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Well-managed legume-based food systems are uniquely positioned to curtail the

existential challenge posed by climate change through the significant contribution

that legumes can make toward limiting Green House Gas (GHG) emissions. This

potential is enabled by the specific functional attributes offered only by legumes,

which deliver multiple co-benefits through improved ecosystem functions, including

reduced farmland biodiversity loss, and better human-health and -nutrition provisioning.

These three critical societal challenges are referred to collectively here as the

“climate-biodiversity-nutrition nexus.” Despite the unparalleled potential of the provisions

offered by legumes, this diverse crop group remains characterized as underutilized

throughout Europe, and in many regions world-wide. This commentary highlights

that integrated, diverse, legume-based, regenerative agricultural practices should

be allied with more-concerted action on ex-farm gate factors at appropriate

bioregional scales. Also, that this can be achieved whilst optimizing production,

safeguarding food-security, and minimizing additional land-use requirements. To help

avoid forfeiting the benefits of legume cultivation for system function, a specific

and practical methodological and decision-aid framework is offered. This is based

upon the identification and management of sustainable-development indicators for

legume-based value chains, to help manage the key facilitative capacities and

dependencies. Solving the wicked problems of the climate-biodiversity-nutrition nexus

demands complex solutions and multiple benefits and this legume-focus must be
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allied with more-concerted policy action, including improved facilitation of the catalytic

provisions provided by collaborative capacity builders—to ensure that the knowledge

networks are established, that there is unhindered information flow, and that new

transformative value-chain capacities and business models are established.

Keywords: climate change, biodiversity, nutrition, legumes (Fabaceae), value chain, food system

INTRODUCTION—LEGUMES TO MITIGATE
CLIMATE CHANGE

The biggest challenge facing humanity today is how best to
rapidly implement those changes which will allow adaptation
to, and mitigation of, climate change whilst redressing the
loss of biodiversity and ecosystem services (Intergovernmental
Science-Policy Platform on Biodiversity and Ecosystem Services
(IPBES), 2019). The recommendations of the Intergovernmental
Panel on Climate Change are clear (Hoegh-Guldberg et al.,
2018) and embodied in the “Paris Agreement” (United Nations,
2015), which aims to keep average global temperature rise
to below 2◦C, and preferably below 1.5◦C. Toward these
goals, and at current rates of decarbonisation among the
various main industry sectors, agriculture remains historically
recalcitrant to lowering its greenhouse gas (GHG) footprint
(Wollenberg et al., 2016). Even if fossil fuel emissions were
immediately halted, current trends in global agriculture and
food production would prevent achievement of the 1.5◦C
target (Clark et al., 2020). However, the agricultural sector
(and land-use more widely), is well-placed to support the EC
policy (Green Deal) commitment to “net-zero” emissions by
2050 (EC, 2019). Particularly since the technological solutions
to remove and store CO2 (and other greenhouse gases) are
unlikely to become operational at a significant scale soon
(Sanna et al., 2014).

The agriculture-based contribution to “net-zero” demands
the uptake of low-carbon farming measures and among
these, legumes have a central role to play (Luscher et al.,
2014; Oliveira et al., 2021). The journey to net-zero should
include greater focus on the delivery of adaptative measures to
improve geochemical-cycles or -flows, and ecosystem functions
via control of key climate change “drivers,” and especially
sustainable nutrient solutions through more efficient use and
management of reactive-nitrogen resources (Steffen et al., 2015;
Ascott et al., 2017; Breitburg et al., 2018; Folke et al., 2021).
In this reactive-nitrogen context, legume crops can meet
their own nitrogen needs for growth via “biological nitrogen
fixation” (BNF) (Peoples et al., 1995), and do not necessarily
require the addition of synthetic nitrogenous fertilizer. BNF
by legumes also reduces synthetic nitrogen input requirement
for subsequent, or companion, non-legume crops. Deployed
in well-managed cropped systems, legumes have significantly
lower emissions of N2O than would be associated with crops
receiving synthetic nitrogen fertilizers (Rochette and Janzen,
2005; Rees et al., 2013). In such well-integrated cropped
systems, legumes offer the greatest carbon abatement potential
relative to other strategies: legume-based crop rotations and

