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Spittlebugs (Hemiptera: Cercopidae) are the main tropical pests in Central and South

America of cultivated pastures. We aimed to estimate the potential distribution of

Aeneolamia varia, A. lepidior, A. reducta, Prosapia simulans, Zulia carbonaria, and Z.

pubescens throughout the Neotropics using ecological niche modeling. These six insect

species are common in Colombia and cause large economic losses. Records of these

species, prior to the year 2000, were compiled from human observations, specimens

from CIAT Arthropod Reference Collection (CIATARC), Global Biodiversity Information

Facility (GBIF), speciesLink (splink), and an extensive literature review. Different ecological

niche models (ENMs) were generated for each species: Maximum Entropy (MaxEnt),

generalized linear (GLM), multivariate adaptive regression spline (MARS), and random

forest model (RF). Bioclimatic datasets were obtained from WorldClim and the 19

available variables were used as predictors. Future changes in the potential geographical

distribution were simulated in ENMs generated based on climate change projections for

2050 in two scenarios: optimistic and pessimistic. The results suggest that (i) Colombian

spittlebugs impose an important threat to Urochloa production in different South

American countries, (ii) each spittlebug species has a unique geographic distribution

pattern, (iii) in the future the six species are likely to invade new geographic areas even in

an optimistic scenario, (iv) A. lepidior and A. reducta showed a higher number of suitable

habitats across Colombia, Venezuela, Brazil, Peru, and Ecuador, where predicted risk is

more severe. Our data will allow to (i) monitor the dispersion of these spittlebug species,

(ii) design strategies for integrated spittlebug management that include resistant cultivars

adoption to mitigate potential economic damage, and (iii) implement regulatory actions

to prevent their introduction and spread in geographic areas where the species are not

yet found.
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INTRODUCTION

In the neotropics wide areas are planted in grasses, being
Urochloa spp. P. Beauv. (syn. Brachiaria spp.) the most extensive
forage monoculture (Ghimire et al., 2015; Worthington et al.,
2021). Its economic impact is estimated at USD12.4 million
in Mexico, Central America, Colombia, and Brazil, the largest
contribution comes from U. brizantha (Hochst. ex A. Rich.) R.D.
Webster cv.Marandu in Brazil with USD 6.3million (White et al.,
2013). The major biotic stress affecting forage production and
its quality in this region is caused by spittlebugs (Hemiptera:
Cercopidae). A large group of species causes severe damage
in susceptible grasslands (Cardona et al., 2004) with economic
losses estimated at USD 840–2,100 million per year in all host
crops (Thompson, 2004).

Although spittlebugs are found in most terrestrial ecosystems,
the tropics are the most diverse ecozone harboring 70% of known
species (Thompson, 2004; Dietrich, 2009). In the Neotropics,
species are reported from the southeastern United States to
northern Argentina (Peck and Thompson, 2008). Different
spittlebug species coincide in each country. The main species
that occur in Brazil are from the genus Mahanarva (Distant,
1909),Notozulia (Berg, 1879) andDeois (Fennah, 1949) (Resende
et al., 2012). In Mexico, the species Aeneolamia albofasciata
(Lallemand, 1939), A. contigua (Walker, 1851), and A. postica
(Walker, 1858) aremajor pests of sugarcane and grasses (Cardona
et al., 2004; Thompson and León González, 2005; Parada
Domínguez et al., 2019). Whereas in Colombia the predominant
species are A. varia (Fabricius, 1787), A. lepidior (Fowler, 1897),
A. reducta (Lallemand, 1924), Prosapia simulans (Walker, 1858),
Zulia carbonaria (Lallemand, 1924), and Z. pubescens (Fabricius,
1803) (Peck, 2001).

Climate change can modify the distribution of species by
expanding their presence to new locations and disappearing from
previously suitable areas (Hughes, 2000). Anthropic movement,
land-use change, environmental degradation (e.g., habitat loss
and fragmentation) and biotic interactions (e.g., competition,
species introduction, and plant host distribution) produced by
the on-going climate change are factors that influence this
distribution (Wagner et al., 2021). Insects are well-known
for being particularly susceptible to environmental changes of
temperature, humidity, radiation, and resource availability driven
by those factors (Larson et al., 2019). Processes that homogenize
and simplify the landscapes as extensive agriculture, allow the
growth of pests over native species (Cardoso et al., 2020). Several
studies in recent years have warned about the decline of insect
populations to extinction caused by changes in the seasonality
and, consequently, in their life cycles. This reduction in the
populations has great impact over the ecosystems as the loss of
abundance and richness of species continue to occur (Hallmann
et al., 2017; Goulson, 2019; Halsch et al., 2021).

