represented by BAPS1 sub-group 1
(Figure 2B). Thus, ST5 and ST118 appeared to share a more
recent common ancestry, while ST45 likely diverged in a more
distant past. Each of the dominant S. Newport STs (ST5, ST45,
and ST118) contained a single cgMLST (Figure 2B) that makes
up a substantial proportion of all cgMLST variants. In contrast
to S. Typhimurium and S. Newport, the S. Infantis population
had a higher degree of genotypic homogeneity at all levels, being
predominantly represented by: BAPS1 sub-group 3 (eBG31),
ST32, and cgMLST 22424223463 (Figure 2C). Examination
of the distribution of pairwise SNPs within each serovar also
showed an increased degree of clonality of S. Infantis compared
to the other serovars (Supplementary Figure 3). Independently,
a scalable cluster-based phylogeny-independent approach using
either K-mer or SNP pairwise-based distances, combined with
a multi-dimensionality reduction analysis (tSNE), revealed

topological clustering that largely recapitulated the serovar-
specific genetic relationships at all levels of genetic resolution
(BAPS1, ST, and cgMLST) (Supplementary Figures 4A–Z,
5:23A–H).

To test for cryptic population structures, a combination
of Kmer-clustering and SNP-based clustering with the
core-genomic information as input data was used. For S.
Typhimurium (Supplementary Figures 4T,Z, 5:23D,H) and
S. Newport (Supplementary Figures 4L,P), the Kmer- and
SNP-clusters largely overlapped with their respective ST-level
distributions (Supplementary Figures 4A–Z, 5:23A–H). In
contrast, analysis of the S. Infantis data revealed two (Kmer-
clusters) or three (SNP-clusters) distinct sub-populations
that were not resolved by BAPS1 or MLST-based genotyping
(Supplementary Figures 4D,H). These apparently cryptic
clusters of S. Infantis were detectable by k-means analysis, with
the optimal number of clusters being defined from the within
cluster sum of squares and Silhouette analytical computations
(Supplementary Figures 24:26A–D). Importantly, the use of
a phylogeny-independent approach becomes advantageous
when phylogenies cannot be estimated accurately, or when
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FIGURE 2 | Phylogeny-dependent hierarchical-based population structure analysis of three distinct serovars of S. enterica lineage I showed unique genomic diversity

and topology. Three zoonotic serovars of S. enterica lineage I, with varying degree of clonality and population structure, were selected for a heuristic phylogeny-guided

population-based genomics analysis, and included: (A) S. Typhimurium (n = 1,076 genomes—group 1 of 20 data subsets) and (B) S. Newport (n = 2,365 genomes)

which are less clonal (i.e., higher degree of genotypic heterogeneity); and the highly clonal population of (C) S. Infantis (n = 2,851 genomes). Of note, for S.

Typhimurium (A), subset/group 1 out of the 20 randomly generated subsets is shown in the Figure. These serovars belong to a list of the top 32 most investigated

populations related to recent human outbreaks, as reported by the CDC. A core-genome phylogeny (black ring) was used as a genomic anchor to position each

genome, and show their genetic relationships. Phenotypes and genotypes, comprising a hierarchical-based classification system were mapped onto the phylogenetic

tree, including: serovars (1st colored ring) at the lowest level (can be generated phenotypically or predicted genotypically by SISTR), BAPS1 (2nd colored ring), ST (3rd

colored ring), and cgMLST (4th colored ring) at the highest level of genotypic resolution. This hierarchical-system used a top-down approach that facilitates

visualization of the familial genetic relationships across populations, as well as the degree of clonality based on the distribution of BAPS1, ST, and cgMLST genotypes.

A more clonal population depicts lower BAPS1, ST, and cgMLST genetic diversity. As the classification systems moves outward across the tree from serovars to

cgMLST, the degree of genotypic resolution increases. The initial NCBI-SRA downloaded genomic sequence sample size (i.e., accession list of SRA identifications

selected for analysis) for each serovar was: S. Typhimurium (n = 23,045—“Worldwide”), S. Newport (n = 2,392—“USA only”), and S. Infantis (n = 2,870—“USA

only”). The S. Typhimurium dataset was randomly split into 20 subsets containing from 1,076 to 1,077 genomes each. While processing through ProkEvo, low quality

assemblies are filtered out, thereby explaining the difference in counts for each serovar from downloaded to ultimately analyzed genomes used for ecological and

epidemiological inferences. Of note, “Other serovars” represents serovars that were either not classified as any of the three ones used in this paper, or were

misclassified by SISTR within ProkEvo. The groups called “Other STs” or “Other cgMLSTs” corresponded to minor variants present in each respective population.

Core-genome phylogenies was visualized using ggtree.

topological or branching-pattern visualization is difficult due
to large sizes of datasets (Abudahab et al., 2019). Altogether,
the use of a hierarchical-based population structure analysis
revealed serovar-specific genetic relationships, while allowing
for mapping and tracing of unique genotypes (i.e., canonical
or cryptic), that can ultimately facilitate epidemiological
surveillance at different levels of genotypic resolution.

Frequency Distribution of Genotypes at
Different Levels of Resolution May Be
Used as a Proxy for Ecological Fitness
The use of a hierarchical-based population structure analysis
provided a direct basis for quantification and analysis of
genotypes at different levels of resolution (Figures 2A–C).

Our hierarchical-based approach revealed unique predominant
lineages or variants while contextualizing their familial or kinship
relationships, for which, frequency distribution becomes a proxy
that can relate to ecological characteristics such as founder
effects, fitness, and even ecological succession. Of note, previous
analyses of the population structure of these three serovars
has provided detailed account for genotypic frequencies at
different levels of resolution (Pavlovikj et al., 2021). Analysis of
the S. Typhimurium population, based on relative frequencies,
demonstrated that the Biphasic lineage was predominant when
compared with Monophasic (Figure 3A). Below the serotypic-
level, BAPS1 proportion-based analysis revealed that BAPS1
sub-groups 4 and 5 are the most dominant ones (Figure 3B).
However, BAPS1 sub-groups 4 and 5 (the two most dominant
ones) were most often the same haplotype, that simply varied
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FIGURE 3 | Scalable core-genomic analysis of three zoonotic serovars of S. enterica lineage I linked population structure and genetic diversity with degree of clonality.

Core-genomes (i.e., share-genomic content) alignments, generated independently for S. Typhimurium, S. Newport, or S. Infantis dataset, were hierarchically classified

into serovar, BAPS1, ST, and cgMLST. Serovar was predicted using the cgMLST-based genotyping done by SISTR within ProkEvo. Frequency distributions were

initially produced at each level of classification, and thereafter converted into proportions for population structure analysis; or used as input data (i.e., frequencies) for

estimating the degree of clonality using the Simpson’s D index of diversity (1—D). (A–D) Proportion of serovar (n = 21,524 genomes), BAPS1 (n = 21,524 genomes),

ST (n = 21,309 genomes), and cgMLST (n = 19,226) classifications for S. Typhimurium (initial input of n = 21,534 genomes—“Worldwide”). (E) S. Typhimurium

degree of clonality stratified by serotypic classification into: Biphasic vs. Monophasic; across ST (n = 21,309 genomes), cgMLST (n = 19,226 genomes), and

BAPS1-6 levels (n = 21,524 genomes for each BAPS layer from 1 to 6). A two-sided t-test was used to determine whether the two serovars significantly differed (p <

0.05) from one another in their degree of clonality across genotypic levels. (F–I) Proportion of serovar (n = 2,365 genomes), BAPS1 (n = 2,365 genomes), ST (n =