grassland farming systems > precision agriculture of legumes
> optimized soil pH > intercropping > nitrification inhibitors
> improved crop varieties (Eory et al., 2020). Due to their
wide diversity of types, legumes may be integrated into
cropped systems and ex-farmgate value systems in many ways
(Supplementary Figure 1). Additionally, high levels of legume
inclusion need not compromise yields, since it has been shown
that maximum productivity and minimum synthetic fertilizer
use can be achieved at 50% legume cover (crop residence
over rotation-time) (Iannetta et al., 2016). This coverage can
be defined as an equal balance between non-legumes and
grain-/forage-legumes over the course of the crop rotation
(Supplementary Figure 2), particularly where various forms of
intercrop-based interventions are deployed (Brooker et al., 2014).

More-sustainable bioregionally produced, legume-based
food- and feed-value chains, as allowed by the biogeographical
and socio-economic constraints, must be realized to help
circumvent any negative impacts of global-trade. Since, in the
last few decades Europe (and other major regions of the world)
have increased the arable land area used for more commercially
rewarding cereal production, at the expense of land area sown
with legumes (Watson et al., 2017). Yet, Europe also expanded
livestock and poultry production (i.e., increased feed demand)
during the same period following increased demand for animal
protein Food and Agriculture Organization of the United
Nations (FAO) statistics (FAOSTAT, 2019). The European
Commission (EC) “Feed Protein Balance sheet” (EC, 2020),
highlights that the EC is self-sufficient in grass-based protein
forages. and while the legume component of such forages needs
to be increased, the low domestic production of high-protein
legume grains has been encouraged by large-scale imports of
inexpensive (tariff free) grains, especially of soya, from other
countries (Kuhlman et al., 2014). By 2010, Europe was importing
almost 90% of its soya demand from the USA, Brazil, and
Argentina (CAPRI Dataset, 2020). This has led to wide-scale
tropical deforestation and carbon emissions in some countries
(Bonini et al., 2018). Thus, developing European sufficiency in
grain legume supply could achieve GHG mitigation in Europe,
and South America. Equally, it should also be acknowledged
that grain legume production by smallholder producers in
less industrialized, or more-agrarian based economies, is also
critically important, and may also need to be intensified (Nassary
et al., 2019; Kebede, 2020). The best routes to such intensification
requires careful consideration to ensure that ecosystem functions
and services in already industrialized and industrializing food
systems allow mutual benefits (c.f. Wiggins, 2009). Allied to
this, it may also be the case that trade protection policies need
deployed to help protect the nutritional and economic well-being
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of smallholders in less-industrialized regions (Brooks and
Matthews, 2015).

The existential challenges posed by the impacts of climate
change constitute what should be recognized as “wicked
problems” (Churchman, 1967). That is, challenges which
comprise complex interdependencies, which should be addressed
using solutions that also help solve other critical negative impacts
upon ecosystem functions. In this “multi-functional solution
context,” and if wisely deployed and facilitated, legumes offer
an intervention which can deliver multiple co-benefits including
reduced loss of farmland biodiversity, improved environmental
sustainability (Stagnari et al., 2017), and better human-health and
-nutrition (Foyer et al., 2016).