Despite insect pest outbreaks are expected for the short term

(Heeb et al., 2019; Liu and Shi, 2020), its severity may not

be evenly increased due to the narrow environmental niche

requirements, physiological tolerances of insects, and differential
effects of climate variables on their life cycle (Lehmann et al.,

2020). Previous models show an increase in suitable areas

for pest species in Europe, e.g., Helicoverpa zea (Lepidoptera:
Noctuidae), Aleurocanthus spiniferus (Hemiptera: Aleyrodidae),
under climate change scenarios (Grünig et al., 2020). Thus,
characterizing the effect of climate change in Colombian
spittlebugs geographic distribution and identifying niches where
these species would become key pests is important in the
transition to more sustainable livestock systems.

In this context, ecological niche models (ENMs) provide an
approximation to estimate potential geographical zones with
environmental conditions that a species requires to maintain
its populations (Peterson et al., 2011). This tool is widely used
in insect pest management programs to anticipate unknown
distributional areas, geographic potential of invasive species, and
response to changing environmental conditions (Peterson and
Soberón, 2012). ENMs can be built based on occurrence data
(inductive or correlative niche models; Elith and Leathwick,
2009) or based on physiological data [deductive or mechanistic
niche models; (Kearney and Porter, 2009)]. For spittlebugs
associated with grasses, we identified only two studies focused on
changes in suitability of geographical areas under climatic change
scenarios. The first, based on physiological data of Mahanarva
spectabilis (Distant) (Fonseca et al., 2016), and the second, based
on occurrence data of four Mahanarva species (Schöbel and
Carvalho, 2020).

This paper responds to the need to know whether A.
varia, A. lepidior, A. reducta, P. simulans, Z. carbonaria,
and Z. pubescens are potential key pests in new sites under
climate change scenarios that consider the impact of human
activities. Hence, spittlebug ENMs contribute to the development
of adaptation strategies for tropical America climate-smart
perennial grasslands, and sugarcane production, by addressing
the need for shift toward more sustainable pest management
practices (Macfadyen et al., 2018). For instance, adoption
of cultivars with host plant resistance incorporated in high
suitability predicted areas, or establishment of susceptible
crops in low suitability sites, within intensive livestock and
agriculture systems.

Our main objective was to determine the current distribution
of these six species and estimate the potential distribution under
two future climate scenarios via ecological niche methods based
on presence-only data.

MATERIALS AND METHODS

Occurrence Data
Information about occurrence records of A. lepidior, A. reducta,
A. varia, P. simulans, Z. carbonaria, and Z. pubescens were
collected from a variety of sources: (1) human observations,
(2) CIAT’s Arthropod Reference Collection (CIATARC), (3)
websites Global Biodiversity Information Facility (GBIF.org.,
2020a,b,c,d,e) and speciesLink (https://splink.cria.org.br/), and
(4) from extensive scientific papers revision (Hamilton, 1977;
Avila de Moreno and Umaña, 1988; Peck, 1998; Sáenz et al.,
1999; Cardona et al., 2000; Peck et al., 2001; Rodríguez Chalarca
et al., 2002; Rodriguez Chalarca et al., 2003; Ferrer et al., 2004;
Castro et al., 2005; Castillo, 2006; Valbuena, 2010; Figueredo
et al., 2012; Matabanchoy Solarte et al., 2012; de la Cruz-Zapata
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et al., 2016; García-González et al., 2017; Paladini et al., 2018).
Human observations data were obtained from CIAT historical
records. These were captured by CIAT’S entomology department
expert sampling in different locations. To georeference records
from CIATARC without coordinates but with known location
data, first, the geographic information available was verified and
corrected according to National Statistics Offices (e.g., DANE
to Colombia) and GeoNames (https://www.geonames.org/),
second, coordinates were obtained via GoogleMaps (https://
www.google.com/maps). A cleansing process was performed to
this first base, removing the duplicates (i.e., more than one
occurrence record in 10 km2) and the records after the year 2000
to preserve the same temporal distribution between distribution
data and climate data.

