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A Bayesian non-neutral stochastic input distance function model is used to examine

whether output specialization has an impact on the economic performance of vegetable

producers in Benin. Specialization is assumed to have an effect on the production

frontier itself, as well as on the distance of each producer’s observed data to this frontier

(technical efficiency). A derivative-based measure of economies of scope is obtained by

exploiting the duality between the shadow cost and the input distance functions. In this

study, we also control for spatial heterogeneity of vegetable production by including a

soil fertility variable in the production function at the farm level. The technology is found

to exhibit no economies of scope, indicating that vegetable producers have no incentive

for specialization or diversification. However, the degree of specialization has a positive

effect on technical efficiency. From a policy perspective, the findings imply that policies

to encourage specialization may lead to higher performance.

Keywords: farm performance, specialization, input distance function, Bayesian non-neutral stochastic frontier,

Benin

INTRODUCTION

Over the last four decades, agricultural productivity has been growing at fairly high rates in most
regions of the world, reflecting the important role played by innovations in agriculture. However,
Sub-Saharan African countries are still far behind (Fuglie, 2008; Chavas, 2011). The main cause
of the low levels of agricultural productivity in this region is the ineffective establishment of
agricultural R&D institutions to sustain productivity growth (Feder et al., 1985; Binswanger, 1986;
Jack, 2013; Reimers and Klasen, 2013; Mekonnen, 2017). This suggests the need for a more selective
strategy that can help increase the competitiveness of agriculture and the viability of small-scale
farms in the region. It is worth noting that Sub-Saharan African countries are categorized as
agriculture-based countries in which agriculture contributes approximately one third of overall
GDP (Byerlee et al., 2009). Additionally, to reduce poverty and secure food needs in this region,
there is a growing interest of diversifying production toward higher-value outputs.

Vegetables in West Africa are an important crop and its importance is increasing over time. As
fresh vegetables are characterized by high elasticity of demand, there is overwhelming evidence
that vegetable production can contribute importantly to economic growth and food security
(Weinberger and Lumpkin, 2007; Ali, 2008; Haji, 2008; Keatinge et al., 2011). In Benin’s vegetable
sector, a large majority of farms produce both traditional and non-traditional vegetables, indicating

https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org/journals/sustainable-food-systems#editorial-board
https://www.frontiersin.org/journals/sustainable-food-systems#editorial-board
https://www.frontiersin.org/journals/sustainable-food-systems#editorial-board
https://www.frontiersin.org/journals/sustainable-food-systems#editorial-board
https://doi.org/10.3389/fsufs.2021.711530
http://crossmark.crossref.org/dialog/?doi=10.3389/fsufs.2021.711530&domain=pdf&date_stamp=2021-08-12
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org
https://www.frontiersin.org/journals/sustainable-food-systems#articles
https://creativecommons.org/licenses/by/4.0/
mailto:alphonse.singbo@eac.ulaval.ca
https://doi.org/10.3389/fsufs.2021.711530
https://www.frontiersin.org/articles/10.3389/fsufs.2021.711530/full


Singbo et al. Effect of Crop Specialization on Farms’ Performance

that multi-output farms are the rule rather than the exception.
By producing both categories of crops instead of only one,
the farm may be able to reduce risk. For example, in some
periods of the year, low revenues from traditional vegetables
may be counterbalanced by relatively high revenues from non-
traditional vegetables.

Another benefit associated with diversification is the
complementary use of inputs on the farm (economies of scope).
As such, diversification allows for more efficient use of inputs
that can be used in different production processes (Teece, 1980).
Contrarily, specialization in the production of a small number of
crops allows operators to exploit scale economies and provides
them with better opportunities to fine-tune their skills (Oude
Lansink and Stefanou, 2001). Overall, the direction of the effect
of diversification on the economic performance of a decision-
making unit cannot be determined solely on theoretical grounds,
but the issue can be examined empirically, in the specific context
of a production environment. To the best of our knowledge no
studies in West Africa explore the direct impact of horizontal
crop choice strategies on producers’ multi-output performance.

Most studies on the impact of specialization on technical
efficiency regress the technical efficiency scores obtained from a
standard stochastic frontier model on a specialization index using
one- or two-stage procedures (Coelli and Fleming, 2004; Rahman
and Rahman, 2008). However, in a multiple-output production
technology the effects of specialization on technical efficiency
may be related to input use, indicating that the effect of crop
composition on technical efficiency is non-neutral. The non-
neutral frontier model assumes that the method of application
of inputs, as well as the level of inputs (i.e., scale of operation)
determine the potential output composition (Huang and Liu,
1994; Dinar et al., 2007; Karagiannis and Tzouvelekas, 2009). In
other words, the non-neutral frontier accounts for the effects
of input composition on efficiency; something that the neutral
frontier ignores in the estimation.

The objective of this paper is 2-fold. We first seek to evaluate
the causal effect of specialization on technical efficiency by
taking to account spatial heterogeneity. The second objective
is to investigate the presence or absence of economies of
scope in vegetable farming. The non-neutral stochastic frontier
approach is adopted to estimate the effect of specialization on
production technology and technical efficiency using a Bayesian
approach. The Bayesian method is chosen for two reasons. First
because it allows one to easily impose regularity conditions
implied by economic theory and second, because it allows us
to easily compute the standard errors for the measure of scope
economies, which otherwise would be a complicated exercise,
given that this measure is a complex non-linear function of
the estimated parameters. This flexibility of the model allows
direct computation of a measure of economies of scope by
exploiting the duality between the cost function and the input
distance function.

