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The physiological processes underlying fruit ripening can lead to different electrical

signatures at each ripening stage, making it possible to classify tomato fruit through

the analysis of electrical signals. Here, the electrical activity of tomato fruit (Solanum

lycopersicum var. cerasiforme) during ripening was investigated as tissue voltage

variations, and Machine Learning (ML) techniques were used for the classification of

different ripening stages. Tomato fruit was harvested at the mature green stage and

placed in a Faraday’s cage under laboratory-controlled conditions. Two electrodes

per fruit were inserted 1 cm apart from each other. The measures were carried out

continuously until the entire fruits reached the light red stage. The time series were

analyzed by the following techniques: Fast Fourier Transform (FFT), Wavelet Transform,

Power Spectral Density (PSD), and Approximate Entropy. Descriptive analysis from FFT,

PSD, and Wavelet Transform were used for PCA (Principal Component Analysis). Finally,

ApEn, PCA1, PCA2, and PCA3 were obtained. These features were used in ML analyses

for looking for classifiable patterns of the three different ripening stages: mature green,

breaker, and light red. The results showed that it is possible to classify the ripening

stages using the fruit’s electrical activity. It was also observed, using precision, sensitivity,

and F1-score techniques, that the breaker stage was the most classifiable among all

stages. It was found a more accurate distinction between mature green × breaker than

between breaker × light red. The ML techniques used seem to be a novel tool for

classifying ripening stages. The features obtained from electrophysiological time series

have the potential to be used for supervised training, being able to help in more accurate

classification of fruit ripening stages.

Keywords: Solanum lycopersicum var. cerasiforme, post-harvest technology, plant electrophysiology, electrome,

fruit electrical signals

INTRODUCTION

Ripening is a part of fruit development in which biochemical and physiological changes occur,
making the fruit more attractive to seed dispersers and consumers (Prasanna et al., 2007; Corpas
et al., 2018). As the fruit ripens, especially if it is fleshy, it becomes more palatable, soft, and colorful
(there are exceptions, such as the avocado, which remains green). Intense metabolic activities
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are underlying these sensory changes, such as increased
respiration, chlorophyll degradation, biosynthesis of carotenoids,
anthocyanins, essential oils, and flavor and aroma components,
increased activity of cell wall-degrading enzymes, modification
in carbohydrate and organic acid profile, and a transient increase
in ethylene production (Prasanna et al., 2007; Batista-Silva et al.,
2018; Wang et al., 2018; Forlani et al., 2019).

Fleshy fruits are usually categorized in climacteric and
non-climacteric, according to the ripening pattern in terms
of respiratory rate and the production of the phytohormone
ethylene (Pérez-Llorca et al., 2019). In climacteric fruits, there is
an increase in respiratory rate accompanied by a peak in ethylene
production. The fruits that present this pattern of ripeness can
be harvested green, as this characteristic allows them to ripen
detached from the plant. Non-climacteric fruits do not show
an increase in respiration and ethylene synthesis, and generally
the respiratory rate decreases as the ripening progresses. This
type of fruit must end the ripening process connected to the
plant (Corpas et al., 2018). Tomato (Solanum lycopersicum L.)
is an example of climacteric fruit widely used as a model in
research that involves ripening and ethylene signaling (Klee and
Giovannoni, 2011).

The ripening process in tomatoes has different stages which
are generally classified according to the color of the fruit’s surface
(López Camelo and Gómez, 2004; El-Bendary et al., 2015). The
USDA (United States Department of Agriculture) has established
standards for the classification of fresh tomatoes based on the
external color of the fruit through visual appreciation. This
system classifies fresh tomatoes into six categories, according to
the approximate percentage of green color of the surface: green
(100% green), breaker (there is a break in the color with lesser
than 10% of other than green color), turning (10–30% of the
surface is not green), pink (30–60% of the surface is not green),
light red (60–90% of the surface is not green) and red (more than
90% of the surface is not green) (USDA, 2005).