2,361 genomes), and cgMLST (n = 2,289 genomes) classifications for S. Newport (initial input of n = 2,365 genomes—“USA only”). (J) Degree of clonality across the

S. Newport population across ST (n = 2,361 genomes), cgMLST (n = 2,289 genomes), and BAPS1-6 levels of genotypic resolution (n = 2,365 genomes for each

BAPS layer from 1 to 6). (K–N) Proportion of serovar (n = 1,686 genomes), BAPS1 (n = 1,685 genomes), ST (n = 1,683 genomes), and cgMLST (n = 1,659

genomes) classifications for S. Infantis (initial input of n = 1,686 genomes—“USA only”). (O) Degree of clonality across the S. Infantis population using ST (n = 1,683

genomes), cgMLST (n = 1,659 genomes), and BAPS1-6 levels of genotypic resolution (n = 1,685 genomes for each BAPS layer from 1 to 6). For the degree of

clonality, the higher the value for the Simpson’s D index of diversity (index value), the less clonal or the more diverse the population is, at that specific level of genotypic

resolution. Numbers (n) located inside and outside of each plot refers to the total number of sub-groups/haplotypes (BAPS1), ST lineages, and cgMLST variants found

within the population, or sub-population (i.e., Biphasic vs. Monophasic), of each serovar. Missing values were dropped for all analyses to keep only genomes correctly

classified by SISTR to that specific serovar. Of note, “Other serovars” represents serovars that were either not classified as any of the three ones used in this work, or

were misclassified by SISTR within ProkEvo. The groups labeled as “Other STs” corresponded to low-frequency lineages present in each respective population.

Across all serovars, only serovar-specific (predicted by SISTR) cgMLSTs for which the proportion was above 2%, were ultimately shown in the graph for aesthetic

purposes. For S. Typhimurium plots (C) and (E), asterisks refer to the degree of significance for differences calculated using a Chi-squared test and t-test, respectively

(*p < 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001, and NS = not significant at p ≥ 0.05).

in number across most of the 20 subsets of S. Typhimurium
datasets. This stochastic haplotype shifting between BAPS1 sub-
groups 4 and 5 was expected due to the intrinsic fastbaps
algorithmic randomness derived from using a Bayesian clustering
classifier. More specifically, for S. Typhimurium, BAPS1 sub-
groups 4 and 5 most often mirrored the ST distribution for eBG1
(Alikhan et al., 2018; Zhou et al., 2020), and were comprised
of the most dominant STs including: ST19, ST34, and ST313
(Figure 2A; Supplementary Figures 2A–T). When examining
the ST-based distribution, a significant shift (p < 0.05) clearly
differentiating between Biphasic (mostly ST19) and Monophasic
(mostly ST34) lineages frequencies (Figure 3C) was noted. At

the ST-level, Biphasic was more diverse than Monophasic, since
the Monophasic contained two other co-dominant STs (ST36
and ST313) along with ST19. Lastly, at the cgMSLT level, the
Biphasic lineage distribution was sparse (Figure 3D); whereas,
for Monophasic, there were two co-dominant variants, with
the following relative frequencies across all cgMLSTs (entire S.
Typhimurium population): cgMLST 1652656062 representing
an average of 32% of isolates among all cgMLST genotypes,
while cgMLST 860079270 averaged 20% of isolates (Figure 3D).
Collectively, all Monophasic genotypes formed a distinct lineage
that had a significantly higher degree of clonality (p < 0.05),
when compared with the Biphasic lineage, at all levels of
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FIGURE 4 | Accessory genome-based clustering revealed a co-inherited pattern with genomic backbone, and unique cryptic clusters across serovars. A logistic PCA

was used to ordinate genomes in two dimensions (PC1 and PC2) by only using “shell-genes or shell-loci” (i.e., genes that are present in ≥ 15% and < 95% of

genomes in the data) as input. The “shell-loci” data are comprised of binary information containing 1 for presence and 0 for absence of each locus. For S.

Typhimurium, only data generated for subset 1 (n = 1,076 genomes) out of the 20 random subsets is presented here. (A) ST-based labeling of the PCA ordination

showing all four major STs, including ST34 (Monophasic) as a discrete cluster (green color). (B) Agnostic k-means clustering using the two PCs as input, generated

three clusters for the S. Typhimurium data, of which cluster 2 overlapped with the ST34-Monophasic sub-population. For S. Newport (n = 2,365 genomes), (C)

ST-based labeling showed ST5 and ST118 as neighboring clusters, and a separation of the ST45 lineage with two cryptic sub-clusters within it. (D) Similar to S.

Typhimurium, the S. Newport data were clustered into three clusters based on an agnostic analysis, for which cluster 1 overlaps with the topological distribution of

ST5 and ST118, reinforcing their high degree of genetic relatedness (i.e., recently shared a common ancestor). As for S. Infantis (n = 2,851 genomes), (E) ST32 is

spread across the two cryptic clusters present in this population; whereas, non-supervised clustering of the S. Infantis data revealed two cryptic clusters within it (F).

Across all serovars, the optimal number of k-means clusters was determined by examining the within cluster sum of squares across the number of clusters tested by

the algorithm. All model deviances were calculated using only the first two PCs.

genotypic resolution (ST, cgMLST, and BAPS1-6) (Figure 3E). It
is important to note that sampling bias cannot be excluded as
a main confounding factor for population structure and degree
of clonality in these studies. However, the ability to detect vastly
different degrees of clonality among Monophasic and Biphasic
populations does provide an important basis for systematic
evolutionary and ecological analyses using unbiased datasets.
Indeed, a nested BAPS1-6 analysis of core-genomic composition
showed variation in haplotype diversity between Monophasic
vs. Biphasic populations (Supplementary Figure 27), which
suggests the presence of deeper cryptic variants in the population
that can reflect either population drift or ongoing frequency-
dependent selection (Fraser et al., 2005; Harrow et al., 2021).

Although there were nearly 10-fold fewer genomes, genetic
diversity and population structure of S. Newport (Figure 3F)
was quite different from S. Typhimurium. At the BAPS1-level,
S. Newport sub-groups or haplotypes 8 (60.1%), 1 (28%), and 4
(10.1%) were the most dominant ones (Figure 3G). BAPS1 sub-
group 8 was mostly comprised of ST5 and ST118 (Figure 2B),

which represented 22.9% and 34.6% of all genomes across the
entire S. Newport population, respectively (Figure 3H). ST45
phylogroup represented 27.8% of all STs (Figure 3H), and
belonged to BAPS1 sub-group 1 (Figure 2B). At the highest
level of resolution, there were three dominant cgMLST variants
across the entire S. Newport population: cgMLST 1468400426
representing 14.3%, cgMLST 1271156802 representing 4.32%,
and cgMLST 88443731 representing 3.78% (Figure 3I). Each
of the dominant cgMLST variants belonged to a different
ST lineage, with cgMLST 88443731 being a dominant variant
of ST5 (16.1%), cgMLST 1468400426 being a dominant
variant of ST45 (51.2%), and cgMLST 1271156802 dominating
the ST118 lineage (12.3%). As expected, S. Newport had a
higher degree of clonality at the ST level when compared
to cgMLST (Figure 3J). Within major STs, ST45 was the
most clonal lineage (Supplementary Figures 28:29). Combined,
the S. Newport population structure analysis suggested that
most of the population-based core-genomic variation was
a direct consequence of the ST-based diversification, with
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FIGURE 5 | Functional genomics discovery platform combining population genomics and phenotypic validation showed a preferential occurrence of SGI-3/4 in the S.