The rest of this paper is organized as follows. Section
Conceptual Framework and Modeling Approach discusses the
conceptual framework and our Bayesian modeling approach.
The data and the empirical specification are described in section
Data and Specification of the Model Variables. The empirical

results are discussed in section Empirical Results and the paper
concludes in section Conclusion and Policy Implications.

CONCEPTUAL FRAMEWORK AND
MODELING APPROACH

Input Distance Function
To explore the impact of crop diversification vs. specialization
on the production process (i.e., on the shape of the production
frontier) and on technical efficiency, we require a multi-output,
multi-input specification of the technology. Distance functions
developed by Shephard (1953, 1970) present a convenient
way to represent a multiple-input multiple-output production
technology (Färe and Primont, 1995; Coelli and Perelman, 1996;
Morrison-Paul and Nehring, 2005). Such a specification may be
characterized from the output or input perspective and the choice
of orientation in an empirical application is based on the relative
ease with which producers can adjust the levels of their inputs
or outputs. Vegetable producers are likely to have more control
over inputs rather than outputs, so the input orientation is used
here. Studies in Sub-Sahara Africa countries show that the vast
majority of vegetable producers have other primary activities
(Akinola and Eresama, 2009). This implies that producers have
an incentive to minimize input use as vegetable farming is a
side business for these producers. Most importantly, since we
want to search for the presence or absence of economies of
scope, the input distance function is used because its econometric
estimation does not require access to input price data as does
of cost function and also considers inputs as endogenous to the
production function and the spatial heterogeneity. Importantly,
we need to exploit the duality approach that enables to locally
retrieve the shadow cost function from the input distance
function to measure economies of scope. In such cases, cost
sub-additivity is a necessary and sufficient condition for scope
economies (Hajargasht et al., 2008; Nemoto and Furusmatsu,
2014; Färe and Karagiannis, 2018).

The input requirement set L
(

y
)

represents the set of all input
vectors, x ∈ R

K
+, which can produce a given vector of outputs,

y ∈ R
M
+ :

L
(

y
)

=
{

x ∈ R
K
+ : x can produce y

}

(1)

In the case of a production technology with two inputs, x1and
x2, L

(

y
)

can be represented graphically, as the shaded area in
Figure 1. Any point in L

(

y
)

is feasible, but only the points on
the boundary of this set represent efficient combinations of the
inputs, as combinations in the interior of the set do not use
the minimal amounts of inputs to produce the fixed amount
of output, y. The boundary of the input requirement set is the
production frontier and a mathematical representation of this
frontier can be obtained using the input distance function. The
input distance function, as defined in Färe and Primont (1995), is:

DI
(

x, y
)

= max

{

ρ :

(

x

ρ

)

∈ L
(

y
)

}

(2)
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FIGURE 1 | Input distance function.

where ρ is a positive scalar “distance” by which the input vector,
x can be deflated while still being able to produce y. Graphically,
the input distance function projects a point x in the interior of the
input requirement set onto a point x∂ on the production frontier,
by contracting the two coordinates of x in equal proportions
(Figure 1).

DI
(

x, y
)

can be interpreted as a multi-output input-
requirement function allowing for deviations (distance) from the
frontier. The input distance function is greater than or equal
to one if the input vector is an element of the feasible set,
L

(

y
)

. The distance function is equal to unity if x is located on
the boundary of the input set. DI

(

x, y
)

is assumed to be non-
decreasing, positively linearly homogenous and concave in inputs
and non-increasing in outputs (Kumbhakar et al., 2008). Thus,
all the deviations from the frontier are interpreted in terms of
technical efficiency, TE. The input-contracting view of technical
efficiency leads to the following definition:

TEI
(

x, y
)

=
[

DI(x, y)
]−1

(3)

This measure assumes values in the interval (0, 1] and the
points for which DI

(

x, y
)

= 1 define the boundary of the input
requirement set. TEI

(

x, y
)

can be interpreted as the proportion
of the observed inputs that could be used to produce the same
amount of output (Kumbhakar and Lovell, 2003, p. 50). By
definition, the input distance function is linearly homogeneous
in inputs, i.e., DI

(

wx, y
)

= wDI
(

x, y
)

for any w > 0.
Linear homogeneity can be imposed by normalizing all inputs
by the value of a normalizing input:, by setting w to 1

x1
we

obtain DI
(

x, y
)

/x1 = DI
(

x
x1
, y

)

= DI
(

x∗, y
)

, where x∗ =

x
x1
. This normalization is also necessary for estimation of the

parameters of the distance function as it turns the implicit
function in Equation (2) into a function with dependent and
independent variables.

Suppose that we have data on inputs and outputs for a sample
of farms. Then, for producer i we get:

TEIi =
[

DI
(

xi, yi
)]−1

e−vi ⇔ lnDI
(

xi, yi
)

= lnTEIi + vi (4)

where vi is a white-noise error term. From the above
homogeneity property, we have:

lnDI
(

xi, yi
)

= lnDI
(

x∗i , yi
)

+ lnx1 ⇔ −lnx1 = ln

DI
(

x∗i , yi
)

− lnDI
(

xi, yi
)

(5)

with x∗i =
xi
x1

and x1 being the normalizing input. Substituting (4)
in (5) leads to an estimable form of the input distance function:

− lnx1 = lnDI
(

x∗i , yi
)

+ lnTEIi + vi = lnDI
(

x∗i , yi
)

−uIi + vi (6)

where uIi = −lnTEIi is treated as an one-sided error term.
Abstracting from the context of a distance function, Equation (6)
constitutes a typical representation of a stochastic frontier model
(Aigner et al., 1977; Meeusen and van den Broeck, 1977) and
the equation can be estimated econometrically using maximum
likelihood techniques, assuming that vi is independently and
identically distributed random variable, N

