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Psychrotolerant spore-forming bacteria, entering raw milk primarily on-farm, represent a

major challenge for fluid milk processors due to the ability of these bacteria to survive

heat treatments used for milk processing (e.g., pasteurization) and to cause premature

spoilage. Importantly, fluid milk processors require tools to identify optimal strategies

for reducing spore-forming bacteria, thereby extending product shelf-life by delaying

spoilage. Potential strategies include (i) introducing farm-level premium payments (i.e.,

bonuses) based on spore-forming bacteria counts in raw milk and (ii) investing in spore

reduction technologies at the processing level of the fluid milk supply chain. In this

study, we apply an optimization methodology to the problem of milk spoilage due

to psychrotolerant spore-forming bacteria and propose two novel mixed-integer linear

programming models that assess improving milk shelf-life from the dairy processors’

perspective. Our first model, imposed to a budgetary constraint, maximizes milk’s

shelf-life to cater to consumers who prefer milk with a long shelf-life. The second model

minimizes the budget required to perform operations to produce milk with a shelf-life

of a certain length geared to certain customers. We generate case studies based on

real-world data frommultiple sources and perform a comprehensive computational study

to obtain optimal solutions for different processor sizes. Results demonstrate that optimal

combinations of interventions are dependent on dairy processors’ production volume

and quality of raw milk from different producers. Thus, the developed models provide

novel decision support tools that will aid individual processors in identifying the optimal

approach to achieving a desired milk shelf-life given their specific production conditions

and motivations for shelf-life extension.

Keywords: dairy supply chain, pasteurized fluid milk, microbial spoilage, premium/penalty system, optimization,

mixed-integer linear programming

1. INTRODUCTION

Dairy products represent 17% of the total value of food wasted at the retail and consumer levels
and are among the top food categories that contributed to the food waste in the United States
in 2010 (United States Department of Agriculture, 2014). In the United States, the waste of fluid
milk primarily occurs at point-of-retail and end-consumer levels (Buzby et al., 2014). For example,
31% of all dairy products and 32% of fluid milk were estimated to be wasted at these stages in
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2010 (United States Department of Agriculture, 2014). A large
portion of fluid milk waste is due to people throwing out
(i) products that spoil before they are able to be consumed
and (ii) products that are not spoiled based on organoleptic
characteristics but are beyond their identified “best by” or
“expiration" date (Hall-Phillips and Shah, 2017). Both of these
are of concern to processors since they may lose customers
because of short shelf-life or premature microbial spoilage of
their product. Therefore, the microbial spoilage of milk leading
to waste becomes a challenge for the dairy processors. Thus, they
would benefit from decision support tools to determine optimal
strategies to extend milk’s shelf-life through microbial spoilage
reduction in order to allow them to address their customers’
needs by producing milk of a certain target shelf-life. A typical
milk supply chain structure in the United States is described in
the Supplementary Material.

There are two primary routes through which spoilage
bacteria enter the fluid milk supply chain: (i) contamination of
raw milk on farms with psychrotolerant Gram-positive spore-
forming bacteria (Martin et al., 2019) and (ii) contamination
of milk at the processing level with Gram-negative bacteria
after pasteurization (i.e., post-pasteurization contamination)
(Martin et al., 2018). When post-pasteurization contamination
is prevented (e.g., through Good Manufacturing Practices),
psychrotolerant Gram-positive spore-forming bacteria (e.g.,
Bacillus spp. and Paenibacillus spp.) are the primary causes
of pasteurized fluid milk spoilage. This is because spores
(i.e., the resistant structure produced by the spore-forming
bacteria) can survive commonly used pasteurization methods
(e.g., HTST) (Martin et al., 2019) and subsequently grow at
refrigeration temperatures over a period of 14–17 days after
pasteurization (Ranieri and Boor, 2009). Some technologies
such as ultra-high pasteurization [e.g., pasteurization at 138◦C
(280◦F) for 2 s (International Dairy Food Association, n.d.)]
are known to effectively reduce bacterial spores in fluid milk.
However, compared to HTST pasteurization, these alternative
pasteurization methods are undesirable by processors, because
of their considerably higher cost, and by many United States
consumers, because higher pasteurization temperatures produce
defects such as “cooked" and “stale" flavors (Mehta, 1980; Rysstad
and Kolstad, 2006). As such, compared to alternative methods,
the market for HTST pasteurized fluid milk remains strong.
Thus, control of bacterial spores in HTST pasteurized fluid milk
in the United States remains a considerable challenge for the
dairy industry.

Factors that determine the concentration of spore-forming
bacteria in pasteurized fluid milk include (i) the initial
concentration of spores in the raw milk at the production level,
(ii) spore reductions that can occur at the processing level, and
(iii) bacterial growth that can take place at the transportation,

Abbreviations: BF, Bactofugation; CFU, Colony-forming units; HGP, Half-gallon

package; HTST, High-temperature short-time; ISC, Initial spore count; MF,

Microfiltration; MILP, Mixed-integer linear program; MPBOP, Milk processor

budget optimization problem; MPN, Most probable number; MSLOP, Milk

shelf-life optimization problem; OFV, Objective function value; SRT, Spore

reduction technology.

distribution, retail, and consumer levels. In order to reduce
the spore-forming bacteria level of the final product, different
strategies associated with each of the three factors need to be
considered. Now, we provide more details about these strategies:

(i) Initial concentration of spores at the production level—
The original source of spore-forming bacteria often is farms
where spores are ubiquitous and can easily find their way (e.g.,
through dirty udders) to enter bulk tank raw milk. Efforts
to reduce the initial concentration of spores in raw milk at
the production level need to account for the heterogeneous
quality of milk supplied by multiple producers. This means
that even if the majority of the producers supply milk with
low concentrations of spores, having a few producers with high
spore concentrations can lead to high enough contamination
levels in the silo milk to contaminate the majority of packaged
products with >1 spore, which can subsequently grow and cause
spoilage. Strategies to reduce the initial concentration of spores
in raw milk require producers to perform on-farm interventions
(e.g., training milking parlor employees). These interventions,
with different impacts on raw milk’s spore concentration,
require a specific amount of time for implementation. More
importantly, most United States producers do not currently
have financial incentives to produce raw milk with low
spore counts, making the producers reluctant to implement
additional interventions. Statistical analysis in Saenger et al.
(2013) shows that incentivizing producers for consistent high-
quality milk and/or penalizing them for supplying low-quality
milk encourages them to invest in quality-improving inputs
that results in higher quality milk. Thus, one strategy for
dairy processors to motivate the producers to perform on-farm
interventions would be through a premium/penalty system by
which the processors would test collected rawmilk for spores and
based on the result of each sample test, they would incentivize
(or penalize) the producers for supplying raw milk with a
desirable (or undesirable) quality. While such premium/penalty
system would be new for the United States producers, there are
examples of limited applications of such systems elsewhere, e.g.,
the Netherlands where some producers receive deduction on the
milk price because of a high level of contamination of raw milk
with spores (Vissers et al., 2007a).

Currently, in the United States, milk pricing is based on
individual components (i.e., fat, protein, solids) and a blend
price, which is based on the utilization of raw milk for different
dairy products and geographic location, per 100 lb (i.e., CWT
or hundredweight), along with additional potential premiums
(i.e., quality premiums) based on different factors that will
quantify its quality. According to Munch et al. (2020), premiums
are often offered as a tool to reward/penalize producers for
their milk’s somatic cell counts. Based on data provided by
three different dairy organizations in the United States, we
estimate that premiums can vary between $-0.60 to $3 per
CWT. Negative values mean the processors also apply penalties
when the milk quality is not desirable. These premiums are
currently paid based on raw milk quality parameters such as
somatic cell count, added water (i.e., the freezing point of milk),
laboratory pasteurization count, coliform bacteria count, and
total bacteria count (but not spore count which is the focus
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of this study), which are tested for when raw milk is collected
from the producers. As mentioned earlier, in the absence of post-
pasteurization contamination, spore-forming bacteria are the
primary bacterial agents that limit fluid milk shelf-life; therefore,
in this paper, we propose a new flexible milk premium/penalty
system that is solely based on rawmilk’s initial spore counts at the
production level that would be implemented independently or
instead of the current premium/penalty system described above
and motivate producers to implement on-farm interventions.
This novel system would require testing raw milk for the level
of spores (i.e., spore counts) at the production stage of the
supply chain.

(ii) Spore reduction at the processing level— The
concentration of spores in raw milk can be reduced at the
processing level, however, the spore reduction technologies
(SRTs), such as microfiltration (MF) and bactofugation (BF),
require units that are costly to purchase, install, and run. A
brief description of these technologies can be found in the
Supplementary Material.

(iii) Spore-forming bacteria growth after the processing
level— Growth of bacteria in pasteurized fluid milk occurs
when conditions are favorable for vegetative growth (e.g.,
refrigerated storage temperature). In such cases, certain strains
of spore-forming bacteria are able to germinate (i.e., return to
a metabolically active state from the dormant spore state) and
then bacterial growth can occur (Huck et al., 2007; Masiello et al.,
2014). Growth of bacteria in packaged pasteurized fluid milk
after it leaves the processing facility has been studied by Buehler
et al. (2018) who developed a Monte Carlo simulation model to
estimate packaged milk’s shelf-life given the distribution of initial
concentration of spores in raw milk.

The strategies associated with each of these factors require
operational and monetary resources; thus, their implementations
need to be investigated first. The critical question is how a
dairy processor should determine the optimal combination of
strategies for their unique situation.

In this paper, the processor is defined as the entity in the chain
that is responsible for purchasing raw milk from the producers
and processing it prior to distribution. Thus, we consider the
strategies that can be employed by the processor, which have
effects on the initial concentration of spores at the production
level and their reductions at the processing level. However, we
use a Monte Carlo model, adapted from the model in Buehler
et al. (2018), to simulate the bacterial growth after it leaves
the processing facility. Note that it is unlikely for spores to
germinate during the transportation between the suppliers and
the processors due to (i) cold temperature at which the raw milk
is kept in tanker trucks and (ii) the fact that the transportation
time between farms and processing facilities is typically shorter
than the amount of time needed for spore germination at
low temperatures. Therefore, spore germination and subsequent
bacterial growth at the transportation level is negligible and is not
considered here.

Limited existing studies have focused on the reduction of
spores at the production level (e.g., McKinnon and Pettipher,
1983; Christiansson et al., 1999; Evanowski et al., 2020) and
processor level (e.g., Guerra et al., 1997; Hurt et al., 2015; Doll

et al., 2017; Griep et al., 2018). However, these studies focus on
only one level of the fluid milk supply chain and do not consider
the strategies for more entities involved in the chain. There have
been few mathematical modeling studies in the literature for
improving the shelf-life for other dairy products. For example,
Lütke Entrup et al. (2005) have developed a mixed-integer linear
programming formulation for a yogurt production planning and
scheduling problem. However, to the best of our knowledge, no
optimization research has taken into account the effect of spore-
forming bacteria at both the production and processing levels on
the pasteurized fluid milk’s shelf-life.