It is worth mentioning that not all varieties of tomatoes
undergo all these stages, and these transitions may not be easily
visible to human eyes. In addition to the marked difference in
color between the stages, which involves carotenoid synthesis
and chlorophyll degradation in tomatoes, there are other
characteristics of each stage. Regarding respiration and ethylene
synthesis, the breaker stage is the one with a marked increase,
with the exchange of system 1 of its synthesis for system 2,
which is more intense and autocatalytic (Liu et al., 2015). The
activation of enzymes related to fruit softening occurs in the
early ripening stages. However, it becomes prominent in the later
stages (Forlani et al., 2019). The activity of pectin methylesterase
(PME), for example, increases as mature green tomatoes pass
through different color stages to become full red. Unripe fruits
are rich in PME, while ripe fruits are rich in hydrolase enzymes.
Also, cell wall hydrolases show a pick of activity in the climacteric
(Prasanna et al., 2007). The search for better classification
strategies for fruit ripening stages is a constant target of research.
This is important to determine the best harvesting point and thus
avoid losses. Techniques with chlorophyll fluorescence induction
(Abdelhamid et al., 2020) and Machine Learning (ML) using

supervised training with images (El-Bendary et al., 2015) are
some examples of targeted studies to monitoring and classifying
ripening stages using different strategies.

All the physiological processes and biochemical alterations
that occur during ripening can attribute to each stage “electrical
signatures,” that arise from the movement of ions, electrons,
and protons in the cells and tissues (de Toledo et al., 2019).
In addition to classic hydraulic and chemical signals, such
as phytohormones and reactive oxygen species (ROS), it is
known that electrical signals perform several functions in plants
(Białasek et al., 2017; Gao et al., 2019; Farmer et al., 2020;
Volana Randriamandimbisoa et al., 2020). They are generated
by the transient imbalance in membrane potential, caused by
the influx/efflux of ions and H+ by ion channels, plasma
membrane transporters and electrogenic pumps (Fromm and
Lautner, 2007; Zimmermann et al., 2009; Sukhov et al., 2014;
Vodeneev et al., 2016; de Toledo et al., 2019). Studies that focus
on characteristics of individual signals from one or a few cells,
such as action potentials (APs) and variation potentials (VPs),
can underestimate the complexity of many overlapping electrical
signals operating simultaneously, which creates a web of systemic
information where multiple electrical signals are layered in time
and space (De Loof, 2016; Souza et al., 2017; Debono and Souza,
2019). This is the “electrome,” i.e., the totality of ionic currents
of any living entity, from the cell up to the whole organism
level (De Loof, 2016). Thus, based on this general definition,
the term “plant electrome” was proposed. It corresponds to the
plants’ bioelectrical activity measured as micro-voltage changes
in stimulated or non-stimulated tissues (Saraiva et al., 2017; de
Toledo et al., 2019).

Due to the high complexity of a typical plant electrome profile,
ML techniques emerge as a powerful tool for data classification
of plant electrophysiological recordings (Chatterjee et al., 2015;
Pereira et al., 2018; Tran et al., 2019; Simmi et al., 2020; Parise
et al., 2021; Reissig et al., 2021). ML is already being used in some
potential applications in fruit ripening, but mostly in studies
using images for training and ML classification (Taghadomi-
Saberi et al., 2018; Vaviya et al., 2019; Alam Siddiquee et al.,
2020; Cho et al., 2020). Several ML features for the classification
of plant electrical signals, and their changes under different
environmental stimuli, have already been successfully studied
and employed (Chatterjee et al., 2015, 2018; Chen et al.,
2016). The study developed by Souza et al. (2017) opened new
possibilities to test new features for classification by ML in data
as complex as the electrome of the plant. They proposed that
the electrical signals captured in the plant can exhibit a self-
organized critical state and complex non-linear behavior (Souza
et al., 2017).

Considering the differences in the fruit physiology and the
physicochemical processes underlying the changes at different
ripening stages, it would be expected that the electrical activity
would change accordingly. In this study, we propose the use of
the fruit electrical activity, more precisely, the analysis of the
electrome recordings as a source for parameters to support the
classification of the ripening stages by ML techniques. Thus, the
goal of this study was to differentiate tomato ripening stages using
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the fruit electrome as a feature for the training and classification
of ML techniques.