(

0, σ 2
v

)

.
As output crop composition influences both the production

frontier and the efficiency with which producers utilize resources,
a modified non-neutral approach developed by Huang and Liu
(1994) has to be employed. In reality, technical efficiency is
dependent on the input choices and the method of application of
inputs. Some vegetables may need more inputs and require more
management skills than other vegetables. Following Alvarez et al.
(2006) and Dinar et al. (2007), uIi is modeled as:

uIi = g (zi; δ) + εi, (7)

where z is a vector of explanatory variables which includes
an output specialization index, interactions between this index
and the elements of xi, and farm-specific characteristics (e.g.,
demographic, socio-economic, etc.) (Huang and Liu, 1994; Dinar
et al., 2007); δ is a vector of parameters to be estimated and ε is
a random error referring to the unexplained or residual technical
efficiency. The requirement that uIi = g (zi; δ) + εi ≥ 0 is met
by truncating εi from below such that εi ≥ −g (zi; δ), and εi is
assumed to be an independently, but not identically distributed
random variable with εi ∼ N

(

0, σ 2
ε

)

.1 Substituting Equation (7)
into Equation (6) yields:

− lnx1 = lnDI
(

x
∗

i , yi

)

+ vi −
[

g (zi; δ) + εi
]

, (8)

The assumptions imposed on uIi and εi are consistent with uIi ∼
N+

(

g (zi; δ) , σ
2
u

)

(Battese and Coelli, 1995), and that vi and uIi
are distributed independently (Kumbhakar and Lovell, 2003, p.
267). The first term on the right-hand side of Equation (8) is
the composition in the frontier quantity of inputs as well as the
spatial heterogeneity; the g (·) function gives the heterogeneity
in the distance to the frontier, i.e., technical efficiency. The
information contained in the first right-hand side term can be
used to test whether economies of scope exist.

1In the spirit of Huang and Liu (1994), εi is assumed to follow a normal

distribution with zero mode, truncated from below at a variable truncation point

[−g(zi; δ)], which allows εi ≤ 0, but enforces uIi ≥0.

Frontiers in Sustainable Food Systems | www.frontiersin.org 3 August 2021 | Volume 5 | Article 711530

https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org
https://www.frontiersin.org/journals/sustainable-food-systems#articles


Singbo et al. Effect of Crop Specialization on Farms’ Performance

A few comments are in place here. First, our production
frontier estimation in (8) yields two effects of crop specialization
on input use. The first partial derivative of the input distance
function defined in (8) with respect to an output is assumed to
be negative, implying that an extra unit of output ceteris paribus
reduces the amount by which the input vector has to be deflated
to reach the production frontier (Coelli and Fleming, 2004). The
dual relation between the cost function and the input distance
function can be exploited to derive a measure of economies of
scope (or cost complementarities) without requiring estimates
of the parameters of the cost function (Hajargasht et al., 2008;
Nemoto and Furusmatsu, 2014; Färe and Karagiannis, 2018).
This approach has the advantage that the estimation can proceed
using only the input distance function and without requiring
input price data, which are not available in our case (especially
for capital and land).

Second, our non-neutral specification gives a marginal
contribution of output specialization on technical efficiency and
varies with the farm’s input utilization. It is important to indicate
that our model is different from the one used by Rahman
(2009) to explain the effect of diversification on technical
efficiency. Rahman assumed a neutral specification where the
marginal effect of crop diversification on technical efficiency
is constant. Furthermore, our model specification is different
from the one used by Hajargasht et al. (2008) because in our
specification we account for the effect of additional explanatory
variables on technical efficiency. Färe and Karagiannis (2018)
follows the approach of Hajargasht et al. (2008) but their
primal production technology is modeled by a directional
rather than a radial distance function by defining a direction
function. However, we use the algorithm described by Hajargasht
et al. (2008) to compute a measure of economies of scope.
Since the Huang and Liu (1994) paper, in which a neutral
specification is demonstrated to suffer from misspecification, the
non-neutral stochastic frontier model is preferred to a neutral
model in many empirical applications (Alvarez et al., 2006; Dinar
et al., 2007; Karagiannis and Tzouvelekas, 2009). These authors
argued that the conventional formulation and estimation of the
stochastic frontier production function may not be appropriate
in identifying the sources of technical inefficiency in production.
Also, Dinar et al. (2007) have shown that the hypothesis of
a neutral shift in the production frontier is strongly rejected.
Paradoxically, estimation of the non-neutral specification is still
the exception rather than the norm in the literature.

For the empirical implementation, we approximate the input
distance function by a Translog form. The Translog is a flexible
functional form which approximates any twice differentiable
function without imposing a priori restrictions on the production
technology. In the case of a distance function, Kumbhakar and
Lovell (2003, p. 94) also indicated that the Translog is the
appropriate functional form over the Cobb-Douglas.