Typhimurium ST34-Monophasic lineage. (A) Core-genome phylogeny-based analysis combining the S. Typhimurium hierarchical population structure, along with loci

(e.g., AMR genes) and plasmids, differentiating ST34 from other STs. A training dataset containing 1,076 genomes, representing group 1 of the 20 independent

training datasets, was used for discovery of genomic attributes preferentially inherited by ST34. (B) A testing dataset containing representative STs (Biphasic vs.

Monophasic) and distinct cgMLSTs, comprised of human (n = 12) and bovine (n = 6) clinical isolates was used for validation of predicted phenotypes. Specifically,

ST34 (n = 5) and ST2379 (n = 1) were predicted to be more resistant to heavy metals such as copper than ST19 (n = 10) and ST2072 (n = 2); whereas, all isolates

were expected to be comparably susceptible to high doses of zinc. Phenotypic testing for either zinc (C) or copper (D) resistance, using a biological gradient

approach, was carried out under aerobic and anaerobic conditions, while considering two different initial population sizes (i.e., 105 or 107 CFU/ml). (C) The pattern of

zinc susceptibility was comparable across all isolates, with a significant impact of the oxygen status; for which maximum growth, regardless of the ST-background,

was only achieved under aerobic condition, but was negatively impacted by the increasing zinc concentration. (D) On average, STs containing the SGI-3/4 genetic

element (ST34 and ST2379) resisted higher concentrations of copper (∼ up to 2-8mM), regardless of the population size and oxygen status. For plots (A) and (B),

each column represents a single genome, and each row represents either a locus or plasmid. For either loci or plasmids, presence is depicted by the color gold, and

absence by purple. For plots (C) and (D), p-values for each main effect were generated using multivariate ANOVA models. OD values were measured at 600 nM.

Core-genome phylogeny guided mapping of population structure and genetic elements were visualized with phandango (A,B).

lineage segregation being mostly driven by ST45 discrete
phylo-grouping. Hence, the importance of continual ST-based
surveillance across the food chain.

For S. Infantis (Figure 3K), BAPS1 sub-group 3 and
ST32 represented 99.9% and 99.8% of the entire population,
respectively (Figures 3L,M), implying a very high degree
of clonality. At the cgMLST-level of resolution, cgMLST
2242423463 comprised 26.3% of the entire S. Infantis population
(Figure 3N), and represented 26.4% of the ST32 lineage
alone. The high S. Infantis-associated degree of clonality was
confirmed in Figure 3O, with almost no diversity detected at
the ST and BAPS1 levels, with higher Simpson’s D index for
cgMLST, followed by a rapid index plateau across BAPS1-
6. Although the S. Newport and S. Infantis populations
analyzed in this data set were limited to the USA compared
to the global population of S. Typhimurium, the population

structures of all three serovars appear to be conserved
among subsets of the data from their respective levels
(national and global) (Alikhan et al., 2018). Thus, despite
the geographical bias, the kinship structures revealed by
our hierarchical-based approach and the distinct distributions
of hierarchical genotypes (e.g., specific STs or cgMLSTs)
may still reflect meaningful epidemiological and ecological
characteristics of these populations. ST-based surveillance using
frequency distributions has been shown to be an effective
proxy to understand the ecological fitness of pathogens such
as Streptococcus pneumoniae (Azarian et al., 2018). Given the
observed variation present in the ST lineages or cgMLST
variants across these three S. enterica lineage I serovars,
frequency distributions may be used as a proxy for ecological
fitness when systematically doing regular sampling across the
food chain.
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FIGURE 6 | Functional genomics discovery-based platform revealed a quantitative trait preferentially associated in the S. Newport ST45 lineage. (A) Core-genome

phylogeny-based analysis combining the S. Newport hierarchical population structure, along with loci (e.g., AMR and metabolic genes) and plasmids, differentiated

ST45 from other STs. A training dataset containing 2,365 genomes was used for discovery of genomic attributes preferentially inherited by ST45. (B) A testing dataset

containing representative STs and distinct cgMLSTs, selected from human clinical isolates (n = 13) was used for in silico and in vitro validation of predicted

phenotypes. Specifically, sugE-2 negative ST5 (n = 2), ST118 (n = 5), ST31 (n = 1), and ST45 (n = 3) were predicted to be more susceptible to cetylpyridinium

chloride-CPC (i.e., cationic quaternary ammonium compound—quats) than ST45 sugE-2 positive (n = 2) isolates. All isolates contained sugE-1, named as sugE in

plot B. Phenotypic testing was done over time (for 24 h with growth measured every 2 h) under aerobic condition (i.e., quats exposure occurs in the environment),

while controlling for the initial population size (105 CFU/ml) across all STs. (C) CPC treatment of 25µg/ml was used to test for quats resistance. (C) On average both

ST45, containing or not the sugE-2 locus, demonstrated higher resistance for CPC over time. Of note, although we had genome sequences for all 13 isolates (B), we

lacked an isolate for one of the five ST118 isolates for phenotypic testing (n = 12 isolates). (D) Comparative analysis of growth ratio between OD600 values from 24h

to time 0 (OD600 24/OD600 0), under CPC treatment (25µg/ml), revealed no significant difference on the average growth between ST45 representatives, but ST45 was

more resistant than all other STs. Of note, ST45 sugE-2 positive has a bimodal, rather than trimodal (ST45 sugE-2 negative) distribution, that is right skewed,

suggesting an important shift in the resistance phenotype underlying this quantitative trait. For plots (A) and (B), each column represents a unique genome, and each

row represents either a locus or plasmid. For either loci or plasmids, presence is depicted by gold, and absence by purple. For plots (C) and (D), p-values were

calculated using a multivariate ANOVA model or pairwise t-test (i.e., comparing to the reference group ST45 sugE-2 positive), respectively. Core-genome phylogeny

guided mapping of population structure and genetic elements were visualized with phandango (A,B).

Accessory Genome Mining Can Be Used to
Identify Serovar-Specific Cryptic
Population Structure
The detailed hierarchical population genomics analyses
of S. Typhimurium, S. Newport, and S. Infantis based
on the core genomic-backbone (i.e., ST and cgMLST
variants) yielded new information regarding kinship of
populations (Figures 2A–C, Figures 3A–O) and high-
resolution discrimination of potential cryptic populations
(Supplementary Figures 4A–Z, 5:23A–H). This was followed
up with an integrated approach using different types of pan-
genomic analyses. Using agnostic pan-genomic analyses, formal
analysis of accessory genomic content demonstrated two
important patterns across populations. First, shell-loci that
co-varied with the hierarchical-based population structure

(BAPS1, ST, and cgMLST) were identified. Second, accessory
loci with distinct distributions among MLST or BAPS-based
genotypes were defined, showing unique population structures

that would not be detectable by MLST, cgMLST, or BAPS-based

genotyping alone.
Serovar-specific, accessory genomic content was first

ordinated by a two-dimensional logistic PCA, and the

distribution of groups were examined using agnostic k-
means clustering (Kmer-clusters), or in a supervised
manner using core-genomic genotypic labels (BAPS1, ST,
cgMLST, Kmer-cluster or SNP-cluster derived from tSNE
analysis) (Supplementary Figures 30A–R, 5:23I-N). For
S. Typhimurium, the Monophasic lineage (mostly formed
by ST34) formed a discrete cluster, reflecting a strong
co-inheritance (i.e., linkage disequilibrium) between the
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FIGURE 7 | Agnostic mining of S. Infantis pan-genomic data revealed a unique poultry-associated temporal dynamic of putative Ecotypes with potential zoonotic

implications. (A) Core-genome phylogeny-guided (black circle) mapping of hierarchical population structure and metadata for S. Infantis (n = 2,851 genomes).