INTEGRATED LEGUME-BASED SYSTEMS
TO ENHANCE BIODIVERSITY

Intensification of food production systems, and polarization
of crop choices, have accelerated the loss of biodiversity,
functional, and genetic (not simply at the species-level) from
farmland habitats resulting in the degradation of the system
functions on which sustainable and resilient production depends
(e.g., decomposition and nutrient dynamics, detoxification, pest
suppression, pollination) (Hawes et al., 2005). This decline
in regulating and supporting functions results in further
reliance on chemical intervention to maintain crop productivity
(Palomo-Campesino et al., 2018), exacerbating the impacts
of climate change by inappropriate habitat conversion and
agrochemical (particularly pesticide) use (Hallmann et al.,
2017). Traditional organic systems seek to reverse these trends
by replacing agrochemicals with biologically based substitutes
(Röös et al., 2018) which, although they may benefit local
biodiversity (Bengtsson et al., 2005), may not necessarily have
a significant impact on system sustainability—since they still
tend to rely heavily on external inputs, plowing, and livestock.
Integrated crop production systems based on regenerative
agricultural practices utilize diversity for enhanced resilience,
thereby reducing reliance on external inputs to maintain
productivity (Hawes et al., 2021). In these systems, incorporating
a greater diversity of crop types, including legumes and other
underutilized crops, enables an increase in production efficiency
through facilitation and complementation mechanisms to
deliver multiple functional and resource-use benefits over more
traditional cropping systems (Lin, 2011). Enhanced biodiversity
associated with diversified legume-based crop rotations may also
help facilitate resilience to the impacts of stochastic-weather
conditions and shifting pest pressures that are linked to climate
change (Lin, 2011). Ultimately, legume-based rotations can
directly contribute to climate change mitigation since such plant-
protein crops have a higher input efficiency, energy conversion,
lower environmental impact, and protein provisions compared
to livestock production (Clark and Tilman, 2017; Leinonen
et al., 2020). It has been long understood that well-integrated,
diversified crop systems, incorporating a range of crop functional
types offers greater potential than monoculture cropping for
pest and disease control through reduced apparency of specialist

crop pests to their host and dilution of total resource available
(Root, 1973). However, we acknowledge that the potential of
such integrated systems is reliant only upon the development and
greater uptake of integrated pest management (IPM) measures—
which must be effective under the increasingly stochastic weather
patterns associated with climate change (Clement et al., 2000;
Sharma et al., 2010).

LEGUMES FOR NUTRITION AND HEALTH

To support the increasing demand for food and feed, it is
predicted that agricultural productivity must be increased by
60% between 2012 and 2050. Climate change jeopardizes this
nutritional provision 2-fold: by affecting crop productivity (and
food availability) and indirectly by decreasing the nutritional
quality of plant-based foods and feeds (Soares et al., 2019a).
This could exacerbate the existing challenges concerning dietary
deficiencies and depletion of agronomic resources. Consider:
20% of EU deaths are attributable to unhealthy diets that are
otherwise preventable and current food systems are failing to
guide citizens, and especially those who are most vulnerable,
toward sustainable, and healthy diets that are available,
affordable, appealing, and aspirational. In this context, legumes
have a major role to play (Abarca-Gómez et al., 2017). One
of the best-known nutrients to be affected by climate change,
particularly elevated CO2, is protein (Soares et al., 2019b).
Dried legumes grains are excellent sources of protein/amino
acids, fatty acids, fibers, carbohydrates, and phytochemicals, such
as polyphenols (including flavonoids, and catechins) (Carbas
et al., 2020). Dried grains of pulses also contain carbohydrates
which promote lowered glycaemic index, so avoiding peaks
in blood glucose levels that are a contributory factor to
Type-2 diabetes—a major diet-related global-health issue and
socioeconomically crippling health-care-cost burden (American
Diabetes Association, 2013; Seuring et al., 2015). Grain legume
consumption has also implicated in a reduced level of mortality
(8% reduction) among the long-lived elderly, and regardless
of ethnicity (Darmadi-Blackberry et al., 2004). Such nutritional
health benefits are not restricted to provisions for humans
(Vasconcelos et al., 2020), since as already indicated above, these
can extend to improved ecosystem functions from provisions
to above- and below-ground biodiversity (Altieri, 1999), and
may be extended to farm animal health too via nutritional and
non-nutritional capacities (Dixon and Sumner, 2003).