However, a complication arises with the “traditional” Translog
specification because some producers in the sample are perfectly
specialized in one category of vegetables (i.e., traditional or
non-traditional vegetables). For this reason a modified Translog
function is used in which vegetable outputs are adjusted
according to the Battese (1997) transformation (see Tsekouras

et al., 2004). Moreover, variables related to soil fertility are
included in the production frontier model to account for spatial
heterogeneity (see e.g., Sherlund et al., 2002; Dinar et al.,
2007; Okoror and Areal, 2020). In the same line, other studies
like Skevas and Oude Lansink (2020) and Pede et al. (2018)
among others investigate the role of spatial dependency in the
technical efficiency estimates by using georeferenced coordinates
to account for spatial heterogeneity. The empirical model is
given by:

ln
DI
i

x1,i
= β0 +

D
∑

d

βdFdi + β1D1i + β2D2i +

K
∑

k

βk∗ lnx
∗
ki +

1

2

K
∑

k

K
∑

l

βk∗l∗ lnx
∗
kilnx

∗
li +

M
∑

m

βmlnymi

+
1

2

M
∑

m

M
∑

n

βmnlnymilnyni +
1

2

K
∑

k

M
∑

m

βkmlnx
∗
kilnyni (9)

where x∗s are input quantities normalized by x1, ys are output
quantities, Fs are physical soil production characteristics, and i
indexes farms. D1 is a dummy variable for traditional vegetable
production with D1 = 1 if yTrad = 0 and D1 = 0 if yTrad > 0;
and y1 = Max

(

yTrad,D1

)

. Similarly, D2 is a dummy variable for
non-traditional vegetable production with D2 = 1 if yNTrad = 0
and D2 = 0 if yNTrad > 0; and y2 = Max

(

yNTrad,D2

)

. Using (8),
we obtain the following estimable form:

−lnx1,i = β0 +

D
∑

d

βdFdi + β1D1i + β2D2i +

K
∑

k

βk∗ lnx
∗
ki +

1

2

K
∑

k

K
∑

l

βk∗ l∗ lnx
∗
kilnx

∗
li +

M
∑

m

βmlnymi

+
1

2

M
∑

m

M
∑

n

βmnlnymilnyni +
1

2

K
∑

k

K
∑

m

βkmlnx
∗
kilnyni − uIi + vi

(10a)

The modified non-neutral efficiency part of the model with
interactions is given by:

uIi = δ0 + δISpei +

K
∑

k

δIkSpeilnx
∗
ki +

J
∑

j

δIjSpeiAji + εi (10b)

Spe refers to specialization index and As are farm characteristics;
x∗s are the same as defined in (9).

Economies of Scale and Economies of
Scope
Since the input distance function is homogeneous of degree one
in inputs, from equation (10a), the input elasticity for output ym,

−εDI ,ym = − ∂ lnDI

∂ lnym
= ∂ lnx1

∂ lnym
= εx,ym , represents the percent

change in x1 from a 1% change in ym, holding all input ratios x
∗

(and thus input composition) constant. The scale elasticity can
be calculated as the negative sum of the input-output elasticities;

that is, −εDI ,y = −
∑M

1
∂ lnDI

∂ lnym
=

∑M
1

∂ lnx1
∂ lnym

=
∑M

1 εx,ym = εx,y.
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The measure of scale economies is indicated by the short-fall of
εX,Y from unity.

In a multiproduct production technology, economies of scope
exist when, for outputs y1 and y2, the average cost of joint
production is less than the cost of producing each output
separately (Teece, 1980; Panzar and Willig, 1981; Cowing and
Holtmann, 1983). That is, economies of scope are defined as:

EOS = C
(

y1, 0
)

+ C
(

0, y2
)

− C
(

y1, y2
)

(11)

where C
(

y1, y2
)

is the cost of producing both outputs
simultaneously and C

(

y1, 0
)

and C
(

0, y2
)

denote the cost of
producing the two outputs separately. Economies of scope exist
if EOS > 0, in which case the cost of producing the outputs
separately is higher than the cost of producing them jointly.

More generally, a sufficient condition for the presence of
economies of scope between outputsm and n is:

∂2C (·)

∂ym∂yn
< 0, form 6= n (12)

where C (·) is the variable cost function. This expression implies
that the cost function exhibits cost complementarities.

The input distance function and the cost function are dual
to one another, meaning that the information contained in
the input distance function about the production technology
is identical to the cost function (Färe and Primont, 1995, p.
47–48). In this study, economies of scope are measured using
a primal input distance function. Consequently, we use the
dual measure of economies of scope approach developed by
Hajargasht et al. (2008) and extended by Färe and Karagiannis
(2018). In this paper, the derivative-based measure of economies
of scope is obtained by exploiting the duality between the shadow
cost function and the input distance function. Focusing on the
sufficient condition in (13), by Hajargasht et al. (2008) derived
a general expression to calculate the economies of scope between
outputs i and j using the derivatives of the input distance function
as follows:

Cyy = C

{

DI
yD

I′

y − DI
yy + DI

yx

[

DI
xx + DI

xD
I′

x

]−1
DI
xy

}

(13)

where subscripts denote partial differentiation.
From this equation, one can find that information on the sign

of the second cross partial derivatives of outputs, DI
yy (m, n), is

not sufficient to conclude if scope economies exist or not. As
shown by Hajargasht et al. (2008), if the technology satisfies
certain restrictions, such as input homotheticity or global
constant returns to scale, simpler expressions are obtained. A

value of (14) less than zero (i.e.,
Cyy

C < 0) indicates the presence
of economies of scope, meaning that a vegetable producer has
an incentive to diversify. In contrast, a value greater than zero

(i.e.,
Cyy

C > 0) represents diseconomies of scope, implying that
a producer has an incentive to specialize in the production of
one output category. Following Hajargasht et al. (2006), if all
inputs are scaled prior to estimating the input Translog distance

function so that their means are equal to one, then the log of these
means are equal to zero. Hence, the first derivatives are:

∂D

∂xm
= βk and

∂D

∂ym
= βm (14)

and the second derivatives become:

∂2D

∂x2
k

= β2
k − βk + βkk,

∂2D

∂xk∂xl
= βkβl + βkl and

∂2D

∂xk∂ym

= βkβm + βkm (15)

The matrix of scope measures is:







β1 − β11 · · · β1m

...
. . .