MATERIALS AND METHODS

Plant Material and Experimental
Conditions
Seeds of cherry tomato (Solanum lycopersicum var. cerasiforme)
were germinated in a polystyrene honeycomb germination box,
filled with a commercial organic substrate (kept moist by
spraying distilled water daily), where they remained for 7 days
in a germinating chamber (25◦C, photoperiod of 12 h). After
this period, the seedlings were transplanted to 1.0 L plastic pots
filled with commercial organic substrate. The tomato plants were
grown in a greenhouse at the campus of Capão do Leão of the
Federal University of Pelotas (31◦ 52′ 32′′ S and 52◦ 21′ 24′′ W,
altitude 13m). The average temperature in the greenhouse during
the experimental period was 28.5 ± 12.9◦C and the irradiance,
from natural light, was on average 800 µmol photons m−2 s−1

(Reissig et al., 2018).
After transplantation, the plants were watered on alternate

days (100mL) and supplied with 50mL of nutrient solution
(Hoagland and Arnon, 1950) three times a week. When the
fruits were green and fully established (before progressing to the
breaker stage) they were harvested randomly from 50 tomato
plants and transferred to laboratory conditions (25.0 ± 2.0◦C,
photoperiod of 12 h) where the experiment was carried on. In
each essay, four fruits were placed in a Faraday’s cage (Figure 1)
and a pair of needle electrodes (EL452 model; Biopac Systems,
Goleta, CA, EUA) were inserted 1 cm apart from each other (over
the vascular bundles that were visible), 1 day before the signal
recording, for acclimation. Five repetitions with four fruits each
were made, totaling 20 fruit samples. The fruit ripening stages
were categorized as follows: mature green (MG), breaker (BR)
and light red (LR) (Gonzalez et al., 2015; Reissig et al., 2020). We
recorded the fruits’ electrome while they transitioned through all
the ripening stages, fromMG to LR. Consequently, the electrome
of each replicate refers to the MG, BR, and LR of the same fruits.
The bioelectrical signals were acquired during the fruit ripening
in data acquisitions throughout 24 h until all fruits were in the
LR stage.

Data Acquisition
Electrical signals were recorded with the electronic system for
data acquisition MP36 (Biopac Systems, Goleta, CA, EUA),
composed of four channels with high input impedance (10
G�). The signals were acquired by fixing a sampling rate of
fs = 62.5 Hz with two filters, one high-pass (0.5Hz cut-off
frequency) and the other low-pass (1.5 kHz cut-off frequency).
The bioelectrical runs were analyzed as voltage variation (µV)
time series 1V = {1V1, 1V2, . . . , 1VN} in which 1V i is the
difference of potential between the inserted electrodes, scored
in each 1

fs
time interval, and N is the total length of the series.

Also, one pair of electrodes was left open throughout all the
essays as a control of the environment. An open electrode is a
reference, i.e., a pair of electrodes not connected to the plants

left inside the Faraday cage that records environmental noise
and noise intrinsic to the equipment. For the open electrodes,
the signals remained stable throughout the period, showing that
the variation in signal complexity was not due to the equipment.
Open electrode signals show a typical Gaussian noise with a lower
amplitude than the plant signal baseline (Saraiva et al., 2017).
Beyond visual inspection (see Supplementary Figure 1), the time
series were analyzed with different methods to characterize the
temporal dynamics of the signals during the transition of the
ripening stages of tomato fruits.

Data Analyses and Machine Learning
Classification Methods
Feature’s Acquisition
For the ML analyses, each time series (TS) was split into 10
interchangeable parts, with a lag of 30%. This is a necessary
procedure for increasing the sample size. In the end, a total of
1,480 overlapping time series were obtained (Pereira et al., 2018).
They were divided into three classes: Class MG (Mature Green)
with 470 samples; Class BR (Breaker) with 490 samples; Class LR
(Light Red) with 520 samples.

All the calculations and data processing applied to the
time series analyses were performed in Python (Van Rossum
and Drake, 2009). The code libraries used were: Numpy
(Harris et al., 2020) and Pandas (McKinney, 2010) for data
manipulation; Scipy, Obspy, and Math for mathematical
calculations; Matplotlib for creating graphics; Sklearn and
Statsmodels for machine learning (Pedregosa et al., 2020;
Virtanen et al., 2020).