Sequentially mapped onto the tree is the hierarchical-based genotypic classifications: BAPS1 (1st colored ring), ST (2nd colored ring), cgMLST (3rd colored ring), and

PCA-clusters (4th colored ring) based on the accessory genome (“shell-loci”) data only; in addition to the metadata comprised of: year of isolation (5th colored ring),

and potential source (6th colored ring) based on the NCBI freely available metadata. (B) Accessory genome (“shell-loci”) based clustering of S. Infantis data using a

logistic PCA analysis, coupled with a supervised labeling of data points based on source information (n = 2,851 genomes). (C) Proportion of PCA clusters (i.e.,

Ecotypes 1 and 2) across sample source which includes from the top-down (y-axis): environmental/others (n = 139 genomes), swine (n = 352 genomes), poultry (n =

1,842 genomes), humans (n = 433 genomes), and bovine (n = 85 genomes). (D) Proportion-based temporal dynamics of Ecotypes across sources over time.

Proportions were calculated by source per year. Years prior or equal to 2006 were aggregated due to small total number of genomes (n = 47 genomes). The

predicted phenotype, namely “Ecotype succession,” can be referred as a population-based phenotypic-switching that is primarily observed in poultry. (E) Pairwise

SNP-based core-genome distances between genomes calculated using snp-dists. Distances are plotted to examine the distribution of SNPs within and between

clusters (i.e., cluster 1 = Ecotype 1). Cryptic ecotype 1, which appears to be poultry-restricted, has a higher degree of clonality due to having a narrower distribution of

pairwise SNPs as compared to cluster 2 (e.g., smaller mean and standard deviation). (F) Simpson’s D index of diversity, calculated using cgMLST (n = 2,802

genomes) and BAPS2-6 (n = 2,851 genomes per BAPS level) haplotype data, also showed that Ecotype 1 has a higher degree of clonality than Ecotype 2 (i.e., the

higher the index value, the more genotypic diverse a population is). Within cluster (G) or across sources (H), pairwise whole-genome k-mer based distances

calculated using Mash (n = 2,851 genomes). (G) The number of genomes used per cluster was: cluster 1 (n = 1,699 genomes), and cluster 2 (n = 1,152 genomes).

For plot (H), icons represent the following sources for genomes (top-down across y-axis): environment/others (n = 139 genomes), swine (n = 352 genomes), poultry

(n = 1,842 genomes), humans (n = 433 genomes), and bovine (n = 85 genomes). For both plots (G) and (H), the dot and bar represent the median and range values,

respectively; and the smaller the range, the more clonal the cluster, or Ecotype, is at the whole-genome level. Core-genome phylogeny was visualized using tree.

core-genome backbone and “shell-loci” (Figures 4A,B;
Supplementary Figures 30N,P,R, 5:23J,N). Notably, ST34
appears to have two cryptic sub-clusters in its population
(Figures 4A,B). In the case of S. Newport, the ST5 and ST118
lineages shared overlapping accessory genomic composition,
predicted by their kinship as members of BAPS1 sub-group 8
and eBG2 (Figures 4C,D; Supplementary Figures 30G,H).
In general, both core- and shell-genomic loci of S.
Typhimurium and S. Newport shared similar patterns of
ST-linked co-inheritance.

In contrast to co-inheritance of core-genomic variation and
shell loci in S. Newport ST5 and ST118, the phylogenetically
distinct ST45 lineage (Figure 2B) contained unique informative

“shell-loci” that were not found in ST5 and ST118 (Figure 4C),
and distribution of these shell loci in ST45 appeared to define
two different cryptic populations within ST45 (Figure 4D).
These two ST45 cryptic clusters were both linked to highly-clonal
genomic-backbone (mostly cgMLST 1468400426, Kmer-cluster
1, or SNP-cluster 3) (Supplementary Figures 30I–K), which
may reflect recent gain or retention of fitness-conferring loci
(Cohan, 2019). These data suggested that the evolution of
ST45 was largely influenced by selection on the accessory
genome content, and posed the hypothesis for the existence
of two cryptic Ecotypes in its population (i.e., Ecotypes are a
set of strains with similar ecological traits such as metabolic
adaptations) (Cohan, 2006, 2019; Cohan and Koeppel, 2008).
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FIGURE 8 | Systems-based heuristic and hierarchical population structure mapping of pan-genomes can generate actionable information to improve food safety. (A)

Loci-enrichment analysis, followed by phenotypic testing, confirmed that the S. Typhimurium ST34 (Monophasic) lineage has acquired and maintained the capacity to

resist AMR such as heavy-metals (i.e., copper). This information ensues the need for a risk-assessment based analysis to understand the impact of environmental (e.g.,

water reservoirs) presence or dietary utilization of copper in livestock production systems, on the spread and persistence of ST34. (B) In the population of S. Newport,

ST45 appears to be more capable of withstanding population bottlenecks generated by quaternary ammonium compounds (quats). If generalizable, this information

suggests that ST-based surveillance of S. Newport would be an indicator for optimization of sanitation protocols in food facilities. In particular, disinfectants others than

quats would be more efficacious in decreasing ST45 contamination. (C) Agnostic mining of the accessory genome revealed two cryptic Ecotypes in the population of

S. Infantis. Specifically, Ecotype 1 appears to have emerged in poultry population, and yet retains the capacity to spill-over into humans. Importantly, these two cryptic

sub-populations would not have been discovered using the canonical MLST-based genotypic analysis. Hence, the combination of an agnostic and heuristic mining of

pan-genomic information has the potential to maximize epidemiological surveillance capabilities to pathogenic serovars that may pose a risk for Public Health.

The most remarkable levels of differentiation based on accessory
genomic loci were observed among S. Infantis. In this serovar,
the accessory genome clearly showed two distinct patterns of
distributions among populations defined by BAPS1, ST, or
cgMLST genotypes (Figures 4E,F). Similar to S. Newport ST45,
two distinct S. Infantis clusters based on accessory genomic
content (Figure 4F), were linked to a common genomic-
backbone (Supplementary Figures 30D,E), suggesting the
existence of two major Ecotypes in the population (Cohan, 2006;
Cohan and Koeppel, 2008). Of note, the results of the analytical
procedure used to determine the number of k-means clusters
(PCA-clusters shown in Figures 4B,D,F) for all analyses across all
serovars is shown here (Supplementary Figures 31–33, 5:23O).
In summary, accessory genome mining adds an extra layer
of resolution for further population sub-division, thereby
potentiating surveillance capabilities, while revealing cryptic
clusters, or putative Ecotypes that may reflect unique shifts
in ecological and/or epidemiological patterns. Additionally, it
appears that the more clonal a population is (i.e., high degree
of genotypic homogeneity in the core-genome), the more likely
the accessory genome is to be informative for meaningful

population structuring whereby hidden genotypic units
can be revealed.