...

−βm1 · · · βm − βmm






+







β1β1 · · · βkβ1 + βk1

...
. . .

...

β1βm + β1m · · · βkβm + βkm













2β2
1 + β11 − β1 · · · 2β1βk + β1k

...
. . .

...

2βkβ1 + βk1 · · · 2β2
k
+ β1k − βk







−1







β1β1 + β11 · · · β1βm + β1m

...
. . .

...

βkβ1 + βk1 · · · βkβm + βkm






(16)

Those formulas are used to estimate the economies of scope of
vegetable producers.

DATA AND SPECIFICATION OF THE
MODEL VARIABLES

Data used in this study are part of a broader survey on the
structural characteristics of the vegetable sector in southern
Benin. The survey is based on farm-level cross-section data for
the agricultural year 2009/2010. A multistage stratified random
sampling technique was employed to locate the departments,
the districts in each of the four departments, and the sample
households. The sample vegetable producers were selected based
on the information on the total number of vegetable producers
including their farms size categories, which were obtained from
a census survey in each district. Relative to the importance of
vegetable production statistics from the Ministry of Agricultural
of Benin, two districts out of six were selected in the department
of Mono, two out of nine in the department of Oueme, one out
of eight in the department of Altantique and one out one in the
department of Littoral. In the department of Mono, the districts
of Agoue and Grand-Popo were selected; the districts of Porto-
Novo and Seme-Kpodji in the department of Oueme, the district
of Ouidah in the department of Atlantique and the district of
Cotonou in the department of Littoral. The census survey data
gave a total of 1,247 vegetable producers in the six districts with
217 in Agoue, 149 in Grand-Popo, 115 in Porto-Novo, 77 in
Seme-Kpodji, 92 in Ouidah and 597 in Cotonou. Then a stratified
random sampling procedure was applied using a formula from
Whitley and Ball (2002) with a 5% error limit. The target sample
size of 25% of the total number of vegetable producers was
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then applied in each selected district. Hence, data were collected
from 310 vegetable producers. Finally, 239 vegetable producers
for which data were available for all variables were retained in
this study. The 71 vegetable producers were dropped because
there was no harvest information, they had cultivated other crops
than vegetables like maize or there was inconsistent information.
Vegetable producers are usually involved in producing two
categories of vegetables, i.e., traditional and non-traditional
vegetables. The data set contains 23 non-traditional (yNTrad)
vegetable crops and 10 traditional (yTrad) vegetable crops (see
Achigan-Dako et al., 2009 for details on grouping).2 Four inputs
are distinguished: cost of materials (xMat) that include fertilizer,
pesticides, seeds, and other miscellaneous expenses; farm labor
in hours (xLab); capital (xCap) measured in replacement cost
and farmland in hectares (xLand). Two soil fertility indicators
(dummy) variables are used as additional variables in the
specification of the distance function to account for spatial
heterogeneity of vegetables production. High soil fertility is
expected to lead, ceteris paribus, to lower input requirements
for the production of a given amount output and, thus, have
a positive effect on the value of the input distance function.
We define three dummies variable for soil fertility namely best,
medium, and low to control for farm space heterogeneity. We set
low soil fertility variable as a reference and include the remaining
two soil fertility dummies in the estimations.

The specialization variable is specified as a normalized
Hirschman index of the concentration of output shares for each
vegetable crop. This index discriminates between producers who
are relatively more specialized. It is a widely used measure of
concentration and was used, for example, by Al-Marhubi (2000)
to specify the concentration of output shares in his analysis of
export diversification and growth. Following Al-Marhubi (2000,
p. 561), the normalized Hirschmann index is defined as follows:

Hi =

√

∑33
j

(

qj
∑33

j qj

)2

−

√

1
33

1−
√

1
33

(17)

where i is the producer index, qj represents the producer output
quantity of vegetable crop j, and 33 is the number of vegetables
produced, as they are recorded in the data set. The Hirschmann
index is normalized to assume values ranging from 0 to 1.
Note that a normalized Hirschmann index of 1 indicates perfect
specialization. Likewise, a value closer to 0 signifies a more
diversified vegetable crop production.

Based on the existing literature, farmers’ socio-economic
characteristics are included in the model. These are: producers’
education (EDUC), and farming experience (EXP), both
measured in years. Most empirical studies found that farm

2The term non-traditional vegetable refers to species such as lettuce, cabbage,

courgette, cucumber, beet, carrot, radish, turnip, french bean, melon, squash,

watermelon, celery, chicory, chives, coriander, dill, fennel, garden mint, leek,

overripe, parsley, rocket and thyme. Species such as tomato, solanum, okra, pepper,

amaranth, corchorus, bitterleaf, african basil, cockscomb and onion are considered

as traditional vegetables.

experience and producer education have the strongest impact
on the producer management practices. For example, Pope
and Prescott (1980) found that less experienced farmers (or
younger farmers) are more specialized as they may start small
and specialized operations, and perhaps become more diversified
as they expand their operations. Katchova (2005) found that
more educated farmers have higher excess farm values. The
ratios of the amount of credit received by a producer over total
revenue (MCRED), and the proportion of vegetables sold to the
wholesaler (WHOLE) are included to represent socioeconomic
characteristics of farms. Vegetable cultivation requires more
purchased inputs such as fertilizers, pesticides, and irrigation
water, increasing the need for liquidity. Vegetable cultivation also
demands more labor than field crops, such as cereals and a large
proportion of labor in vegetable cultivation is hired labor (Ali
and Abedullah, 2002). All these conditions increase the demand
for liquidity in vegetable production. Consequently, more loans
are required to finance vegetable production. Vegetables have
a shorter shelf life than cereal crops, so strong relationships
between producers and buyers are essential to ensure a timely
delivery to the market. Hence, the proportion of vegetable
output sold to wholesalers is included in the model as an
explanatory variable. Table 1 presents summary statistics for
all farms. Aggregate non-traditional vegetable outputs represent
55% of the total vegetable output share, meaning that producing
non-traditional vegetables is one of the strategic decisions made
by producers.