Afterwards, the approximate entropy (ApEn), Fourier
transform (FFT), Power Spectral Density (PSD), and Wavelets
were calculated for each sample. The FFT decomposes the time
series data into a combination of signals of different frequencies,
allowing to verify which frequencies are noise and which are
data. Since the electrophysiological series is the sum of multiple
frequencies, PSD was calculated. Thus, it is possible to obtain
the power that each frequency produces in the density of the
signal spectrum. It helps to observe the frequencies of the
stochastic process and the periodicities of events, as well as
the description of the energy distributed by each frequency of
the signal. The Wavelet analysis gives information about these
frequencies in the domain of time, that is, when and for how
long specific frequencies occur. The ApEn gives information
about the complexity of the signal, using the patterns found in
the time series (Shannon, 1948; Kolmogorov, 1956; Pincus, 1995;
Delgado-Bonal and Marshak, 2019). In other words, low ApEn
values indicate a low level of complexity, and their patterns tend
to be repetitive and predictable. High ApEn values indicate a
higher level of complexity, and the patterns are more difficult to
predict. The procedures for calculating ApEn (Figure 2) were
based on the original theory of Pincus (1991). For FFT analysis
we used the set of SciPy libraries (Virtanen et al., 2020) using
Bluestein’s algorithm (Bluestein, 1970). The PSD was calculated
through the SciPy library using Welch’s method (Welch, 1967),
and Wavelets through the PyWavelets library (Lee et al., 2019)
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FIGURE 1 | Experimental scheme of plant growth and experimental setup. Tomato plants were grown in greenhouse until fruit reach mature green (MG) ripening stage

(upper left quadrant). Illustration of cherry tomato fruit vine (lower left quadrant). MG fruit was harvested and transported to the electrophysiology room, where it was

placed in a Faraday’s cage and a pair of electrode was inserted in each fruit, totaling four per replicate. The recording of electrical signals through ripening stages were

conducted in the same fruit placed initially (upper right quadrant). Illustration of fruit’s electrophysiological measures in a Faraday’s cage (lower right quadrant).

with the Discrete Wavelet Transform (DWT) method, having as
family Daubechies wavelets (Daubechies, 1992).

The average, maximum value, minimum value, variance,
skewness, and kurtosis were calculated for FFT, PSD and
Wavelets. With these results, a Principal Component Analysis
(PCA) was calculated, resulting in three principal components
(PCA1, PCA2, and PCA3). Together with the three PCAs, ApEn
was used as an additional ML feature (Figure 2). Before defining
the four features previously mentioned, tests with n-dimensions
were performed (n = 2–19). The use of four dimensions was
the one that obtained the best cost-benefit trade-off between
accuracy and time of computational execution. PCA is a linear
dimensionality reduction technique that can be used to extract
information from a high-dimensional space, projecting it into a
smaller subspace and preserving essential parts that have more
variation in the data, and also removes the non-essential parts
with less variation (Wold et al., 1987).

ML Training and Testing
We separated the two datasets, one for training the ML and
the other for effectively testing our data. To avoid the problem

of Underfitting or Overfitting (Jabbar and Khan, 2014), and
to obtain a more reliable result, we used the Stratified KFold
(n_splits = 4 and shuffle = True) and Cross Validate (k = 10)
methods (Forman and Scholz, 2010; Adagbasa et al., 2019). This
cross-validation object divides the data into k-folds, ensuring that
each fold is an appropriate representative of the data, both in an
equal division between classes, as well as keeping each round of
training and testing pure in terms of repeating the same samples.
This division is done as a percentage, and we used n_splits = 4
(Mohri et al., 2018).

Considering different configurations of training and test
groups, the possibility of chance interference in our results was
reduced. A prior evaluation of the datasets was made, and the
analysis of the ripening stages BR vs. MG was subjected to several
loops, leading to thousands of different parameter combinations.
After this analysis, the hyperparameters that obtained the best
levels of accuracy were maintained for all subsequent analyzes
(described together with each ML model).