ADDRESSING THE
CLIMATE-BIODIVERSITY-NUTRITION
NEXUS

It is in these three critical contexts, the climate-biodiversity-
nutrition nexus, that an EU-funded project structure
(www.true-project.eu) was conceived and designed around
a specific holistic framework (Figure 1) based on the Three
Pillars of Sustainability (Passet, 1979). This aspirational
structure leads one naturally to identify those accounting and
functional indicators which may be effective to help define
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FIGURE 1 | The focal structure and ambition of the EU-funded TRUE-Project has adapted a functional perspective of the Three Pillars of Sustainability (economic,

environmental, and social) and with respect to the UN Sustainable Development Goals. The TRUE-Project identifies focal indicators for each Pillar which are built into

the TRUE “Pathfinder” Decision Support System [work package WP 8], and value chain sustainability assessment tool. This schematic diagram is adapted from Figure

3 of Vasconcelos et al. (2020), to highlight where the TRUE-WPs reside relative to the “Pillar-WPs” (5, 6, and 7). Furthermore, the structure highlights the pivotal role of

policy and good-governance to ensure safeguarding environmental function and nutritional qualities which also ensure good-health and well-being—since these core

elements should be harmonized with a more-facilitative economic framework.

and better-manage food- and feed-systems. For example,
the FAO has identified 17 Sustainable Development Goals
(SDGs) and 167 sustainable development indicators (SDIs)
(FAO, 2021), which are mostly operationalized in bioregional
and international decision-making. However, SDGs and SDIs
developed for the national and international contexts are not
operational overs shorter value chains, bioregional scales,
and are devoid of any specific reference to levels of legume-
inclusive food- and feed-value chains. This is critical, since
it is the implementation of good agronomic practices and
business governance at bioregional scales which will determine
the improved management of key resources (energy, carbon,
nitrogen, and phosphorus) necessary to safeguard water quality,
optimize soil function, and facilitate the necessary levels of
crop diversification to minimize biodiversity loss, whilst also
delivering optimized nutrition in an equitable manner.

The potential of whole (cropped) system-interventions and -
function indicators for cropped systems at more practical field-,
farm-, and regional-scales has been demonstrated (Hawes et al.,
2019, 2021). Field- and farm-scale system function indicators
have been allied to the evolution of approaches for whole
system accounting, from farm-to-fork. These include forms

of Life Cycle Assessment (LCA) which seek to move beyond
environmental footprints based solely on emissions and resource
consumption per unit of a commoditized (food) product, to
include system functions as important co-products delivered by
farm systems (Zhang et al., 2010a,b). Such an approach can
help to broaden sustainability-accounting measures provided by
LCA, to functional parameters that can be applied at bioregional-
scales from the field to bioregion (e.g., Patouillard et al., 2016).
The utility of bioregionalized food system approaches has also
been recently demonstrated via place-based short-value chains
which compensate for the limitations of the global food system
manifested during the COVID-19 pandemic (Laborde et al.,
2020; Rivington et al., 2021).

VALUE CHAIN INTERVENTION ENTRY
POINTS FOR MAXIMUM IMPACT

In these contexts, the history of policy effort from within the
EC has been strongly directed toward increased production
of grain legumes within Europe and such effort was initiated
with the launch of the European Soya Declaration (2017),
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FIGURE 2 | Adapted from the TRUE-Project WP4 Deliverable of Hamann et al. (2018), the schematic value chain pattern shown here is commonly associated with

modern large-scale industrialized feed- and food-based value chains. It highlights “pushing” and “pulling” segments, and specific “key stakeholder” groups, and

downstream stakeholder-interfaces to help drive positive transformative food-system change. While the number of “Key Stakeholders” is relatively low at specific

value-chain segments (or, “pinch-points”) and may reinforce risks and impacts of current lock-ins, the same “pinch-points” also offer focal groups of value chain

control and transformation toward new and more-sustainable norms.