In our model specification in equation (10a), capital is
set as the normalizing input x1 so that all other inputs are
represented relative to capital. All input and output variables
are mean-corrected prior to estimation, so that the coefficients
of the first-order terms can be directly interpreted as distance
elasticities evaluated at the geometric mean of the data. That
is, each output and input variable has been divided by its
geometric mean.

EMPIRICAL RESULTS

Economies of Scale and Economies of
Scope
The model is estimated using Bayesian methods and Markov
chain Monte Carlo (MCMC) techniques. The data are processed
in R, and sampling from the posterior distribution of the
parameters was performed in WinBUGS, which was called from
R’s “R2WinBUGS” interface. We also make use of a Bayesian
econometrics software (BayES) which is a software designed
for performing Bayesian inference using MCMC techniques to
estimate the stochastic frontier models (Emvalomatis, 2020).
We place vague priors on all parameters in the model. In
particular, we use Normal priors for the parameters associated
with independent variables, either in the frontier or in the
specification of the technical efficiency terms, and Gamma
(0.001; 0.001) priors for the inverses of the variance parameters.
Estimation involves 100,000 iterations, with a burn-in period
of 20,000 iterations. Posterior means and standard deviations
of the parameters of the Translog specification of the input
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TABLE 1 | Descriptive statistics of the variablesa (n = 239).

Variable Variable Meanb St. dev. Min. Max.

Economic data

Aggregate output for traditional vegetablesc (103 F CFA) yTrad 2,269 3,767 5.136 2.40E+4

Aggregate output for non-traditional vegetablesc (103 F CFA) yNTrad 1,574 3,386 24.355 3.42E+4

Total output (103 FCFA) – 3,818 6,585 141.70 4.67E+4

Materials (103 F CFA) xMat 367.431 488.614 14.750 4,712

Labor (Hours) xLab 314.861 125.472 83.294 912.307

Capital (103 F CFA) xCap 465.844 525.613 1.350 2,739

Land area (ha) xLand 0.4879 0.9824 0.0048 10.5

Specialization index SPE 0.5748 0.1677 0.2407 1

Dummy for traditional vegetables d_Trad 0 = 02.09%

1 = 97.91%

Dummy for non-traditional vegetables d_NTrad 0 =18.83%

1 = 81.17%

Farm characteristics

Years of management experience in vegetables production (Year) EXP 14.0042 9.2757 1 40

Number of years spent in formal education by the producer (Year) EDUC 6.9539 5.2574 0 21

Ratio of credit received over revenue (Ratio) MCRED 0.0758 0.1372 0 0.8241

Fraction of vegetables output sold to Wholesaler WHOLE 0.39361 0.4470 0 1

aDescriptive statistics calculated for non-zero output observations.
bFrequencies are reported for dummy variables.
cAggregate output consists of the average price of crops times the quantity produced.

$1 US = 494.030 F CFA in 2010 or 1 Eur = 655.957 F CFA.

distance function based upon the remaining 80,000 iterations are
reported in Table 2. Out of the 25 estimates, 15 had standard
deviations that are small relative to theirs means, indicating
that, overall, the model is well-specified. The results show that
the absolute value of all elasticities (first-order terms for input
and output variables) are between zero and one and possess the
expected signs at the geometric mean. Hence, the input distance
function satisfies the property of monotonicity, i.e., the input
distance function is non-decreasing in inputs and non-increasing
in outputs.

The fact that the first-order terms for inputs are positive
indicates that extra input increases the distance to the frontier,
ceteris paribus and the negative first-order terms for outputs
means that extra output decreases the distance to the frontier,
ceteris paribus. Returns to scale at the geometric mean of the
data is calculated as the negative of the sum of the first-
order output coefficients and has a mean of 0.14, with a 95%
credible interval of (0.04; 0.25). The result of returns to scale
indicates possible presence of increasing returns to scale at the
sample mean. The null hypothesis of constant returns to scale
(CRS) is then rejected. Additionally, the inverse of this sum
is equal to 7.14, providing a measure of Ray scale economies,
suggesting the presence of increasing returns to scale. Thus, the
transformation process described in our model may be thought
of as exhibiting increasing returns to scale. This finding is
consistent with results in many other empirical analyses of small-
scale farms (e.g., Coelli and Fleming, 2004) and implies that
vegetable farms are likely to benefit from scale increases. The
individual output contributions underlying the scale elasticity
show that both categories of output contributed significantly to
input use. The result indicates that traditional vegetables require
a greater input share than non-traditional vegetables. However,

both outputs appear to have almost similar output share (45%
for traditional vegetables and 55% for non-traditional vegetables)
(Table 1). This result is important for computing the economies
of scope in the next paragraph as the calculation of economies
of scope are based on an input distance function that exhibits
variable returns to scale. The Pearson correlation test indicates

that the two outputs are not correlated. However, the theory of

diversification points out that even though a Pearson correlation

test shows that two outputs are not correlated, the production of

one can be reduced if uncertainty over the second output rises

(Just and Pope, 1978).
To further investigate the implications of our estimates about

output complementarities, we now focus on the economies of
scope, as presented in equation (16). Since the data are mean-
corrected prior to the estimation of the distance function, the
presence of economies of scope is evaluated at the geometric

means of the sample data. The expression of
Cyy(1,2)