In order to standardize randommethods, we used the function
numpy.random.seed with seed= 42. Considering the hypothesis
of finding a difference between the ripening stages, we use
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FIGURE 2 | Scheme representing the acquisition of features for Machine Learning analysis. Fruit electrical signals were recorded with an electronic system for data

acquisition (MP36). The bioelectrical runs were analyzed as voltage variation (µV) time series (TS). Afterwards, the approximate entropy (ApEn), Fourier transform

(FFT), Power Spectral Density (PSD), and Wavelets were calculated. Except for ApEn, the descriptive analyzes of average, maximum value, minimum value, variance,

skewness, and kurtosis were calculated. With these results, PCA was calculated and PCA1, PCA2, and PCA3 obtained. Finally, we obtained three PCAs and ApEn as

ML features.
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several ML models to obtain the best one for each dataset, as
the objective is to detect which groups of data can be better
classified and determine the best accuracy or method in general.
In a nutshell, we are interested in the individual classification
of each class, and not in the best method used to achieve this,
maintaining the information of which model was used only for
the reproducibility of the experiment. The models used were
chosen because they have different classification approaches and,
with that, we intend to eliminate this variable from our study. The
ML models used were:

Decision Tree (Hyperparameters: max_depth = 10 and
min_samples_leaf = 64): it is a predictive model that uses
a decision tree to go from observations about an item to
conclusions about the item’s target value. In decision analysis, a
decision tree can be used to represent decision making visually
and explicitly (Breiman et al., 1984).

SVC (Hyperparameters: max_iter= 100.000 and tol= 1e−1):
Support Vector Classification is derived from SVM (Support
Vector Machine). They are associated with supervised learning
models that use classification and regression analysis. An SVM
training algorithm builds a model that assigns new examples to
one category or another, making it a non-probabilistic binary
linear classifier (Chang and Lin, 2020).

Linear SVC (Hyperparameters: max_iter= 100.000 and tol=
1e−1): it is similar to SVC, but it has more flexibility in the choice
of penalty and loss functions and should be better sized for a large
number of samples. This class supports sparse and dense entries
(Hsu et al., 2016).

Gaussian Process (Hyperparameters: max_iter_predict = 150
and multi_class = one_vs_one for analyzes with two classes and
one_vs_rest for 3-class analysis): implements Gaussian Processes
(GP) for regression purposes. The GP is a generic method of
supervised learning, designed to solve problems of regression and
probabilistic classification (Mackay and Gibbs, 2000).

KNeighbors [Hyperparameters: n_neighbors = (2 for two-
class analysis and 3 for 3-class analysis), algorithm = kdtree
and leaf_size = 50]: In pattern recognition, the nearest k-
neighbors algorithm (k-NN) is a non-parametricmethod used for
classification and regression. In both cases, the entry consists of
the k closest training examples in space (Maillo et al., 2017).

Random Forest (Hyperparameters: n_estimators = 200,
max_depth = 5, and min_samples_leaf = 128): it is a joint
learning method for classification and regression that operates
by building several decision trees at the time of training and
generating the class of individual trees. Decision forests correct
the habit of decision trees adjusting to their training set (Maillo
et al., 2017).

Gaussian NB (Hyperparameters: var_smoothing = 1e−7): In
machine learning, Bayes’ naïve classifiers are a family of simple
“probabilistic classifiers” based on the application of Bayes’
theorem. This method is easier to solve the problem of judging
classes as belonging to one category or another (Chan et al.,
1982).

The Dummy Classifier method was used as the control.
It uses several unintelligent strategies to classify data.
Based on the returned accuracy, we obtain a standard for
comparison. A model that obtains a low accuracy, similar to the

Dummy, shall not be considered suitable for the database used
(sklearn.dummy.DummyClassifier, 2020). The strategies used by
the Dummy Classifier are:

• Dummy Stratified: Sort the data in a randomly stratified way;
• DummyMost Frequent: Assume that all test data belong to the

most frequent class in training;
• Dummy Prior: Classifies the data giving priority to a

specific class;
• Dummy Constant (constant = number of classes−1):

Assumes a constant value passed previously.

Precision, Sensitivity, and F1-Score
In order to be able to infer results about a specific class, such
as asking whether class X is easier to classify than class Y, an
analysis of individual visualization metrics was performed using
Precision, Sensitivity and F1-score.