Scalable ST-Based PANGEA Identifies
Unique AMR-Loci Distribution Across S.
Typhimurium and S. Newport Populations
Using the systems-based agnostic PANGEA to computationally
infer selectable traits among lineages of S. Typhimurium and
S. Newport populations, distinct distributions of ancestrally-
acquired or recently-derived AMR-loci, in both ST34 of S.
Typhimurium Monophasic and ST45 of S. Newport, were
identified. This approach used three consecutive steps that
included: (1) discovery of candidate loci based on agnostic
mapping to define genomic segments that discriminate different
STs among large-scale datasets; (2) a subsequent in silico
validation using population-structure guided analysis to define
subsets of isolates from each population for phenotypic testing;
and (3) in vitro phenotyping of computationally-predicted
traits among subsets of isolates from the relevant genotypic
lineages. Candidate ST-specific loci were initially identified
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using a non-supervised univariate logistic regression model
approach for filtering out statistically significant loci (see the
Pan-genomic logistic regression modeling for loci identification
section for our “hits set of criteria”); and ii) utilizing a supervised-
based assessment of the distribution of AMR-loci and plasmids
predicted within ProkEvo.

In the case of S. Typhimurium (Figure 5A; Supplementary

Figures 34:52, 53A), ST34 contained a unique combination of
AMR-loci orthologs known to confer resistance to a broad
range of antibiotic classes, including tetracyclines (tet genes),
sulfonamides (sul genes), aminoglycosides (aph genes), and
beta-lactamases (bla family of genes) (McArthur et al., 2013).
Additionally, ST34 preferentially contained loci involved in
heavy-metal resistance, such as copper/arsenate/silver (sil, pco,
cus, and ars genes present in the SGI-3/4), and mercury (mer
genes). Linked inheritance of chromosomal and mobile genetic
elements (AMR-loci, SGI-3/4, and IncQ1_1 plasmid), suggested
that these genetic elements were recently-acquired by ST34,
or lost over time by other STs within the S. Typhimurium
population (Cohan and Koeppel, 2008). In contrary, zinc-
conferring resistance loci (zit and znt genes) appear to
be widespread among multiple STs, suggesting an ancestral
acquisition by the S. Typhimurium population; a pattern that
can either reflect hitchhiking or ongoing adaptive selection
(Figure 5A; Supplementary Figure 34:52) (Cordero and Polz,
2014; Shapiro and Polz, 2014).

Based on the ST34-associated predictions, a set of S.
Typhimurium clinical isolates originating from either bovine
or humans were selected, and upon analysis were confirmed
to harbor SGI-3/4-associated and zinc-conferring resistance
loci (Figure 5B). Specifically, ST19 and ST2072 lacked the
SGI-3/4 element, while isolates from ST34 and ST2379 carried
the loci, and all STs lacked zitB, and all three znt genes.
Based on this computational validation dataset, isolates of
ST34 and ST2379 would be predicted to have higher levels
of resistance to copper than ST19 and ST2072, while, isolates
from all STs would be similarly susceptible to zinc exposure.
Of note, all four STs belonged to BAPS1 sub-group 4 or
5, and eBG1 (i.e., same clonal complex), were represented
by distinct cgMLST variants (Supplementary Table 1). To
confirm our hypotheses, the same set of validation isolates
were used to test for copper and zinc resistance using in
vitro growth experiments. As shown in Figure 5C, all STs
had similar degrees of susceptibility to zinc under both
aerobic and anaerobic conditions (Supplementary Table 2;

Supplementary Figures 54–57). However, as predicted, isolates
of ST34 and ST2379 were on average significantly (p < 0.05)
more resistant to copper and capable of growth at higher
copper concentrations (up to 2-8mM), regardless of the oxygen
status or population size (initial inoculum size) (Figure 5D and
Supplementary Figures 58–61; Supplementary Table 3).
Copper-resistance decreased at concentrations >8mM
(Figure 5D), and the susceptibility pattern was corroborated
by MIC results (Supplementary Table 4). Maximum copper
resistance in vitro was only achieved under aerobic condition
(Figures 5C,D). Differently than all other major STs of the
eBG1clonal complex, ST34 appeared to have acquired and

maintained a unique composition of quantitative traits such as
copper resistance, for which the variation, at least in part, was
explained by gene orthologs capable of conferring resistance to
an array of heavy-metals.

In the case of S. Newport (Figure 6A), candidate AMR-loci
were found uniquely in isolates of ST45 that are orthologous
to known resistance genes of multiple antibiotic classes,
including: tetracyclines (tet genes), sulfonamides (sul genes),
aminoglycosides (neo and aph genes), beta-lactamases (bla
family of genes), amphenicols (floR which confers florfenicol
resistance) (McArthur et al., 2013). In addition to specific AMR-
loci, isolates of ST45 were more likely to harbor plasmids of
the CoIRNAI_1 and IncA/C2_1 families (Figure 6A). Other
loci putatively involved in genome replication, recombination,
transcription/metabolism, intestinal epithelial (IEC) attachment,
and folate synthesis were also uniquely co-inherited with AMR
genes in ST45 (Figure 6A; Supplementary Figures 53B, 62). In
addition to the AMR genes and plasmids, a unique candidate
locus was also identified in the genomes of ST45 isolates, all of
which carried an additional copy of the gene sugE, referred to
as sugE-2. The sugE gene is a known part of a small multidrug
transporter family of proteins known to contribute to resistance
to quaternary ammonium compounds (i.e., quats or QACs)
(Chung and Saier, 2002; Bay et al., 2008). These antimicrobials
are typically used in the food industry (Wirtanen and Salo,
2003). Therefore, we focused our predictive computational and
phenotypic analysis on the effects of the additional sugE-2 gene in
the ST45 background. To account for the S. Newport population
structure, unique cgMLST variants (Supplementary Table 5)
among human clinical isolates belonging to ST5 and ST118
(BAPS1 sub-group 8 or eBG2), ST31 (BAPS1 sub-group 4 or
eBG7), and ST45 (BAPS1 sub-group 1 or eBG3) were selected.
The sugE-2 locus was found only among ST45 isolates (present
in two of five isolates), but not in isolates of any other ST
(Figure 6B).

Therefore, the prediction was that ST45 sugE-2 positive
isolates would be more resistant to quaternary ammonium salts
such as CPC. We tested this hypothesis by comparing growth
of isolates in the presence and absence of CPC in vitro. On
average, ST45 isolates have a higher degree of resistance to CPC
compared to other STs (Figures 6C,D). However, there was no
difference in the average growth ratio on the ST45 background
in the presence or absence of sugE-2 gene (p < 0.05). Notably,
ST45 isolates containing sugE-2 showed a larger peak that is
right skewed (larger values suggesting higher resistance) than
that of ST45 sugE-2 negative isolates (Figure 6D). Notably, sugE-
2 negative isolates of ST45 also showed some level of resistance
to CPC, suggesting that other loci in this ST may have also
contributed to CPC resistance. Thus, while sugE-2 is minorly
associated with resistance in ST45, resistance is likely amultigenic
trait and additional loci (i.e., genes or SNPs across alleles) may
also contribute to resistance. Altogether, our functional genomics
approach demonstrated the potential to predict quantitative traits
solely on the basis of population structure (STs), while mapping
unique loci that could provide a partial mechanistic basis for
understanding complex phenotypes such as fitness in different
food production environments.
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Pan-Genomic Analysis Reveals Two
Unique Zoonotic Ecotypes Present in the
S. Infantis Population
The results of S. Typhimurium and S. Newport populations
demonstrated how combining core- and accessory genomic
analyses can reveal cryptic population structures and identify
population-specific phenotypes that may contribute to ecological
fitness. For S. Infantis, further analyses were done by combining
pan-genomic information with epidemiological metadata. As a
result, two major cryptic Ecotypes that show distinct ecological
patterns were discovered in the S. Infantis population. Using a
phylogeny-dependent population structure analysis, the cryptic
cluster 1 (Ecotype 1) was found to belong to a phylogroup
that was predominantly associated with poultry (Figure 7A).
PCA-based data ordination, using only the accessory genomic
data (“shell-genes”) as input, showed that poultry isolates
were preferentially found in cluster 1—Ecotype 1 (Figure 7B).
Approximately 85% of the poultry isolates belonged to Ecotype
1, while 15% were Ecotype 2 (Figure 7C). Human isolates also
showed ecotype-specific patterns, representing 25% of Ecotype 1
isolates but 75% of Ecotype 2 isolates (Figure 7C).