C evaluated at
the sample means of the data is equal to −0.038 with a standard
deviation of 5.17 and 95% credible interval of (−0.23; 0.18). Since
the credible interval includes zero, we conclude that it is possible
that there are neither positive nor negative EOS. As indicated
above, a value of zero shows the absence of any cost gain in
diversification whereas a value less than zero would mean a cost
gain. The EOS value implies that there is no significant difference
in terms of cost savings in producing both categories of vegetables
or specializing in only one. In order words, the result shows

no economic performance difference between specialized and

diversified vegetable producers. Therefore, vegetable producers

have no incentive for specialization or diversification in the
production of one of the two outputs categories defined in
this study.
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TABLE 2 | Bayesian MCMC estimates of the Translog input distance function frontier.

Variable namea Coefficients Posterior

Mean

S.D 95% credible

interval

Variable namea Coefficients Posterior

Mean

S.D. 95% credible

interval

Constant β0 −12.165 0.057 (−12.260;

−11.070)

ln(Traditional veg.)

×ln(Non-Traditional veg.)

βTrad_NTrad −0.011 0.026 (−0.054; 0.032)

ln(Labor/Capital) βLab 0.703 0.040 (0.637; 0.769) ln(Traditional veg.)

×ln(Labor/Capital)

βTrad_Lab −0.101 0.032 (−0.154; −0.048)

ln(Materials/Capital) βMat 0.255 0.038 (0.192; 0.319) ln(Traditional veg.)

×ln(Materials/Capital)

βTrad_Mat 0.089 0.031 (0.036; 0.141)

ln(Land/Capital) βLand 0.016 0.031 (−0.034; 0.068) ln(Traditional veg.)

×ln(Land/Capital)

βTrad_Land 0.008 0.020 (−0.025; 0.048)

ln(Labor/Capital)2 βLab_Lab −0.020 0.034 (−0.077; 0.036) ln(Non-Traditional veg.)

×ln(Labor/Capital)

βNTrad_Lab 0.005 0.049 (−0.076; 0.087)

ln(Materials/Capital)2 βMat_Mat 0.011 0.027 (−0.043; −0.007) ln(Non-Traditional veg.)

×ln(Materials/Capital)

βNTrad_Mat −0.013 0.039 (−0.077; 0.052)

ln(Land/Capital)2 βLand_Land −0.024 0.012 (−0.044; −0.003) ln(Non-Traditional veg.)

×ln(Land/Capital)

βNTrad_Land 0.060 0.034 (0.003; 0.117)

Dummy for Traditional veg. βd_Trad 0.385 0.152 (0.013; 0.640) ln(Labor/Capital)

×ln(Materials/Capital)

βLab_Mat 0.008 0.050 (−0.075; 0.092)

Dummy for Non-Traditional

veg.

βd_NTrad 0.195 0.062 (0.094; 0.298) ln(Labor/Capital)

×ln(Land/Capital)

βLab_Land 0.155 0.043 (0.086; 0.228)

ln(Traditional veg.) βTrad −0.139 0.022 (−0.178; −0.010) ln(Materials/Capital)

×ln(Land/Capital)

βMat_Land −0.116 0.042 (−0.186; −0.048)

ln(Non-Traditional veg.) βNTrad −0.094 0.025 (−0.137; −0.052) Dummy_Best soil fertility βB_Soil −0.042 0.065 (−0.150; 0.064)

ln(Traditional veg.)2 βTrad_Trad −0.033 0.012 (−0.053; −0.013) Dummy_Medium soil

fertility

βM_Soil −0.003 0.047 (−0.082; 0.074)

ln(Non-Traditional veg.)2 βNTrad_NTrad −0.006 0.021 (−0.041; 0.029)

Return to scale RTS 0.251 (0.105; 0.396)

Economies of scope EOS −0.0083 (−0.414; 0.389)

Log-likelihood value log–ML −209.84

Number of obs. 239

aRTS =
∑M

m (∂ lnDI/∂ lnym); veg. stands for vegetables.

Although a positive effect of soil fertility on the value
of the distance function was expected, both parameters
associated with the dummy variables associated with high
and medium fertility were negative, on average, but their
95% credible intervals contain zero. Thus, soil fertility was
not found to have an impact on the input requirements
set and this could be due to farmers adjusting both the
types of vegetables they are producing, as well as the
proportions at which they are using inputs to counterbalance
the effects of low soil fertility. More detailed fertility indexes,
specific to the requirements of each vegetable could produce
different results.

Impact of Specialization on Technical
Efficiency
Table 3 provides the posterior means, the standard deviations of
the parameters and the 95% credible intervals for the non-neutral
technical efficiency effects.