In this paper, using optimization techniques, we identify
the best combinations of processing level interventions and
production level incentive structures to optimize milk’s shelf-
life. We consider two types of interventions: (i) interventions
that affect the production level: a flexible milk premium/penalty
system based on milk quality categories, defined by raw milk’s
spore counts, that allows incentivizing and penalizing producers,
and (ii) interventions at the processing level: implementing SRTs.
These SRTs are (1) MF, (2) single-BF, and (3) double-BF which is
performing BF twice.

Mathematical modeling has become a popular approach
for solving real-world supply chain problems (e.g., McDonald
and Karimi, 1997; AhmadBeygi et al., 2009; Enayaty-Ahangar
et al., 2019; Jabbarzare et al., 2019; Sheikh-Zadeh and Rossetti,
2020). In the past decades, researchers have been using different
operation research tools to improve decision-making processes
in the food supply chains in order to minimize the food loss
along the chain or maximize the profit (Lemma et al., 2014).
Among these tools, a few deterministic modeling techniques
have been widely used to solve agricultural supply chains
(Ahumada and Villalobos, 2009), such as linear programming
[e.g., Apaiah and Hendrix (2005) for pea-based products, Jiao
et al. (2005) for sugar cane farms, Glen (1986) for crop and beef
production plans], mixed integer programming [e.g., Higgins
(2002) for sugar cane farms], and dynamic programming [e.g.,
Stoecker et al. (1985) for irrigation and crop production].
Many planning models developed for perishable agri-foods lack
consideration of the shelf-life aspect. This is mainly due to
the added complexity that the shelf-life feature presents in
the different echelons of the chain bring to the modeling of
the problem (Ahumada and Villalobos, 2009). This could also
be because of biological factors that impact the shelf-life and
embedding these factors in an optimization model is difficult.
A few research studies have taken into account the shelf-life of
perishable products such as flowers, grapes, and tomatoes when
optimizing the distribution, harvesting, and other operations
in the chain (e.g., Widodo et al., 2006; Ferrer et al., 2008;
de Keizer et al., 2017; Ghezavati et al., 2017). To the best of
our knowledge, no optimization research study has focused on
optimizing operations in a pasteurized fluid milk processing
facility by considering factors that determine the concentration
of spore-forming bacteria in pasteurized fluid milk and thus,
have the most influence on milk’s shelf-life. Here, we use mixed-
integer linear programming (MILP) to model this fluid milk
problem. Our objective is to determine the intervention strategies
that maximize the milk shelf-life subject to the processor’s
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available budget or minimize the budget required to reach a set
shelf-life target.

2. MATERIALS AND METHODS

2.1. Problem Definition
We define two optimization problems in this paper. In both, we
try to identify the strategies for interventions that managers at the
processing level should select to achieve their desired outcome
(e.g., maximized average shelf-life of all pasteurized fluid milk
packages) during a planning horizon. The decisions of themodels
consist of determining: (1) whether or not to implement the
proposed novel premium/penalty system based on raw milk’s
spore counts and (2) whether or not to implement one or
two of the SRTs. The primary restriction in model one is the
processor’s budget allocated to implement these strategies. The
second model, on the other hand, requires to meet a minimum
shelf-life. There are a set of assumptions in the problem which
are presented as follows.

⇒ A large portion of fluid milk waste is due to people throwing
out (i) products with unacceptable quality (i.e., spoiled
product) and (ii) products with acceptable quality (i.e.,
not spoiled) that are past their “best by” dates. Processors
desire to not lose customers because of a short shelf-
life or premature microbial spoilage of their product and
that requires them to find the optimal way to reduce that
risk. Thus, the main focus of this paper is on extending
pasteurized fluid milk’s shelf-life.

⇒ Each day, the collected milk is stored in one or more silos
at the processing facility and then goes through the same
processing equipment for pasteurization; thus, we assume
that the number of spores in milk packages in that day equals
to the weighted average of spore counts of all the raw milk
collected from the producers.

⇒ The spore counts are presented in logarithmic form because
microbial counts are typically highly skewed. To match
food microbiology practices regarding reduction in food
contamination, any reduction of the spore count is presented
in logarithmic (i.e., log10) values. Also, in rare cases, the
initial spore count (ISC) can be so low that not all units
of milk (i.e., half-gallon packages) will contain at least
one spore. In these cases, we assume the number of the
contaminated half-gallon packages (HGPs) is equal to the
total number of spores, meaning that there is one spore per
package, and consider the rest as not contaminated.

⇒ Due to the relatively high cost of a spore test, we assume
testing for spore counts occurs once a week (rather than
daily) for each producer if the premium/penalty system is
implemented. Days on which raw milk sampling and testing
occur are randomly selected by the processor so that daily
routines do not change by the producers. Note that with
this approach, the difference between two consecutive tests
can be within the range of 1 to 13 days. Then, the producer
would be paid premiums or penalized for the total volume
of milk produced in that week based on the one-time sample
test result. Note that these payments can occur at any time
(e.g., at the end of each week or month). Paying producers

for the milk’s blend price (for the volume of sold milk) occurs
regardless of any spore reduction strategies implemented by
the producer and thus, milk blend price is not part of our
optimization models.

⇒ To calculate the impact of the premium/penalty system on
the initial spore count at the production level, we assume
that each producer’s main interest is in the premium that
would be paid if the quality of their milk is improved one
or two categories.