Climatic Data
Elevation layer and 19 bioclimatic layers (bio_1 to bio_19)
were obtained from Worldclim from 1970 to 2000 using
raster::getData function. For the current climate data, the Version
2 Bioclimatic variables with a spatial resolution of 2.5min were
selected (Fick and Hijmans, 2017) with the aim of maintaining
the same spatial resolution of the species georeferenced (Sillero
and Barbosa, 2021). To extract values from the bioclimatic layers,
the extract function was used. Finally, the species names were
combined with coordinates (latitude, longitude), bio_1 to bio_19,
and elevation values into a single data.frame.

Ecological Niche Models
All analyses were performed in R studio version 4.1.0 (R. Core
Team, 2021) according to Naimi and Araújo (2016) methodology
(https://www.biogeoinformatics.org/), using the package sdm
(Naimi and Araujo, 2019; R. Core Team, 2021).

Collinear Variables Removal
To prevent any multicollinearity-related bias in the models,
a collinearity test among bioclimatic variables was performed
using the vifstep function. Collinearity describes the situation
where two or more predictor variables in a statistical model are
linearly correlated (Alin, 2010). Therefore, it could inflate both
the standard error and the confidence intervals, and prevent
the determination of the significance of each variable on the
dependent variable (Quinn and Keough, 2002). Variables with
VIF (Variance Inflation Factors; Chatterjee and Hadi, 2006)
values < 0.7 were selected for the subsequent analyzes. We
created a sdmData object including species and previously
selected variables, which means low collinearity, as predictors.
Approximately 1,000 ‘pseudo-absences’ points were randomly
selected over the study geographical area for each species using
argument method=‘gRandom’. Pseudo-absence refers to cells in
which the species has not yet been recorded, not to cells in which
the species is necessarily absent (Phillips et al., 2009).

Model Fitting
We used four species distribution models to predict the
distribution of each spittlebug species under study. All
models were based on presence and pseudo-absence data:
Maximum Entropy (MaxEnt), Generalized Linear Model (GLM),

Multivariate Adaptive Regression Spline (MARS), and Random
Forest (RF) models. MaxEnt was used as default settings since
it has shown the ability to achieve good performance as a
default (Phillips and Dudík, 2008). Models are fitted with sdm
function using two replication techniques (subsampling and
bootstrapping) establishing 70% of the occurrence data as
training data and 30% as test data. This process was repeated 3
times. As a result of our methodological procedure, a total of
24 different projections (4 models ∗ 2 replication techniques ∗ 3
repetitions) were generated for each species.

Model Prediction and Ensemble
We consider the accessible area of species under study as the
entire neotropical ecoregion and that the species do not have
restrictions since in this ecoregion there is a large pasture
monoculture for livestock and it has a wide sugarcane planted
area where cercopids can be established (Jank et al., 2014; Schöbel
and Carvalho, 2021). The hypothesis was that climate change will
impact or lead to an increase of future potential distributions of
the species under study. Models obtained were used to estimate
the current distribution in South America using the predict
function from the sdm package. This function allows making a
raster object with predictions from several fitted models (Naimi
and Araújo, 2016). All 24 predictions were ensemble in one using
the ensemble function which provides a consensus of multiple
models. By combining projections from different models, errors
tend to be canceled out thus aiding predictive accuracy (Diniz-
Filho et al., 2010).

Model Evaluation
To evaluate model outputs, we used the receiver operated
characteristics, analyzing the area under curve (AUC) (Fielding
and Bell, 1997) and the true skill statistic (TSS) (Allouche et al.,
2006). The AUC value is a standardmethod to assess the accuracy
of predictive distribution models, AUC values below 0.7 were
considered poor, 0.7–0.9 moderate, and >0.9 good (Araújo et al.,
2005). TSS compares the number of correct forecasts, minus
those attributable to random guessing, to that of a hypothetical
set of perfect forecasts. TSS values close to one denote an ideal
prediction; values of zero or less denote a prediction that is not
better than random (Allouche et al., 2006). For each species, the
relative importance of bioclimatic variables selected based on
multicollinearity analysis and AUC metric were plotted.