which has informed development of the ECs “Plant Protein
Plan” (PPP) (EC, 2018). However, the “Plant Protein Plan”
has been perceived by some stakeholder groups as an “animal
feed self-sufficiency plan,” encouraging misuse of food-land for
continued protein over-consumption (Westhoek et al., 2011)—
with significant negative health, as well as environmental,
impacts (Walker et al., 2005). Consequently, the climate change-
biodiversity-health nexus has also informed formulation of the
“Planetary Health Diet” (Willett et al., 2019) among others,
and which all agree that consumption of fruits, vegetables,
nuts, and legumes by humans should increase (2-fold), while
red meat and sugar consumption must reduce (by half)—a
dietary shift pattern which has also been advocated by the
Intergovernmental Panel on Climate Change (IPCC) (Shukla
et al., 2019). Here again we highlight that legume-based
food systems would lower food-security risk due to the
significant land-use sparing can be accommodated from even
moderate (10%) offsetting of meat consumption supported by
legume-derived protein (Searchinger et al., 2019; Table 6-2,
p. 81).

Additional follow-up recommendations to the original
Plant Protein Plan highlighted that efforts should focus
on the development of infrastructure for processing plant
proteins for food (Clément et al., 2018). In line with the EC
recommendations, national plant protein plans are being

developed by member states, and while some approaches
simply seek to design and implement strategies to establish
greater levels of plant-protein self-sufficiency, these do
not necessarily recommend definitive targets with respect
to domestic bioregionalized value chains (production and
consumption) of legume protein. Others which aim to establish
protein plans as one component a foundation for “sustainable
food systems” more generally, and these approaches should
set legumes apart from other crops based on their functional
potentials. However, some approaches recognize legumes
only as another protein crop alongside other non-nitrogen
crops i.e., ignoring the critical functional benefits offered by
legumes such as biological nitrogen fixation, GHG mitigation,
soil-carbon sequestration, biodiversity functions, food-culture,
and complex provision of nutritional and non-nutritional
dietary components.

CONCLUSIONS

Historically, policy-led food system transformation has been
mainly realized via efforts focused on the production system
as a main point of entry, such as increasing yields and crop
diversification. While such an entry-approach has obvious value,
there appears to be insufficient focus of policy on ex-farm
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gate and market “facilitation” and “pull” factors (Vasconcelos
et al., 2020; Balázs et al., 2021). Allied to this, the confused
policy framework (Balázs et al., 2021), and role of specific
actors in the ex-farm gate sector are also neglected or ignored.
As such, “integrated practices” must not be restricted to the
cropped system but extended across the full value chain.
System function indictors such as gender equity and social
justice also emerge as features which should be allied to
greater legume-use and food-system resilience (Schipanski et al.,
2016).

Consider the simple schematic shown in Figure 2 (developed
from Hamann et al., 2018), which shows that value-chain
“pinch-points” may be perceived as risks or lock-ins. However,
the same pinch-points may also be viewed as an opportunity
for positive transformative change toward more sustainable
and healthy diets. For example, perhaps encouraging the
development of grain legume processing capacities (dehulling,
milling, fractionation) among seed aggregators which serve
as major processors for key and emerging markets. Though
this may also involve justifying the use of those raw materials
in their existing product range. Nevertheless, while capacities
for plant-based food increase in response to rising consumer
demand and commercial opportunity, where these openings are
legume-based, there is no expectation that even a proportion
of the legume crops must be grown bioregionally. Nor
does this preclude the possibility that such plant-based
products present high GHGs costs or/and poor nutrition risks
(through ultra-processing). A key question for consumers and
concerned value-chain stakeholders including legume-based
feed processors, food manufacturers, wholesalers, retailers,
and especially policy makers, might be: to what extent does
my consumption, product, or raw-material choice improve
the function of production ecosystems and the sustainability
of the value chains, bioregionally, and globally? The success
of any resultant initiatives to increase production and
consumption of bioregionally grown legumes is likely to
be governed by the ability to recruit and mentor a diverse
array of “collaborative capacity builders” (c.f. Weber and
Khademian, 2008). Such individuals will be essential to
help establish and ensure the necessary business-to-business
knowledge-networks, -flows, -capacities, and transformative
governance structures, to help solve the wicked problems posed
by the climate-biodiversity-nutrition nexus.
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