Sensitivity
For all cases classified as positive, which value among the
informed positives was correct?

Sensitivity =
true positives

true positives+ false negatives
(1)

A perfect classification would return 1, that is, all the ML
classification was correct (Powers, 2020; Tharwat, 2021).

Precision
For all instances that have been rated as positive, what is the value
of true positive?

Precision =
true positives

true positives+ false positives
(2)

A perfect classification would return 1, that is, ML correctly
classified all members of the class.

F1-Score
The F1-score is the harmonic mean of Precision and Sensitivity,
where an F1 score reaches its best value in 1 (perfect precision
and sensitivity) (Van Rijsbergen, 1979).

F1-score = 2×
Precision × Sensitivity

Precision+ Sensitivity
(3)

The scheme for calculating Precision, Sensitivity and F1-score
can be found in Figure 3.

The calculation of the F1-score provides the information
about which class is better classified, that is, which class has
features better identified by ML. In the present work, this
corresponds to say that the time series of some ripening stage
carries enough information to be distinct.

To identify the relationship between the ripening stages, the
analyses were carried out, group by group and all together. Thus,
the groups wereMG× BR, BR× LR, andMG× BR× LR. In this
manner, it is possible to verify whether each group has unique
characteristics that would differentiate them when compared
with the other groups.
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FIGURE 3 | Scheme representing the sample space submitted to ML classification. Class Total is the region where the ML has classified green. The green tomatoes

within the classification region are correct. Red tomatoes within the region were classified as non-red. A true positive is a result where the model correctly predicts the

class. A false positive is a result where the model incorrectly predicts the class. A false negative is when the model incorrectly predicts the wrong class. CT, Class

Total; TP, True Positives; FP, False Positives; FN, False Negatives.

Results
In general, the ML methods tested to classify between different
ripening stages were successful when compared with the
performance of the Dummy test, which is the control here. For
instance, the Random Forest method reached an accuracy of
80.76% in distinguishing between MG (Mature Green) and BR
(Breaker) ripening stages, while the Dummy test barely reached a
random choice (53.64% of accuracy) (Figure 4A).

The two-dimensional scatter plot for the features used in
the classification is shown in the first graphs in Figure 4B.
In this plot, it is possible to have a first picture of how the
data were distributed. On the y-axis are the data from PCA1
and the distribution of the entropy value is on the x-axis.
Both MG and BR ripening stages tended to be concentrated
in the lower left quadrant. However, it can be observed that
the BR stage showed a more linear trend with increasing
entropy, while MG samples tended to spread across the chart
plane. Although this information, at first glance, may not seem

to be physiologically relevant, it was a relevant factor for
ML classification.

The other graphics in Figure 4B show the decision-making
graphs for themodels used in the classification.Mostmodels have
classified the BR class (blue dots) with priority. This can be seen
through the Sensitivity analysis (Table 1). Moreover, both classes
showed similar Precision scores (0.74 for theMG and 0.78 for the
BR), indicating that a part of the samples was too similar, making
ML classification confuse. However, the Sensitivity of 0.62 for
MG and 0.86 for BR indicated that ML was more successful in
classifying BR, resulting in a higher F1-score.

The ML classification, allowing a distinction between BR
(Breaker) and LR (Light Red) ripening stages, showed 79.11%
accuracy using the Random Forest algorithm, while the Dummy
test reach barely 56.09%. Even considering the margin of error,
ML managed to classify the groups with accuracy (Figure 5A).

It was possible to notice that, although the data have a similar
dispersion (Figure 5B), entropy was an important feature to
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FIGURE 4 | Accuracy (%) and standard deviation (A) of the Machine Learning models used to classify Mature Green (MG) and Breaker (BR) classes. Scatter plots (B)

showing a sample space plan used in ML training for the MG × BR distribution. Red dots: MG; blue dots: BR. The regions are the demarcations made by ML to

indicate levels of certainty of classification. The more reddish it is, the more certain it belongs to the MG group. The more bluish it is, the more certain it belongs to the

BR group. The subtitle of each graph indicates the method used. On the y-axis is the data from PCA1. On the x-axis is the distribution of the Scaled Entropy.