⇒ According to experts, there is about 1–1.25% of milk
shrinkage (i.e., the difference between the processed milk
volume and the raw milk volume) due to MF and BF in
the processing facility. The milk shrinkage has impacts on
the number of sold packages but not on the shelf-life. Due
to the focus of this model being on the shelf-life extension
of milk, we do not account for the shrinkage in this paper.
However, we acknowledge that the shrinkage due to SRT
implementations may affect processor decision making and
will consider it for the future direction of this work.

⇒ We appreciate that the implementation of both BF and MF
in a single given fluid milk processing plan is extremely
unusual and may not be feasible; however, in our model, we
allow the use of multiple SRTs and consider their impacts as
independent from each other. Due to the lack of data, we do
not account for any possible reductions in effectiveness when
using multiple SRTs. Further research is needed to determine
whether or not using two SRTs can have additive/reductive
effects on spore counts.

⇒ Paying premiums is a continuous process and processors
cannot stop doing it when the quality of milk is improved
as the producers might stop doing on-farm interventions
and return to their original production management and if
so, their milk quality will diminish. Therefore, the premium
payments occur until the end of the planning horizon in our
models. This simulates a situation in which milk processors
make a commitment to keep a certain bonus scheme. In
agriculture, this can be enforced by a contract between
dairy processors and milk producers. It is assumed that,
for the length of a planning horizon, producers do not
choose to stop supplying and/or switch between processors
depending on their premium/penalty systems, and also, that
producers would not be “dropped” (i.e., fired or let go by the
processor). We also assume that it is feasible to establish a
contract between the two parties and to set provisions about
quality requirements and bonuses/penalties for a specific
amount of time (e.g., 5 years). Note that similar contracts
already exist in industries with livestock commodities such as
chicken broilers, eggs, andmilk (United States Department of
Agriculture, 1996).

⇒ In this problem, we do not consider the processor facility is
owned by the farmers since it only applies to a small fraction
of the cases.

2.2. Definition and Explanation of Models
In this section, we present two novel MILP models for the
production and processing stages of the milk supply chain: (1)
milk shelf-life optimization problem (MSLOP) that focuses on
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processors’ desire to reach the longest shelf-life of their final
product to please consumers who prefer longer shelf-life and
(2) milk processor budget optimization problem (MPBOP) that
needs to produce milk with a uniform shelf-life of certain length
geared to certain customers.

2.2.1. Milk Shelf-Life Optimization Problem (MSLOP)
In this model, there is a set of producers p ∈ P that supply
milk for a processor in a fixed planning horizon (i.e., |D| days
or |W| weeks). On day d ∈ D, raw milk supplied by producer
p ∈ P falls into one of the |C| categories of raw milk based on its
ISC value, ISCd

dp
, when collected by a tanker truck. Note that the

superscripts in the parameters and variables’ notations are part of
their names and only the subscripts represent indices. Categories
c ∈ C are non-overlapping intervals [Cmin

c ,Cmax
c ]. Given the

ISCd
dp

values, the weighted average of ISC, ISC
avg

d
, for all the raw

milk collected at the processing facility in day d is then calculated.
Note that a smaller value of ISC

avg

d
for day d ∈ Dmeans a longer

shelf-life for all the HGPs of milk processed on that day.
To reduce the ISC

avg

d
value, the processing facility can

implement MF, single-BF, and double-BF. There are fixed
(i.e., purchasing, installation, maintenance) and variable (i.e.,
electricity and operational) costs associated with each of these
technologies which results in a different log reduction in the
ISC

avg

d
values. These parameters are presented in Table 1. There

is a set of on-farm interventions q ∈ Q that can occur to
achieve premium payments. These interventions will result in a
log reduction of producers’ daily ISC values and subsequently
in the average daily spore count values. These reductions can be
different in size and starting time. For example, one of the short-
term on-farm control strategies is laundering re-usable cloth
towels, used for cleaning the udder and teats during milking
preparation, through the use of detergent and chlorine bleach and
fully drying (Evanowski et al., 2020); the impact of this strategy
is immediate and here we assume it results in a fixed spore
reduction for as long as it is performed. Another intervention
can be investing in parlor employees training designed to
teach them to focus on cleaning teat ends thoroughly during
milking preparation.

The main variables in the model are xMF , xBF1, xBF2, and xPR

that show whether or not the processor implements MF, single-
BF, double-BF, and premium/penalty system, respectively. Given
the premium/penalty system is implemented (i.e., xPR = 1),
variable PRc, c ∈ C denotes the premium paid for the raw milk
in category c. Depending on the values the variables take, the
average spore count of each day’s milk will be reduced. As a result,
the corresponding milk category c̄ ∈ C̄ of the processed milk on
day d ∈ D and its shelf-life, SLc̄, are determined. Categories c̄ ∈ C̄
are also non-overlapping intervals used to categorize the spore
count values of packaged milk on day c̄.

The problem is then to determine the set of values for the
variables that maximize the average shelf-life of all the milk
packages produced in the planning horizon, SLAvg , subject to the
processor’s daily budget, B, limit. We explain our model settings
in the following passages:

TABLE 1 | Notation - Sets and parameters.