Given the unique source attributions for Ecotype 1 and
Ecotype 2 populations (Figure 7C), a temporal analysis
(Figure 7D) was performed, which suggested that Ecotype 1
recently emerged in the poultry population (mid 2010s), and
since then has increased dramatically over time, comprising a
large fraction of the S. Infantis isolates in poultry (Figure 7D).
Ecotype 1 has also shown a similar trend among human
isolates (from 2016 onward) (Figure 7D). While the inherent
bias in the dataset (e.g., temporal distribution of genome
sequences—Supplementary Figure 63) precludes major
epidemiological conclusions, the patterns suggested that
poultry-associated Ecotype 1 could pose a major zoonotic
risk for humans. Core-genome measurements of clonality
revealed that Ecotype 1 was a more highly clonal population
compared to Ecotype 2. This analysis was supported by pairwise
SNP-distances (Figure 7E), Simpson’s D index of diversity
among cgMLST and BAPS2-6 (Figure 7F), cgMLST variant
distribution using SISTR v1.0 (Supplementary Figure 64A),
and sub-group or haplotype distributions across BAPS1-6 levels
(Supplementary Figure 64B). Nearly 98% of Ecotype 1 belonged
to Kmer-cluster 2, while 100% of Ecotype 2 was assigned
to Kmer-cluster 1; where Kmer-clusters were detected using
core-genomic data (Supplementary Figure 4D). At the cgMLST
level (SISTR v1.0), cgMLST 2242423463 comprised 43.7% of
the Ecotype 1 population alone (Supplementary Figure 64A).
Accordingly, temporal dynamics of cgMLST variants mirrored
the results at the Ecotype level; with cgMLST 2242423463 having
recently increased in occurrence in both poultry and, to a lower
degree, in humans as well (Supplementary Figure 64C). These
results provided further evidence that Ecotype 1 was more clonal
than Ecotype 2 (Figure 7G), and that poultry and human isolates
contained a low degree of genotypic diversity as compared to
swine and environmental isolates (Figure 7H).

This ecological distribution of Ecotype 1 and Ecotype 2
populations suggests several non-mutually exclusive scenarios:

(1) founder-effects of a new variant (i.e., could be a byproduct
of depopulation and repopulation in poultry operations);
(2) emergence of a unique niche for which Ecotype 1 has
higher levels of fitness; (3) emergence of a strong (periodic)
selection for which Ecotype 2 had low fitness (Fraser et al.,
2005; Grad et al., 2012; Cordero and Polz, 2014; Cohan,
2019; Gymoese et al., 2019). Potential candidate genes
differentiating Ecotype 1 from 2 include several AMR loci,
such as: tetracyclines (tet genes), sulfonamides (sul genes),
aminoglycosides including streptomycin and spectinomycin
(aph, ant, and aac genes), beta-lactamases (bla family of
genes), amphenicols (floR which is associated with florfenicol
resistance), trimethoprim (dfrA genes), and fosfomycin (fosA
genes) (McArthur et al., 2013) (Supplementary Figure 65).
The plasmid IncFIB(k)_1_Kpn3 was also uniquely present in
Ecotype 1 (Supplementary Figure 65). Unique loci associated
with metabolic and physiological pathways were also detected
in Ecotype 1 genomes (Supplementary Figure 66). Similarly,
cgMLST variant-based analysis of the S. Infantis population,
using the updated version of SISTR v1.1, revealed that
the population of S. Infantis contains few major cgMLSTs
(Supplementary Figure 67). The two predominant cgMLST
variants (1206527699 and 1000714926) are part of the Ecotype 1
(poultry Ecotype) sub-population (Supplementary Figure 68A)
and appear to be able to co-exist in poultry and pose a risk
to humans (Supplementary Figure 68B). Both at the core-
genome (SNP-based distance—Supplementary Figure 68C)
and accessory genome content (Supplementary Figure 68D),
cgMLST 1206527699 and 1000714926 were found to be
more clonal and related to one another than other cgMLSTs.
Assessment of accessory loci distribution further demonstrated
the high degree of relatedness between cgMLST 1206527699
and 1000714926 (Supplementary Figure 69:70). Altogether,
our discovery demonstrates the usefulness of combining core-
genome and pan-genomic analyses, and further sets the stage for
design and implementation of robust, systematic studies of the
ecological and epidemiological factors that have contributed to
the apparent succession of Ecotype 1 strains.

DISCUSSION

Current foodborne pathogen-based epidemiological inquiries
using WGS data broadly focus on tracking genotypes such
as ST lineages and cgMLST variants while fine-tunning their
population structuring and clustering or phylogenetic clade
assignment based on SNP mapping using the core-genomic
backbone (Schneider et al., 2011; Grad et al., 2012; Worby
et al., 2014a; Leekitcharoenphon et al., 2016; Pightling et al.,
2018; Saltykova et al., 2018; Yang et al., 2019). However, the
growing volume of WGS data from epidemiological surveillance
and regulatory sampling now provides an unprecedented
opportunity for population-based inquiry. For instance, recent
population-based genomics have revealed ecological adaptations
that underlie the distribution of different zoonotic pathogens
across the food chain (Joseph and Read, 2010; Power et al.,
2017; Sheppard et al., 2018; Pavlovikj et al., 2021). Therefore,
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population-based mining of WGS data has the capacity to
uncover unique features of a given population such as: i) mapping
and tracking canonical and cryptic lineages or epidemiological
variants capable of causing human outbreaks; and ii) inferring the
causative genomic events (e.g., loci and alleles underlying host-
switching and spreading across the food chain) (Sheppard et al.,
2012, 2013, 2014; Langridge et al., 2015; Yahara et al., 2017; Zheng
et al., 2017; Alikhan et al., 2018; Mageiros et al., 2021).