Future Distribution Model
To build future potential distribution, we used the BCC-
CSM2-MR global climate model from the Coupled Model
Intercomparison Project 6 [CMIP6; available for use in
the WorldClim (https://www.worldclim.org/data/cmip6/
cmip6climate.html); (O’Neill et al., 2016)] and two shared
socio-economic pathways [(SSP); (1) SSP126: an optimistic
scenario increasing shift toward sustainable practices with low
greenhouse gas concentration levels and (2) SSP585: a pessimistic
scenario that assumes an energy intensive, fossil-based economy
with increasing greenhouse gas emissions over time (O’Neill
et al., 2017; Riahi et al., 2017)] in a 2.5-min resolution. Habitat
suitability was modeled using selected previously bioclimatic
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layers under each SSP scenario. In this study, only one time
period was used for near future prediction: 2050 (average
for 2041–2060). To quantify the change between current and
future distribution, maps were converted from probability of
occurrence to presence and absence. For this, the mean threshold
(occurrence probability values) was used in the ifelse function
which allows reviewing the probability values. If the probability
values are greater than or equal to the average threshold, the new
value assigned is 1 (presence) and if the probability value is less
on the average threshold, the new value assigned is 0 (absence).
Later, the current distribution raster was subtracted from the
future distribution raster, as a result, possible extinction and
invasion were plotted.

RESULTS

In total 590 occurrence records were obtained: 115 from human
observations, 299 from CIATARC, 108 from GBIF, 24 from
SpeciesLink, and 44 from literature review. After data cleansing,
48, 186, 19, 71, 55, and 120 points were used for A. lepidior, A.
reducta, A. varia, P. simulans, Z. carbonaria, and Z. pubescens,
respectively. Maps showing the occurrence records, estimation
of current distribution and future potential distribution (2041–
2060) under SSP126 - SSP585 scenarios, and comparison between
current and future scenarios (change SSP126 and SSP585) are
presented in Figures 1–6. Suitable areas and suitability values
as well as bioclimatic layers selected based on multicollinearity
analysis differed according to the species in the study (Figure 7).
Consequently, probability of occurrence (i.e., suitability) in the
niches of each species as a function of two most representative
biovariables (Figure 8) varied according to species. In general,
the ensembled models reached acceptable values for metrics used
to evaluate ENMs accuracy (see Supplementary Table S1). The
most used, AUC and TSS metrics, showed high scores for all
species under study indicating robust performance (Figure 9).

A. lepidior occurred in southern and central Costa Rica,
central Panama, and northern Colombia. The ENM estimated
a suitable area in central and north Colombia and some areas
of Venezuela (AUC 0.97 ± 0.05, TSS 0.80 ± 0.1) (Figure 1).
Bioclimatic layers with high contribution were isothermality
(bio_3) and temperature seasonality (bio_4), showing high
suitability with high values of bio_3 (>70 %) and low values
of bio_4 (<77.45%) (Figure 7). Averages of AUC and TSS (±
SD) were 0.97 ± 0.05 and 0.80 ± 0.1, respectively (Figure 9,
Supplementary Table S1). A considerable increase in suitability
is expected for large areas of Amazonas ecoregion of Peru,
Venezuela, and the north of Brazil even in the optimistic
scenario, with possible invasions in those sites and western
Ecuador, northeastern Peru and northern Bolivia (Figure 1).
Also in Panama, Costa Rica, and, in the pessimistic scenario, in
Guatemala and Belize. Small areas in a few sites of the Pacific
coast of Central America and tropical South America show a
decrease in suitable areas for this species.

A. reducta occurred in Costa Rica, central Panama, and central
and northern Caribbean Colombia. Fewer records were obtained
in northwestern Venezuela and northern Brazil. The ENM

estimated a suitable area in southern Costa Rica and Panama,
as well as Eastern Ranges and Caribbean coast in Colombia,
and Andean Venezuela (Figure 2). Bioclimatic layers with high
contribution were minimum temperature of coldest month
(bio_6) and isothermality (bio_3), showing high suitability with
high values of both bio_6 and bio_3 (Figure 7). Average of AUC
and TSS (± SD) was 0.94 ± 0.01 and 0.88 ± 0.05, respectively.
An increase in suitable areas and possible invasions are expected
for the future optimistic scenario in Colombian and Venezuelan
Llanos and Colombian Caribbean region. In the pessimistic
scenario, Amazonas ecoregion of Peru and Brazil, along with
some sites in southern Costa Rica, Panama, Dominican Republic,
and Mexico are predicted to be susceptible to new invasions
(Figure 2).