Sets

P set of producers

W set of weeks

D set of days

C set of categories of raw milk based on initial spore count values

C̄ set of categories of packaged milk based on bacterial count values

Q set of possible on-farm interventions at the production level

Parameters

B available daily budget (in $ per day)

PRmin minimum value of penalty that PR5 (i.e., premium for the least

desirable raw milk) can have (in $ per HGP)

PRmax maximum value of premiums (in $ per HGP)

P̂R
max

maximum value of P̂R (in $ per HGP)

PCp category of producer p ∈ P

NPwwp number of HGPs of milk supplied by producer p ∈ P in week

w ∈ W (in HGP per week)

NPddp number of HGPs of milk supplied by producer p ∈ P in day d ∈ D

(in HGP per day)

TPd total number of HGPs processed in day d ∈ D (in HGP per day)

TP0
d total number of processed HGPs with no spores in day d ∈ D (in

HGP per day)

ISCw
wp ISC value of raw milk supplied by producer p ∈ P tested in week

w ∈ W (in log10 MPN per HGP)

ISCd
dp ISC value of raw milk supplied by producer p ∈ P in day d ∈ D (in

log10 MPN per HGP)

ISC
avg
d weighted average of ISC values of all the raw milk collected at the

processing facility in day d ∈ D (in log10 MPN per HGP)

TC cost of performing one spore test (in $)

FCMF fixed cost per day associated with MF (in $ per day)

VCMF variable cost associated with MF (in $ per HGP)

FCBF1 fixed cost per day associated with single-BF (in $ per day)

VCBF1 variable cost associated with single-BF (in $ per HGP)

FCBF2 fixed cost per day associated with double-BF (in $ per day)

VCBF2 variable cost associated with double-BF (in $ per HGP)

RMF spore count log reduction as the result of MF implementation (in

log10 MPN per HGP)

RBF1 spore count log reduction as the result of single-BF

implementation (in log10 MPN per HGP)

RBF2 spore count log reduction as the result of double-BF

implementation (in log10 MPN per HGP)

RPRq ISC log reduction q ∈ Q proportional to P̂R that occurs every lq
weeks (in log10 MPN per HGP)

sq binary parameter; 1, if the reduction q ∈ Q occurs from the

beginning of the planning horizon; 0, otherwise

lq number of weeks before a reduction of RPRq in ISC can be seen,

q ∈ Q

aq scaling factor for on-farm intervention q

α coefficient (between 0 and 1) that represents the effort a producer

with PC ≥ 3 wants to make to improve milk quality by one

category and receive the corresponding premium

β coefficient (between 0 and 1) that represents the effort a producer

with PC ≥ wants to make to improve milk quality by two

categories and receive the corresponding premium, β = 1− α

(Continued)
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TABLE 1 | Continued

Parameters

Cmin
c minimum ISC value of raw milk in category c ∈ C (in log10 MPN

per HGP)

Cmax
c maximum ISC value of raw milk in category c ∈ C (in log10 MPN

per HGP)

C̄min
c̄

minimum bacterial count value of processed milk in category

c̄ ∈ C̄ (in log10 MPN per HGP)

C̄max
c̄

maximum bacterial count value of processed milk in category

c̄ ∈ C̄ (in log10 MPN per HGP)

SLc̄ shelf-life of milk packages in category c̄ ∈ C̄ (in days)

SLmax shelf-life of milk packages with no spores (in days)

M a sufficiently large positive constant

⇒ The produced and processed milk are represented by unit
half-gallon package (HGP) throughout the supply chain. A
half-gallon is approximately equal to 1,900 milliliters (mL).

⇒ Spore count and any reductions in it are measured in log10
MPN/HGP. The distribution of the initial concentration of
spores in raw milk was determined by the most probable
number (MPN) method described by Masiello et al. (2014)
and Buehler et al. (2018). The MPN method estimates the
population density of the microbial count on the basis of the
probability theory without the actual count of single colonies
(Alexander, 1983).

⇒ There are five categories of raw milk where categories one to
five have the most to the least desirable qualities, respectively.
Also, there are eight categories of packaged milk where
categories one to eight, respectively have the lowest to highest
bacterial counts.

⇒ Generally speaking, the shelf-life for one package of milk is
defined as the period of time between processing/packaging
until it no longer meets the consumer’s acceptable quality
standard; that is until it starts exhibiting any physical or
organoleptic defects while it is kept under practical storage
conditions (Bishop and White, 1986; Muir, 1996; Schroeter
et al., 2016). The consumer threshold was quantified to be
6 log10 CFU/mL bacterial count by Carey et al. (2005) and
Martin et al. (2012). Thus, we too define the shelf-life of all
the processedmilk packages in a day to be the number of days
between the packaging and the first day when 5% of packages
are defective meaning that they have bacterial counts in
excess of 6 log10 CFU/mL (i.e., 9.3 log10 CFU/HGP). Note
the CFU, colony-forming unit, is used to present bacterial
level in the finished product, while MPN is used to determine
spore counts due to their low concentrations in raw milk.

⇒ The shelf-life for each of the eight categories of packaged
milk is equal to the shelf-life of a representative point in
that category.

The complete sets and parameters; and variables are presented in
Tables 1, 2, respectively, followed by the first MILP formulation.

MSLOP: max SLAvg (1)

s.t. xBF1 + xBF2 ≤ 1 (2)

PRc ≥ PRc+1 ∀ c ∈ C, c ≤ 4 (3)

PR5 ≥ PRmin (4)

TABLE 2 | Notation - Variables.