TABLE 1 | Precision, Sensitivity, and F1-score of the Random Forest model to

Mature Green and Breaker classification.

Random forest Precision Sensitivity F1-score

Mature Green 0.74 0.62 0.67

Breaker 0.78 0.86 0.82

improve the differentiation between the ripening stages. The
groups are distinguished in the upper right and bottom left
quadrants. However, several points remain in the center. The
quadrants may have influenced the Precision values (BR 0.77 and
LR 0.78) (Figure 5B). ML was more efficient in classifying the BR
class, which can be seen by Sensitivity (BR 0.82 and LR 0.72). In
the end, the BR stage obtained an F1-score of 0.79 against 0.74 of
the LR stage, once again the best-classified instance (Table 2).

When the three ripening stages (Mature Green × Breaker ×
Light Red) were analyzed together, less accuracy was observed
compared to the analysis in pairs. The highest accuracy was
74.41% reached by the SVC algorithm, while the Dummy
test exhibited an accuracy of only 42.45% (Figure 6A). This
classification is more complex than a binary classification. It is
possible to see how each group’s data overlap (Figure 6B), mainly

in the lower left quadrant, which resulted in less accuracy between
the three classification groups. However, when analyzing the F1-
score (Table 3), the BR group obtained a higher value, which
demonstrates that the BR group is again better classified among
the three stages.

To summarize, the binary groups were the ones that obtained
the best accuracy, especially the classification between MG and
BR (Figures 4A,B). The analysis among the three groups showed
the lowest accuracy. There is a discussion about the analysis of
groups One-vs.-All and One-vs.-One (Binary classification vs.
Multi-class classification) that are completely dependent on the
method used for the classification (Bishop, 2006). As we use
several methods, the fact that we found a low accuracy value when
using the One-vs.-All technique indicates a difficulty for ML in
classifying these groups. Regarding the F1-score, the BR stage
showed the highest values in all comparison groups (Table 3).

DISCUSSION

The results from the classification of ripening stages by ML
techniques showed a more accurate distinction between MG
(Mature Green) and Breaker (BR) than between BR and Light

Frontiers in Sustainable Food Systems | www.frontiersin.org 8 October 2021 | Volume 5 | Article 696829

https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org
https://www.frontiersin.org/journals/sustainable-food-systems#articles


Reissig et al. Electrophysiological Classification of Fruit Ripening

FIGURE 5 | Accuracy (%) and standard deviation (A) of the Machine Learning models used to classify Breaker (BR) and Light Red (LR) classes. Scatter plots (B)

showing a sample space plan used in ML training for the BR × LR distribution. Red dots: BR; blue dots: LR. The regions are the demarcations made by ML to

indicate levels of certainty of classification. The more reddish it is, the more certain it belongs to the BR group. The more bluish it is, the more certain it belongs to the

LR group. The subtitle of each graph indicates the method used. On the y-axis is the data from PCA1. On the x-axis is the distribution of the Scaled Entropy.

Red (LR) stages, indicating that BR and LR stages are more
similar between them than MG and BR. In fact, the BR
ripening stage was the most differentiable when analyzing
the F1-score information (Table 3), with higher values in all
classification groups. Physiologically, this result seems quite
reasonable because the fruits at the MG stage have not yet
started the ripening process effectively. On the other hand,
tomatoes in BR and LR stages share more similarities regarding
the physicochemical and biochemical processes underlying the
ripening process. The increment in respiration and autocatalytic
ethylene synthesis occurs in both BR and LR stages (Liu
et al., 2015). Moreover, chlorophyll degradation, carotenoids
accumulation, and cell wall lysis are other examples of common
processes between both these stages.

Different physiological processes during ripening could affect
the bioelectrical activity of the fruits causing the changes in the
electrome detected by theML analyses performed here. Increased
respiration in climacteric fruits, accompanied by an increase in
ethylene synthesis, can lead to an increase in reactive oxygen
and ATP species (Brady, 1987; Decros et al., 2019). The latter
can induce ATPases activation (Azevedo et al., 2008), which can
affect ionic imbalance across cellular membranes, resulting in

TABLE 2 | Precision, Sensitivity, and F1-score of the Random Forest model to

Breaker and Light Red classification.