A. varia occurred in central and southwestern Colombia
and northwestern Venezuela. The ENM estimated a suitable
area in Amazonas ecoregion of Colombia, Venezuela, and
northern Brazil, and a smaller region in northern Peru (Figure 3).
Bioclimatic layers with high contribution were precipitation of
the coldest quarter (bio_19), temperature seasonality (bio_4),
and precipitation seasonality (bio_15) (Figure 7). Average AUC
and TSS (± SD) was 0.97 ± 0.01 and 0.89 ± 0.05, respectively.
A decrease in suitable areas is expected for future scenarios
compared to the same sites in current sites. Also, extinction is
predicted in a few areas of Colombian and Venezuelan Llanos
(Figure 3).

P. simulans was the most widespread species in this
study. Occurrence records were obtained mostly from North
America (Mexico) and Central America, with fewer records
in western Colombia (Figure 4). Bioclimatic layers with high
contribution were precipitation of the wettest month (bio_13)
and precipitation of the coldest quarter (bio_18), showing high
suitability with values <1,060 of bio_18 and values between 468
and 900 of bio_13 (Figure 7). Average of AUC and TSS (± SD)
was 0.91 ± 0.06 and 0.73 ± 0.12, respectively. ENMs showed
more habitats in South America and a small area in the Pacific
Coast of Central America but with low suitability. An increase in
suitability and possible invasions for small areas of Brazil Cerrado
in both scenarios, along with Venezuelan Llanos in the optimistic
scenario, and a noticeable decrease in Costa Rica is expected
(Figure 4).

Z. carbonaria has been recorded only in western Colombia,
across central Andes. The ENM estimated higher suitability
in Colombian and Ecuadorian Andes (middle tropic) and the
Amazonian Piedmont of Colombia, decreasing its values to zero
in Colombian and Venezuelan Llanos (low tropic) (Figure 5).
Bioclimatic layers with high contribution were isothermality
(bio_3) and precipitation seasonality (bio_15), showing high
suitability with values close to 40 of bio_15 and high values of
bio_15 (Figure 7). Average of AUC and TSS (± SD) was 0.99 ±

0.02 and 0.93 ± 0.07, respectively. A decrease in suitability for
the Amazonian Piedmont of Colombia and the Andes is expected
(Figure 5).

Finally, Z. pubescens occurred widely in western and central
Andes of Colombia, northern Ecuador and western Brazil,
including Amazon and Cerrado biogeographic zones. Fewer
records were obtained in southern Peru and northern Suriname
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FIGURE 1 | Ecological niche models of Aeneolamia lepidior. Distribution records, current potential distribution, future potential distribution (2041–2060) under SSP126

and SSP585 scenarios, and comparison between current and future scenarios (change SSP126 and SSP585). The scale shows the habitat suitability being 1 =

higher suitability. Scale in change maps −1 = possible extinction and 1 = possible invasion.
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FIGURE 2 | Ecological niche models of Aeneolamia reducta. Distribution records (red point indicates the most recent report in a new niche), current potential

distribution, future potential distribution (2041–2060) under SSP126 and SSP585 scenarios, and comparison between current and future scenarios (change SSP126

and SSP585). The scale shows the habitat suitability being 1 = higher suitability. Scale in change maps −1 = possible extinction and 1 = possible invasion.
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FIGURE 3 | Ecological niche models of Aeneolamia varia. Distribution records, current potential distribution, future potential distribution (2041–2060) under SSP126

and SSP585 scenarios, and comparison between current and future scenarios (change SSP126 and SSP585). The scale shows the habitat suitability being 1 =

higher suitability. Scale in change maps −1 = possible extinction and 1 = possible invasion.
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FIGURE 4 | Ecological niche models of Prosapia simulans. Distribution records, current potential distribution, future potential distribution (2041–2060) under SSP126

and SSP585 scenarios, and comparison between current and future scenarios (change SSP126 and SSP585). The scale shows the habitat suitability being 1 =