Decision variables

xMF whether (1) or not (0) the processing facility implements

microfiltration

xBF1 whether (1) or not (0) the processing facility implements

single-BF

xBF2 whether (1) or not (0) the processing facility implements

double-BF

xPR whether (1) or not (0) the processing facility decides to pay

premiums

PRc premium paid per each HGP of raw milk in category c ∈ C (in $

per HGP)

Variables that are functions of the decision variables

ẑwpc whether (1) or not (0) raw milk produced by producer p ∈ P falls

within category c ∈ C on the day of test performed in week

w ∈ W

zdc̄ whether (1) or not (0) processed milk in day d ∈ D falls within

category c̄ ∈ C̄

PR
paid
wp premium paid for each HGP of raw milk to producer p ∈ P in

week w ∈ W (in $ per HGP)

P̂R overall impact of premium payments on the ISC reduction at the

production level (in $ per HGP)

TR total log reduction in spore counts due to selected SRTs at the

processing facility (in log10 MPN per HGP)

SLAvg weighted average shelf-life of all milk packages (in days)

xPR ≥ PRc ∀ c ∈ C (5)

xPR ≥ −PR5 (6)

PRc ≤ PRmax ∀ c ∈ C (7)

(
∑

d∈D

∑

p∈P, PCp>=2

NPddp)P̂R

=
∑

d∈D

(
∑

p∈P, PCp≥3

NPddp ∗ (α ∗ PRPCp−1 + β ∗ PRPCp−2)

+
∑

p∈P, PCp=2

NPddp ∗ PRPCp−1) (8)

P̂R ≤ P̂R
max

(9)

P̂R ≤
∑

p∈P, PCp>=2

1 (10)

PR5 ≥ −
∑

p∈P, PCp>=3

1 (11)

∑

c∈C

ẑw pc = 1 w ∈ W, p ∈ P (12)

ISCw
wp −

∑

q∈Q, sq=0

⌊w/lq⌋ ∗ R
PR
q ∗ aq ∗ P̂R (13)

−
∑

q∈Q, sq=1

⌈w/lq⌉ ∗ R
PR
q ∗ aq ∗ P̂R

≥
∑

c∈C

ẑwpc ∗ C
min
c ∀ w ∈ W, p ∈ P (14)

ISCw
wp −

∑

q∈Q, sq=0

⌊w/lq⌋ ∗ R
PR
q ∗ aq ∗ P̂R −
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∑

q∈Q, sq=1

⌈w/lq⌉ ∗ R
PR
q ∗ aq ∗ P̂R

≤
∑

c∈C

ẑwpc ∗ C
max
c ∀ w ∈ W, p ∈ P (15)

PR
paid
wp ≤ PRc +M ∗ (1− ẑwpc)

∀ w ∈ W, p ∈ P, c ∈ C (16)

PR
paid
wp ≥ PRc −M ∗ (1− ẑwpc)

∀ w ∈ W, p ∈ P, c ∈ C (17)
∑

w∈W

∑

p∈P

(TC ∗ XPR + NPwwp ∗ PR
paid
wp )

+
∑

d∈D

(FCMF ∗ xMF +
∑

p∈P

(NPddp ∗ VC
MF ∗ xMF)

+ FCBF1 ∗ xBF1 +
∑

p∈P

(NPddp ∗ VC
BF1 ∗ xBF1) +

FCBF2 ∗ xBF2 +
∑

p∈P

(NPddp ∗ VC
BF2 ∗ xBF2)) ≤ B ∗ |D| (18)

TR = RMF ∗ xMF + RBF1 ∗ xBF1 + RBF2 ∗ xBF2 (19)
∑

c̄∈C̄

zdc̄ = 1 ∀ d ∈ D (20)

ISCave
d −

∑

q∈Q, sq=0

⌊
⌈d/7⌉

lq
⌋ ∗ RPRq ∗ aq ∗ P̂R

−
∑

q∈Q, sq=1

⌈
⌈d/7⌉

lq
⌉ ∗ RPRq ∗ aq ∗ P̂R

−TR ≥
∑

c̄∈C̄

zdc̄ ∗ C̄
min
c̄ ∀ d ∈ D (21)

ISCave
d −

∑

q∈Q, sq=0

⌊
⌈d/7⌉

lq
⌋ ∗ RPRq ∗ aq ∗ P̂R

−
∑

q∈Q, sq=1

⌈
⌈d/7⌉

lq
⌉ ∗ RPRq ∗ aq ∗ P̂R −

TR ≤
∑

c̄∈C̄

zdc̄ ∗ C̄
max
c̄ ∀ d ∈ D (22)

SLAvg = (
∑

d∈D

∑

c̄∈C̄

((TPd − TP0d) ∗ SLc̄ ∗ zdc̄)

+
∑

d∈D

(TP0d ∗ SL
max))/(

∑

d∈D

TPd) (23)

xMF , xBF1, xBF2, xPR ∈ {0, 1} (24)

zdc̄ ∈ {0, 1} ∀ d ∈ D, c̄ ∈ C̄ (25)

ẑwpc ∈ {0, 1} ∀ d ∈ D, p ∈ P, c ∈ C (26)

PRc ≥ 0 ∀ c ∈ C : c ≤ 4 (27)

PR
paid
wp ≥ 0 ∀ w ∈ W, p ∈ P (28)

TR, P̂R ≥ 0 (29)