Random forest Precision Sensitivity F1-score

Breaker 0.77 0.82 0.79

Light Red 0.78 0.72 0.74

changes in membrane potential, which leads to the generation of
electrical signals.

In addition, changes that occur in the cell wall during ripening
can also lead to a characteristic “signature” of the electrical signals
during the process. Pectin can form structures known as “egg
box,” where the divalent calcium ion forms homogalacturonan
cross-linked chains, leading to the strengthening of the gel
matrix, regardless of any cellulose-pectin interaction. Later on,
when the pectin is being demethylated and solubilized, the
calcium ions are released from the structure (Aghdam et al.,
2012; Wang et al., 2018). The calcium released in the process
might affect the electrical pattern of the fruit as it ripens.
Many other processes involved in ripening can lead to the
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FIGURE 6 | Accuracy (%) and standard deviation (A) of the Machine Learning models used to classify Mature Green (MG), Breaker (BR), and Light Red (LR) classes.

Scatter plot (B) showing PCA1 and Scaled Entropy distribution (Mature Green × Breaker × Light Red). Red dots: MG; green dots: BR; blue dots: LR. On the y-axis is

the data from PCA1. On the x-axis is the distribution of the Scaled Entropy.

TABLE 3 | Precision, Sensitivity, and F1-score of the SVC model to Mature Green,

Breaker, and Light Red classification.

SVC Precision Sensitivity F1-score

Mature Green 0.79 0.44 0.57

Breaker 0.80 0.90 0.85

Light Red 0.72 0.82 0.77

generation of electrical signals with characteristic patterns. Plant
electrophysiology is a field that still has a lot to be discovered, and
studies focused on the electrophysiology of ripening are of great
importance for a better understanding of this phenomenon.

Considering the impartiality of ML models, it was observed
that the BR stage was used as a reference for the classifications.
Basically, the classification models, for the most part, used the
BR group as the one to be indicative of decision-making, a fact
demonstrated in the results of Precision and Sensitivity. This
result is also important to corroborate our hypothesis that the
electrome of the tomato fruit in the BR stage is more classifiable
than the MG and LR stages.

Several studies in the field of plant electrophysiology are
demonstrating the potential practical uses of plant electrical
signaling (Reissig et al., 2021). For instance, Tran et al. (2019)
proposed the electrophysiological evaluation of tomato plants
status using supervised machine learning. The methodology and
electrophysiological sensor developed allowed the measurement
of real-time electrical signals related to the plant water status in
the field, without a Faraday cage. Another recent study showed
the possibility of using the analysis of the plant’s electrome to
perform an early diagnosis of pathogenic fungi in tomatoes
(Simmi et al., 2020). In both cases, machine learning techniques
were used as an important tool to determine and classify changes

in the plant’s electrical signals. Therefore, automated techniques
used in the harvest and the post-harvest can be increasingly
improved with the use of ML.

Ji et al. (2020) have referred to the difficulty of automating
and mechanizing the harvest of green peppers due to the
similarity of the fruit color with the background and its
form with the shape of the leaf. It is supposed that ML’s
multidimensional view could provide better results. The use
of different features beyond images is an option to add more
information layers to improve ML results. Our results have
shown that electrophysiological analysis of plants can be used
for this purpose. For example, ML could be trained for relating
pictures of the fruit ripening stages to the electrome at each point.
This first process can create a much more precise classification
of ripening, possibly far beyond the stages described in the
literature. At the dawn of the digital era, we can perfectly
envisage machine learning as a fundamental part of sustainable
agriculture and post-harvest technology. The path for it is
just open.

CONCLUSION

The electrical signals underlying the physiological processes
that occur at different ripening stages have different
characteristics specific to each ripening stage. The high
accuracy results obtained with unsupervised ML classification
of the electrical signals from different ripening stages can
open many opportunities for application in the automation
of fruit harvesting. By combining our approach with
data from hyperspectral images during fruit ripening,
likely, it will be possible to reach even higher accuracy to
determine specific targets for automatic harvesting in the
near future.
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