higher suitability. Scale in change maps −1 = possible extinction and 1 = possible invasion.
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FIGURE 5 | Ecological niche models of Zulia carbonaria. Distribution records, current potential distribution, future potential distribution (2041–2060) under SSP126

and SSP585 scenarios, and comparison between current and future scenarios (change SSP126 and SSP585). The scale shows the habitat suitability being 1 =

higher suitability. Scale in change maps −1 = possible extinction and 1 = possible invasion.
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FIGURE 6 | Ecological niche models of Zulia pubescens. Distribution records, current potential distribution, future potential distribution (2041–2060) under SSP126

and SSP585 scenarios, and comparison between current and future scenarios (change SSP126 and SSP585). The scale shows the habitat suitability being 1 =

higher suitability. Scale in change maps −1 = possible extinction and 1 = possible invasion.
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FIGURE 7 | Relative variable importance in modeling the ecological niche of each species of spittlebugs. Error bars represent the standard deviation of all 24 models.

The graphs show only bioclimatic layers selected based on multicollinearity analysis for each species.
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FIGURE 8 | Observed niche of Colombian spittlebugs as a function of two most representative biovariables. The scale shows occurrence probabilities.
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FIGURE 9 | Evaluation of ecological niche models of spittlebugs species across different metrics obtained from 24 model by each species.

(Figure 6). Bioclimatic layers with high contribution were
temperature seasonality (bio_4) and precipitation seasonality
(bio_15), showing high suitability with low values of bio_4 (<10)
and values close to 40 of bio_15 (Figure 7). Average of AUC and

TSS (± SD) was 0.89 ± 0.03 and 0.66 ± 0.09, respectively. An
increase in suitability is expected for some areas of Ecuador, Peru,
and Brazil in both climate change scenarios, being greater in the
pessimistic scenario (Figure 6).
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DISCUSSION

In our study ENMs of the occurrence data had a high grade

of accuracy given the sample size of five species, except for
A. varia, for modeling (>25 records) (van Proosdij et al.,
2016; Schöbel and Carvalho, 2020). Despite small sample sizes
methodologies based on calculation p-values through Jackknife
are implemented in the SDM R package used in this study

(Naimi and Araújo, 2016), more records may increase the model
accuracy (van Proosdij et al., 2016). Low records for spittlebugs
were previously reported for Mahanarva in Brazil (Schöbel and
Carvalho, 2020) being underrepresented in occurrence databases.
This phenomenon was also observed for the six species studied as
most of the records were obtained from CIATARC collection and
expert’s reports through the years (human observation).

The ENMs also revealed differences in the distribution and

ecological niche of the six spittlebug species in South America
showing that these species ecological niche varies widely in
the Neotropic, and has the potential to invade large areas,
where livestock systems coincide. A. reducta y A. lepidior have
great potential to impact grassland mainly in Colombian and
Venezuelan Llanos where susceptible pastures (e.g., Urochloa
decumbens) and sugarcane are planted in large areas. Another
ecoregion where these two species have high suitability is the
Amazonian ecoregion in Colombia and Brazil, where livestock
extensive systems are increasing indiscriminately.

The evidence showed that Z. pubescens is distributed in a
wide altitudinal range (8–3225m.a.s.l) but with a local reduced
temperature seasonality. Elevation has been reported as the
most important variable with the highest contribution in the
ENMs in other spittlebugs (Schöbel and Carvalho, 2020). Few
species have such a wide altitudinal range, which allows us
to propose two hypotheses: (1) Z. pubescens presents extreme
thermal limits and (2) the species presents geographically
separated populations. A case of biotypes is observed for the
spittlebug Calitettix versicolor in China, which diverged in two
lineages consistent with biogeographical regions separated by
Hengduan Mountains (Yang et al., 2016). Similarly, this could
be happening with Z. pubescens influenced by the Colombian
Andes. Although the species is reported in Brazil (27 occurrence
records; average of 400m.a.s.l), the suitability values are lower
than in Colombia and Ecuador (93 occurrence records; average
of 1079m.a.s.l.). The higher number of records in the highlands
of Colombia and Ecuador could be causing an overestimation
of the occurrence probability at these areas over the records
of Cerrado places in Brazil, this would explain the current
potential distribution estimated, and also could be reflecting the
possible existence of, at least, two populations with different
ecological niches.