The objective function, (1), is to maximize the weighted average
shelf-life of all the milk packages processed in the planning
horizon. The only variable in the objective function, SLAvg ,
is calculated in constraint (23) which is explained later. The
processor can either implement single-BF or double-BF but not
both; this is enforced by constraint (2). Constraint (3) ensures
that the premiums do not decrease as the quality of the category
increases. Constraint (4) sets a lower limit on the premium
of category 5, PR5. This lower limit can be negative and act
as a penalty for the producers who supply milk with the least
desirable raw milk. If at least one of the categories’ premiums
takes a non-zero value, it means that the processor implements
the premium/penalty system; therefore, xPR should be equal to
one. This restriction is enforced by constraints (5-6). Note that
all premiums are defined only for an HGP and their absolute
value is less than a small value (< 1). This means we do not need
a coefficient on the right-hand side of the constraints to allow
P̂R take the value of one in case one of the premiums is non-
zero. Note that PR5 is the only premium that can be negative and
act as a penalty, hence constraint (6) is only defined for category
five. Constraint (7) sets upper bounds for the premium variables
to ensure that premiums do not have an unlimited impact on
the raw milk spore reduction. The variable P̂R, representing the
overall impact of premium payments on the ISC reductions, is
calculated in constraint (8). This variable is dependent on how
much milk each producer produces and the usual quality of their
milk (i.e., PCp). For example, if a producer’s milk is usually in
category three (PCp = 3), then the premiums of the next two
better categories (i.e., two and one) act as incentives for them and
motivate them to perform on-farm interventions so the category
of their produced raw milk improves. Two parameters, α and
β , define the producer’s motivation to produce milk in those
two categories. Note that if a producer’s usual milk quality is
in category two, then they merely consider the premium for
category one as an incentive (i.e., α = 1 and β = 0). Category-
one producers are already producing the most desirable milk,
therefore, they are not considered in the P̂R calculation. However,
they will be paid the premium for category one. Constraint (9)
sets an upper bound for P̂R which is later explained in section
2.3. If all the producers are already producing the most desirable
milk, paying premiums will not change the objective function
value (OFV), hence P̂R should be zero. This is ensured by
constraint (10). On the other hand, constraint (11) ensures if
there is no producer supplying undesirable milk (i.e., producers
in categories 3–5), PR5 cannot be negative, meaning no penalty
is applied.

Constraints (12-17) are intended to calculate the total
premiums the processor should pay the producers according to
their quality of milk. The quality of raw milk for each producer
is determined based on the weekly spore tests. The producers
will be paid the premium based on (1) the spore category of
tested milk and (2) the total volume of the milk produced in
that week. Constraint (12) guarantees that each producer’s milk is
assigned to one category of milk based on the weekly test results.
Constraints (14-15) determine the category of milk produced
by producer p in week w after considering the impacts of the
premium payments on the ISC. Such impact consists of the
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overall P̂R, RPRq , aq, and how frequently the reductions can occur
which are calculated by ⌊w/lq⌋ and ⌈w/lq⌉. If sq = 0, it means that
the impact of intervention q does not occur from the beginning
of the planning horizon and requires lq weeks before it shows
any impact on the spore count. This reflects situations when a
producer requires time to implement a strategy that improves
the quality of their milk. Hence the floor of w/lq is considered
in constraints (14-15). For instance, for intervention q with lq =

52 weeks, there will be no spore reductions occurring in w =

1, . . . , 51 since ⌊w/lq⌋ = 0. However, starting week 52nd,
the intervention at the production level will begin to show its
impact and one RPRq log10 MPN/HGP occurs if aq ∗ P̂R = 1.
This remains the same until week 103rd. One the other hand,
if sq′ = 1, we use ⌈w/lq′⌉ which means intervention q′ at the
production level shows its impact from the beginning of the
planning horizon. For a similar case, where lq′ is 52 weeks and

aq′ ∗ P̂R = 1, reduction RPRq′ is seen once when w = 1, ..., 51

since ⌈w/lq′⌉ = 1. Constraints (16-17) capture the premium
paid to each producer in each week. For each producer p in
week w, the paid premium is equal to PRc if the milk quality
falls in category c (i.e., ẑwpc = 1). Note that for other categories
where ẑwpc = 0, the two constraints do not pose any limit on

the value of the paid premium (i.e., −M ≤ PR
paid
wp ≤ M). The

total expenditure of the processor, including the spore tests’ cost,
premium payments, and the fixed and variable costs associated
with the implementations of the SRTs (i.e., MF, single-BF, and
double-BF), should not exceed the total budget in the planning
horizon; this is imposed in constraint (18).

The purpose of constraints (19-23) is to calculate the weighted
average shelf-life of all the HGPs during the planning horizon.
The total reduction of spore count values due to the SRT
implementations at the processing facility is calculated in
constraint (19). Constraint (20), similarly to constraint (12),
assigns all the packaged milk processed on a day to one category
of milk. The two constraints (21-22) are similar to constraints
(14-15) but they also consider the possible spore reductions
that take place at the processing level (i.e., TR). Be reminded
that all the units associated with the spore counts in the model
are expressed as log10 MPN/HGP; thus, any log reduction of
the spore count values should be deducted from the initial
logarithmic value. For instance, for an ISC value of 3 log10
MPN/HGP (i.e., 1000 MPN/HGP) and TR of 1 log10 MPN/HGP,
which means it reduces the absolute spore count by 90% (=
1 − 10−1), the final spore count is going to be 2 (= 3 −

1) log10 MPN/HGP (i.e., 1000 ∗ 0.1 = 102 MPN/HGP).
As the result of three constraints (20-22), the variable zdc̄
captures the category of milk processed on day d. Variables
zdc̄ connect the daily spore count values to the daily shelf-life
which is used to calculate the average shelf-life in constraint (23).
Taking into account the amount of daily processed milk,
constraint (23) calculates the weighted average shelf-life during
the planning horizon. In this constraint, the shelf-life of the
milk packages with at least one spore (i.e., TPd − TP0

d
) and

those packages with no spores since the production level are
added. Finally, the sign constraints (24)-(29) declare the type of
each variable.