To be highly systematic, robust, and scalable; computational
platforms must be combined with methods for associating
hierarchical genotypic classifications with patterns of unique
genomic content and epidemiologically relevant metadata. These
platforms and approaches must also be paired with non-biased
methods for sampling to enable genotypic-based frequencies
of different populations to be used as a quantitative metric
for ecological fitness. As previously demonstrated with the
computational platform ProkEvo (Pavlovikj et al., 2021), the
use of a scalable hierarchical population structure approaches
can facilitate genotypic mapping and associations of unique
genetic features with distinct lineages across bacterial species.
Of note, ProkEvo is not directly deployable for real-time
epidemiological surveillance, but instead, it was designed as a
research tool to work in the context of ongoing microbiological
testing/surveillance, specifically to study bacterial population
genomics using various levels of genotypic resolution, along
with pan-genomic mapping to identify (i) informative genotypic
units that can be used as genetic markers for populations; and
(ii) candidate genomic events (e.g., loci) that are associated
with hierarchical genotypes and may reflect past selection or
ecological adaptation. As previously demonstrated (Pavlovikj
et al., 2021), evaluating the population structure in the context
of hierarchical genotypes (BAPS1, ST, and cgMLST) provides a
way to contextualize evolutionary relationships, while facilitating
analysis at different levels of genotypic resolution. Although this
heuristic positioning of BAPS1 and ST appears to be broadly
applicable to foodborne pathogens (Pavlovikj et al., 2021), these
are some of the factors that could influence the topological
hierarchical structure of a population: bacterial species, within-
host diversity, and the variation in the rate of mutation or
horizontal gene transfer across gene families comprising the
genomic backbone which are affected by ecological dispersion
and epidemiology (Fraser et al., 2005; Didelot et al., 2011;
Croucher et al., 2014; Shapiro and Polz, 2014; Worby et al.,
2014b). Another important consideration is that the cgMLST unit
defined by SISTR, and utilized here, only considers ∼330 loci,
while further genetic diversity is expected to be found by applying
the Enterobase algorithmic approach that includes ∼ 3,000 loci
for cgMLST, and can provide whole-genomeMLST classifications
(Zhou et al., 2018, 2020).

Using Whole Genome for
Population-Based Analysis Can Be
Epidemiologically and Ecologically
Relevant
Mapping and tracking of variants using the genomic-backbone
(e.g., cgMLST variants) is essential for epidemiological

surveillance of S. enterica lineage I (Mather et al., 2013;
Petrovska et al., 2016; Allard et al., 2018; Trinetta et al.,
2020). However, core-genomic based analysis can preclude the
identification of cryptic variants circulating in a population,
such as in the case of S. Enteritidis cryptic lineages capable of
causing gastroenteritis and bloodstream-invasion (Feasey et al.,
2016; Klemm et al., 2016), or in the case of S. Typhimurium
lineages capable of causing Non-Typhoidal Salmonellosis (NTS)
(Kingsley et al., 2009; Bawn et al., 2020). Recent studies have also
demonstrated the usefulness of enhanced genotypic granularity
from inclusion of accessory genomic data (Abudahab et al.,
2019; Liao et al., 2020), and such granularity can indeed enhance
epidemiological investigations (McNally et al., 2016). Mining
of accessory genomes has also proven to be applicable for
identifying phylogeographical signatures for S. Dublin (Fenske
et al., 2019), and for structuring of S. Infantis population while
predicting the existence of discrete lineages linked to unique
prophages (Gymoese et al., 2019).

As demonstrated in this study for S. Infantis population,
population-specific mining of accessory genomic content,
combined with hierarchical genotypes (BAPS1, ST, and
cgMLST) adds an extra layer of resolution yielding the
identification of poultry-associated cluster, herein named
as Ecotype 1. Specifically, our work emphasizes the
importance of contextualizing the added resolution from
accessory genome mining with the hierarchical population
structure, while accounting for the epidemiological context
(Supplementary Figure 71). By preserving the hierarchical
framework, tracking of populations can be done at different levels
of resolution, while their ancestral or kinship relationships can be
continuously examined to understand how populations diversify
over-time (Croucher et al., 2014; Mitchell et al., 2019; Bawn et al.,
2020; Pavlovikj et al., 2021). For instance, Campylobacter jejuni
population-based analysis, focused at the ST-level of resolution,
revealed that ST21 and ST45 were the most prevalent genotypes
associated with human clinical cases potentially originating
from poultry (Yahara et al., 2017). Perhaps, this zoonotic pattern
would not have been discovered if only cgMLST-based temporal
dynamics were assessed, for which the underlying distribution
of cgMLST variants is sparse (Alikhan et al., 2018), as shown
in this paper for S. Typhimurium Biphasic. Combined, this
points toward the frequency distribution of genotypes, across
environments and host reservoirs, to be a biologically meaningful
proxy for measuring ecological fitness (Leekitcharoenphon et al.,
2016; Azarian et al., 2018; Pavlovikj et al., 2021; Tyson et al.,
2021). However, for genotype-based frequency distributions
to be used as a complex quantitative trait, sampling must be
designed to reduce bias (e.g., bias in environments that are
sampled—clinical vs. non-clinical isolates) and metadata must
be standardized to provide a minimal amount of accurate
epidemiological information (e.g., sample type, date, state,
country, any phenotyping done such AMR).

Measuring ecological fitness as a phenotype can directly
inform epidemiological surveillance, since temporal shifts in
population dynamics may reflect, or be caused by significant
ecological, or epidemiological events in the production chain,
such as animal vaccination, major changes in use of antibiotics,
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or major shifts in use of disinfectants (Randall et al., 2007;
Chang et al., 2015; Azarian et al., 2018; Mitchell et al., 2019).
If ecological fitness is a heritable trait of populations, then
regular sampling done for S. enterica lineage I by regulatory
agencies and Public Health laboratories, should be predictably
informative (Tyson et al., 2021). Given that variation in genotypic
frequencies can occur across the food chain and be informative
about adaptive traits (Yahara et al., 2017), discriminating between
variants with and lacking zoonotic potential becomes of more
importance. Ranking or risk-assessments of specific genotypes
at different levels of resolution (e.g., STs, BAPS1, cgMLST,
or even unique Ecotypes based on cgMLST and accessory
genome) in terms of degree of their transmission in the animal
production environment, and their zoonotic potential, would
result in enhanced specificity for both surveillance andmitigation
strategies across the food chain.

S. Infantis is also a zoonotic serovar for which poultry appears
to be the major reservoir (Mejía et al., 2020; CDC, 2021c;
Tyson et al., 2021). Recent epidemiological inquiries have also
demonstrated the emergence of multi-drug resistant (MDR)
S. Infantis (Burnett et al., 2021), and suggested the existence
of cryptic population structure that can only be identified
through accessory genome mining (Gymoese et al., 2019; Alba
et al., 2020; Mejía et al., 2020; Tyson et al., 2021). Our S.
Infantis population-based results have not only confirmed that
poultry can be a major zoonotic reservoir, but suggest that,
at least in the USA poultry population, a novel ecological
succession has recently occurred, with Ecotype 1 displacing
Ecotype 2. Importantly, this unique ecological event (“Ecotype
succession”) was only detectable by combining hierarchical
genotypic groupings with the distribution of the accessory
genome and relevant metadata. Furthermore, a recent study
demonstrated that S. Infantis ESI clone (most likely Ecotype 1)
is predicted to be spreading rapidly across the poultry chain
(Tyson et al., 2021). As shown here, Ecotype 1 is a highly clonal
population that has singularly acquired a mega-plasmid capable
of carrying multiple AMR loci. However, it remains unclear how
much this mega-plasmid contributes to the Ecotype 1 fitness
and host-restriction, whether it would be essential to displace
Ecotype 2 in poultry populations, andwhat genetics determinants
allow for Ecotype 2 to remain as host-generalist as predicted in
this work. By using an agnostic kmer-based clustering of core-
genomes, the current study also showed that Ecotype 1 and 2were
formed by distinct genomic backbones; suggesting that Ecotype
1 has intrinsic genomic attributes favoring the acquisition and
maintenance of this plasmid. Since Ecotype 1 is a highly
clonal population both at the core- and whole-genome levels,
suggestions are that either a major selective pressure occurred
for which the population was adapted to, or a founder-effect
drove its emergence (e.g., repopulation of poultry production
systems). Remarkably, S. Newport ST45 resembles S. Infantis as
two putative cryptic Ecotypes were found in its population, with a
strikingly conserved signature comprised of a high core-genomic
conservation (i.e., highly clonal genomic backbone) linked to a
plastic accessory genome content. This “fixed” genomic backbone
coupled with sparse selectable accessory genome loci is suggestive
of a strong selective pressure being applied for gain-or-loss of

function through protein-coding genes. By consequence, mining
of pathways being enriched through accessory genome variation
has the potential to be predictive of niche-specifying or niche-
transcending genes allowing for Ecotypes to be formed (Cohan
and Koeppel, 2008; Cohan, 2019). More broadly, the comparative
analysis among three distinct serovars led us to hypothesize that
the higher the degree of clonality of a population, the more
likely the accessory genome content becomes crucial for tracking
cryptic epidemiological variants.