Row 2 of Table 4 shows the average technical efficiency
and its variation. The result reveals a positive skewness in
the distribution of technical efficiency. The average technical
efficiency of the sample is 94.27%, implying that the same output
can be produced with 94% of the observed inputs. In addition,
Table 4 reports the marginal effects of crop specialization on the
technical efficiency, computed using (10b). The results suggest a

positive effect of specialization on technical efficiency. This result
seems to corroborate the decreasing technical efficiency of most
diversified farms. As indicated by Wang (2002), the opposite
marginal effects in these two quartiles show that specialization
in vegetable outputs production affects technical efficiency non-
monotonically in the sample. Consequently, the results cannot
tell more about when the impact of crop specialization turns
from negative to positive. Since we cannot interpret directly
the meaning of the marginal effects, we also compute the
elasticity of technical efficiency with respect to specialization. On
average, the contribution of vegetable output specialization to
technical efficiency is found to be low, but different from zero.
Specifically, the result shows that a 1% increase in specialization
is associated with a 0.79% increase in technical efficiency. The
result implies that, on average, specialization generates gains in
technical efficiency. This suggests that the costs of diversifying
outweigh the benefits, and specializing is the preferred strategy,
at least from a technical efficiency perspective and ignoring the
risk-reducing effect of diversification. The results are consistent

with the findings of many empirical works, indicating that

diversification often requires specialized equipment and that

diversified farms accumulate fewer assets than specialized farms
(Harwood et al., 1999). In line with Katchova (2005), the results
suggest that diversified vegetable farms had a lower excess value
than specialized farms. The results are also in line with the
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TABLE 3 | Bayesian estimates of the efficiency effect model (non-neutral specification).a

Variablesb Coefficients Posterior Mean S.D. 95% credible interval

Constant δ0 3.043 0.846 (2.132; 5.040)

Specialization δSpe −0.032 7.237 (−12.766; 11.448)

Specialization × ln(Labor/Capital) δSpe_Lab 2.681 7.362 (−8.857; 15.080)

Specialization × ln(Materials/Capital) δSpe_Mat −1.161 7.824 (−14.267; 11.197)

Specialization × ln(Land/Capital) δSpe_Land −6.933 7.433 (−18.136; 5.896)

Specialization × Experience δSpe_Exp 1.846 5.519 (−7.043; 10.934)

Specialization × Education δSpe_Educ −7.595 4.972 (−16.154; 0.098)

Specialization × Wholesaler δSpe_Whole −10.533 7.014 (−21.406; 1.737)

Specialization × Credit δSpe_Mcred −4.397 5.574 (−11.667; 4.371)

Tau τ 15.286 2.002 (12.252; 18.752)

aWe have also experimented an alternative model by adding the four farm characteristics variables standing alone into the above model to check the individual effects of these variables

and encounter omitted variable bias. But this model couldn’t converge because of high multicollinearity problems.
bSpecialization stands for Specialization index; Experience for years of management experience in vegetable production; Education for Number of year spent in formal education by the

producer; Credit for ratio of amount of credit received over total revenue; Wholesaler for fraction of vegetable sold to wholesaler.

TABLE 4 | Distribution of technical efficiency and the marginal effect and elasticity

of technical efficiency with respect to specialization.

Mean Standard Deviation

Technical efficiency (TE) 0.942 0.058

Marginal effect of Specialization (ME) 0.8514 0.0281

Elasticity with respect to Specialization (EL) 0.7940 0.0169

finding of Llewelyn and Williams (1996) for irrigated farms in
Indonesia, that greater diversification is associated with lower
technical efficiency. Since vegetables are cash crops, the result
stresses that diversification decreases technical efficiency. The
reason for our finding is that the two categories of vegetables
are grown in the same period and compete for the same
inputs (labor, pesticides, fertilizers and water) and require similar
managerial skills. Like in Rahman (2009) study of smallholders in
Bangladesh, the worsening evidence of diversification economies
observed between traditional and non-traditional vegetables is
largely due to the practice of producing both categories of crops.
From the survey results, it turns out that vegetable production
is generally input intensive regardless of the type of vegetable
considered. However, this result is in contrast with Coelli and
Fleming (2004) who found that greater specialization leads to
lower technical efficiency. In our paper, the two outputs y1 and
y2 are already group of outputs. Thus, if there are any periods
in which a crop requires a lot of labor while another crop
none, farmers can exploit that by diversifying only within y1
and y2.

CONCLUSION AND POLICY
IMPLICATIONS

This paper provides an empirical evaluation of the impact
of crop specialization on vegetable producers’ economic

performance in Benin. The challenge in this study was to assess
whether changes in farm orientation through diversification
or specialization can be attributed to the search for greater
economic performance, while also controlling for spatial
heterogeneity. We based our estimation on a non-neutral
stochastic frontier model to test and consider the adjustment
of input utilization with output choices and estimate the
effect of specialization on the production technology and
performance. Duality theory is used to obtain a measure
of economies of scope without requiring the econometric
estimation of a cost function. The article employs a parametric
method in estimating an input distance function using a
modified Translog specification and a truncated efficiency
regression, representing efficiency in production. The results
show a prevalence of increasing returns to scale. The results
also provide evidence for the absence of economies of

scope, indicating that vegetable producers have a relative
low incentive for specialization in either traditional or non-
traditional vegetables.

The contribution of vegetable output specialization to

technical efficiency is found to be quite low, but significant.
Specifically, a 1% increase in crop specialization is associated with
a 0.79% increase in technical efficiency.

Although soil quality is important condition, the results show
that farmers are adjusting the proportions at which they are
using manure and inorganic fertilizers to counterbalance the
effects of low soil fertility. Since soil types are obtained from
farmers’ perception, we recommend further research where and

appropriate soil test be carried out rather than relying on the

perception of the farmers as indicated by Okoror and Areal

(2020).
A limitation of this study is that, although we observe

farmers producing 33 crops, we aggregate them into two types

of outputs (traditional and non-traditional). This was done due
to the number of parameters that need to be estimated growing
at an exponential level in the number of output categories.
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However, with more data points one could consider more
detailed classifications of output, for example leafy vegetables,
fruits, roots and tubers.

Our results suggest that policy makers aiming at food security
and agricultural growth may also enhance specialization. The
policy implication of this paper is that agricultural policy might
also encourage specialization in high value-added products like
non-traditional vegetables.
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