The position of a species within an ecosystem is determined
by the interactions with their biotic and abiotic environment
(Polechová and Storch, 2019). Tropical spittlebugs have a
seasonal dynamic strongly synchronized with rainfall patterns.
For instance, Z. carbonaria and A. reducta in Colombia,
P. simulans in Colombia and Venezuela, D. flavopicta in Brazil,
as well as A. contigua and A. contigua in Mexico, reduce diapause
rates and a higher abundance of nymphs is observed after rain

season start (Peck et al., 2001, 2002; Sujii et al., 2002; Olán-
Hernández et al., 2016). Hence, a strong effect of the biovariables
12 to 19 in the models, related with precipitation, in the
models was expected but in our estimations, the distribution of
habitat suitability of these six species also involved environmental
variables related to temperature suggesting that variables derived
from temperature has a strong effect on the biology of these
species. For P. simulans, precipitation was more important
than temperature to determine its distribution with a relative
importance over 0.4 for precipitation of the wettest month,
thus, greater probabilities of occurrence happen in precipitation
between 500 and 940mm. In general, the habitat suitability
estimated for two-dimensional niches was low as the biovariables’
relative importance varied among all the species with values
below 0.4 (Figure 8). Similar results were obtained by Schöbel
and Carvalho (2020) in ENM of fourMahanarva species showing
that most of the WorldClim variables did not contribute to
their analysis and that for M. fimbriolata and M. spectabilis the
biovariables had contribution percentages from 15 to 27%.

Regarding the climate change scenarios proposed, we found
that these have a significant influence on the potential
distribution of the species in study, increasing the suitability value
and suitable area for some (mainly for A. reducta and A. lepidior)
or decreasing them for others (A. varia). Previous studies showed
a declining tendency in suitability for Mahanarva across Central
and South America (Fonseca et al., 2016; Schöbel and Carvalho,
2020) and Philaenus spumarius in North America (Karban and
Huntzinger, 2018). Global warming and longer drought periods
contribute to accelerate this phenomenon as spittlebug biology
is highly dependent on plant water status. Being xylem feeders,
they require excessive amounts of sap which flow is subject to
transpiration (Novotny and Wilson, 1997). Under water stress
conditions transpiration rates decrease as well as food availability
for spittlebugs, particularly in the nymphal stages. Besides, these
conditions may affect nymph thermoregulation by foam or
“spittle” production, composed mainly of excreted semi-digested
plant fluid, fatty acids, carbohydrates, mucopolysaccharides, and
proteins produced by Malpighian tubules (Rakitov, 2002; Tonelli
et al., 2018). Since the six species are Urochloa spp. key pests,
a future limitation of ecological niche in future scenarios in
livestock production zones should be taken into account as
improved resistant grasses to spittlebug attack and increase the
number of forage species are considered a sustainable strategy
for the livestock systems under climate change (Rao et al.,
2016; Schiek et al., 2018). Competition can influence species
future distribution as well. Despite reaching the spittlebug
habitat’s food limits is unlikely (Schöbel and Carvalho, 2020),
the variation among species’ life cycles may determine the
success of one species over others. A. reducta was reported
for the first time in 2019 in Cauca River Valley, Colombia
(Hernandez et al., 2021) where A. varia is a key pest of
sugarcane and P. simulans of signalgrass [Urochloa decumbens
cv. Basilisk; (Rodriguez Chalarca et al., 2003; Gómez, 2007)].
In Colombian Caribbean coast, A. reducta’s entire life cycle is
shorter (45.2 days) compared with A. varia (62 days) or P.
simulans (71.9 days) in Cauca River Valley conditions (Peck
et al., 2002; Rodriguez Chalarca et al., 2003; Castro Valderrama
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et al., 2011). Thus, A. reducta can coexist or even displace
these two species in sugarcane and signalgrass for potentially
having more generations per year in the region where ∼208
thousand ha of sugarcane was harvested in 2018 (Asocaña.,
2019).

The current study contributes to the ecological knowledge of
spittlebugs, which will be useful in the development of prevention
and control strategies for this pest in South America. Finally,
we suggest carrying out studies of physiology and genetics
of populations to determine the thermal limits of the species
and to corroborate if there are genetic divergences between
geographically separated populations.
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