If inferring ecological fitness can be achieved through
accurate quantification of genotypes across the food chain,
then the combined use of a pan-genome enrichment analysis
(PANGEA), much like in bacterial genome-wide association
studies (Sheppard et al., 2012, 2013; Earle et al., 2016; Yahara et al.,
2017), could reveal candidate loci contributing to phenotypic
variation (Power et al., 2017; Sheppard et al., 2018; Cohan,
2019). Quantitative genomic methods are routinely used in
animals, plants, and humans as a primary approach to study
complex traits (Mackay, 2001; Huang andHan, 2014; Power et al.,
2017; Jiang et al., 2019; Cano-Gamez and Trynka, 2020). Such
methods have historically been avoided in bacterial population
genomics because of the inability to accurately measure the
contributions of kinship (Earle et al., 2016; Power et al., 2017;
Sheppard et al., 2018). As we and others have shown, combined
used of hierarchical genotypic analyses and accessory genomic
content, allows for kinship relationships to be accounted for
within bacterial populations, paving the way for systematic
use of quantitative genomics to study complex traits such
as ecological fitness among bacterial species (Sheppard et al.,
2012, 2014; Chewapreecha et al., 2014; Earle et al., 2016;
McNally et al., 2016; Abudahab et al., 2019; Pavlovikj et al.,
2021). Thus, hierarchical mapping of populations using whole-
genome information may not only enhance the accuracy of
epidemiological investigations, but may also facilitate discovery
of traits contributing to ecological fitness and/or zoonotic events
leading to human outbreaks.

Notably, the emergence of zoonotic AMR bacteria presents
a major category of complex traits that may affect ecological
fitness and also pose threats to public health (Chang et al., 2015;
Dhingra et al., 2020). Both S. Typhimurium and S. Newport
have been shown to harbor MDR conferring-loci (Greene
et al., 2008; Schneider et al., 2011; Carroll et al., 2019; Luo
et al., 2020). However, by using a more holistic approach to
map accessory loci agnostically (i.e., done independently for
each serovar-specific dataset) onto the hierarchical population
structure, we were able to identify a combination of AMR
and other physiological/metabolic-inferred traits differentiating
major STs for both S. Typhimurium (ST34) and S. Newport
(ST45). Specifically, for both serovars, the computationally
predicted and phenotypically validated traits such as heavy-
metal (copper) and quats-based resistance, are relevant for food
safety. First, ST34 (mostly S. Typhimurium Monophasic) can
colonize the gastrointestinal tract of livestock (Ferrari et al.,
2019; Sun et al., 2020). The widespread harboring of SGI-3/4
(Mastrorilli et al., 2018; Clark et al., 2020) as confirmed in
the present study, is hypothesized to contribute to its spread
and persistence due to the utilization of copper in the animal
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diet (Arai et al., 2019; Branchu et al., 2019; Bearson et al.,
2020). However, ST34 can also withstand copper exposure
under aerobic conditions as shown here, highlighting the need
to understand the importance of environmental (e.g., water
reservoirs) contamination in its spread. Of note, our genome
sampling strategy did not include retrieving Monophasic (i.e., O
1,4,[5],12:i:-) isolates directly from NCBI (not used in our search
terms), but instead, Monophasic isolates comprised a subset of
the S. Typhimurium data serotypically classified by the SISTR
algorithm within ProkEvo (Pavlovikj et al., 2021). In the case of
S. Newport the results presented here suggested that resistance
to quaternary ammonium salts may be a contributing factor for
the spread and survival of ST45 over other STs in food facilities.
Similarly, pan-genomic analysis revealed unique physiological
adaptations, such as increased oxygen resistance, that could have
contributed to C. jejuni lineages, such as ST21 or ST45, spill-over
from poultry to humans (Yahara et al., 2017).

Overall, this hierarchical-based PANGEA approach allows for
lineage-specific patterns to be revealed, while accounting for
kinship relationships, which in turn facilitate the identification
of ancestrally- or recently-acquired, niche-transcending or niche-
specifying loci (Cohan and Koeppel, 2008). This association
between ST and AMR profiles reflects the degree of linkage
disequilibrium between loci across bacterial genomes, and shows
the potential of using large-scale genotyping to predict traits
of interest (Brinda et al., 2020; MacFadden et al., 2020).
Yet we anticipate that, as in the case of copper and quats
resistance, many of the food safety relevant traits will behave
as quantitative traits, for which multiple genetic determinants
(e.g., other loci and allelic variation) interact to explain the
phenotype by a mechanism known as epistasis (Mackay, 2001;
Power et al., 2017). For instance, the ability to form biofilms
can be a contributing factor that alters the capacity to resist
disinfectants (Corcoran et al., 2014). Given that quantitative traits
are commonly associated with polygenic events (i.e., presence
of loci and allelic variation) (Mackay, 2001; Power et al., 2017),
our findings in studying Salmonella guard against solely using
gene-based epidemiological surveillance of complex traits such as
antimicrobial or heavy-metal resistance. Combined, the lineage-
based distribution of loci demonstrated the potential to reveal
actionable knowledge for mitigation and control of pathogens,
such as i) highlighting the need for a risk-assessment analysis to
measure the contribution of environmental vs. livestock dietary
copper on the spread of ST34 (Monophasic); or ii) predicting the
effect of altering sanitation protocols by switching disinfectants
within food facilities based on ST-surveillance (Figures 8A–C).

In general, the study of S. enterica lineage I serovars
showed how a systematic use of a heuristic and agnostic,
hierarchical-based population structure analysis that includes
bacterial pan-genomic mining may result in: (1) revealing a
hidden layer of genotypic resolution for mapping populations;
(2) identifying cryptic population shifts potentially underlying
major ecological adaptations; and (3) defining lineage-specific
informative loci contributing to the acquisition of traits directly
impacting food safety (Figures 8A–C). However, to transform
WGS into actionable information that scales for epidemiological
surveillance and practical mitigation, some evidence hurdles

needed to be overcome. Examples include (i) biased databases
preventing frequency from being a meaningful phenotype due
to the uneven and underpowered sampling of environmental
vs. clinical isolates; and (ii) data privacy concerns held by
the livestock and food industry alike. Regulatory agencies
already operate with standard protocols and systematic sampling
plans that facilitate the application of population genomics.
Yet, operational procedures and integrative systems that would
allow for sampling done in livestock production systems and
Public Health laboratories are lacking. A single and effective
platform for comprehensive analysis and integration of data
is needed. In conclusion, utilization of the discovery-based
ProkEvo platform, for conducting a hierarchical-based pan-
genomic analysis of S. enterica lineage I, can be viewed as a
proof-of-concept approach for how large-scale genomics can
be auxiliary in revealing novel population-based attributes,
and testable hypotheses while conducting food safety-related
ecological or epidemiological inquiries.
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