2.2.2. Milk Processor Budget Optimization Problem

(MPBOP)
In the MSLOP model, the goal is to determine how to allocate a
fixed budget of a processor to different intervention options so
that the final products’ average shelf-life is maximized. However,
in many cases, processors do not have a fixed and predefined
value for the budget they can allocate to extend their milk’s shelf-
life. They first need to determine the financial benefits of shelf-life
extension (e.g., $ per day of extended shelf-life, which may not be
linear) and then decide whether or not it is in their best interest to
invest in interventions that target a specific shelf-life. To this end,
we propose a second model, milk processor budget optimization
problem (MPBOP), in which we assume that a processor’s goal
is to increase milk’s shelf-life to a specific day and the model’s
objective is to determine how much daily budget they need to
achieve that. There are a few differences between the two models.
In MPBOP, B is a decision variable and there are one additional
parameter that represents the shelf-life goal of the processor
(SLmin) and one more constraint. The objective functions are also
different in the two models. The MILP formulation of MPBOP is
presented below.

MPBOP: min B (30)

s.t. Constraints (2)− (23)

SLAve ≥ SLmin (31)

B ≥ 0 (32)

Constraints (24)− (28)

Here, the objective, (30), is to minimize the daily budget required
to reach the set shelf-life target. In constraint (31), the average
shelf-life needs to be at least equal to SLmin and B is a non-
negative continuous variable, as shown in (32). The rest of the
constraints are the same as MSLOP. Note that B in constraint
(18) is a parameter in MSLOP and a variable in MPBOP.

2.3. Experimental Design
In this section, we explain how instances, to be used for
evaluating the proposed MSLOP and MPBOP models, are
generated based on real-world data. We used a variety of sources
for our data collection such as (1) experts in the Colleges of
Agriculture and Life Sciences, VeterinaryMedicine, and Business
at Cornell University, (2) industry partners (names redacted to
respect the confidentiality), (3) experts at SRT companies (names
redacted to respect the confidentiality), (4) Journal articles (e.g.,
Pafylias et al., 1996; Rysstad and Kolstad, 2006; Masiello et al.,
2014, 2017; Buehler et al., 2018), and (5) Online resources
[e.g., The United States Department of Agriculture (U.S. Energy
Information Administration, 2019)].

2.3.1. Instance Generation Process
There are a variety of fluid milk processing facilities that differ
in size. Processing facilities can be categorized into three groups
based on annual lb of milk processed: small (less than 10M
lb/yr), medium ([10M, 100M) lb/yr), and large (100M and
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more lb/yr) (Martin et al., 2012). We generated two different
sizes for each category. Other parameters are determined by the
following steps:

Number of producers and their herd sizes – The first
step includes generating producers and their herd sizes in
order to have enough lactating cows to produce a targeted
annual milk volume for each processor. Producers’ herd sizes
follow the probability distribution presented in the last row
of Table 3. This data was obtained from National Agricultural
Statistics Service (2019). Herds with fewer than 50 cows were
not considered in our instance generation procedure. After
generating each producer’s herd category, a value is randomly
selected between the minimum and the maximum number
of cows in that category (e.g., 50 and 99). This process
continues until the total number of cows across all herds
is adequate to produce the targeted annual volume of milk
assuming each cow produces an average daily milk volume
for a cow. Finally, we reduce the last producer’s herd size
if it causes the total volume of milk to be more than the
target value.

Daily production volume – The next step is to generate each
producer’s exact daily production and ISC value. The average
volume of daily produced milk by a cow is generated using
a normal distribution. To determine the parameters of this
distribution, mean and standard deviation, we use the data
reported for 24 selected states in the United States in 2018
(United States Department of Agriculture, 2019). As shown in
Table 4, an average of 1,951 lb milk was produced by one cow
in each month, which is equal to 64.13 lb or 15.36 half-gallon
per day. We use one-fourth of the range (i.e., (65.9 − 62.3)/4
lb) in the sample of the average daily milk over 12 months as an
approximation of the distribution’s standard deviation. Thus, the
daily milk production of each cow follows a normal distribution
with a mean of 64.13 lb (15.36 HGP) and a standard deviation of
0.98 lb (0.23 HGP).

Daily initial spore count values – To generate an ISC value
for each producer’s daily raw milk, we assign each producer
to one of the five categories of raw milk. This means without
introducing any new on-farm interventions, one producer
consistently produces milk in one category; however, they may
produce milk within the neighboring categories on some days.
We now explain the raw milk categories.

We define five non-overlapping intervals as the five categories
of raw milk. Previously, Masiello et al. (2014) and Buehler
et al. (2018) have reported data regarding psychrotolerant spore
formers in bulk tank milk across New York State collected
between 2009 and 2010. According to these studies, the fitted
distribution of the initial spore count in milk approximately
follows a lognormal distribution with parameters mean −0.72
MPN/ml and standard deviation 0.99 MPN/ml. This distribution
is equivalent to a lognormal distribution with parameters
mean 2.56 MPN/HGP and standard deviation 0.99 MPN/HGP.
We use the same distribution to generate the producers’
initial spore count. Using this distribution, we define five
non-overlapping intervals, each with a probability of 0.2, as
shown in Figure 1. Each interval represents one category of
raw milk.

The details of these categories are presented in Table 5. The
last column of the table shows the relative frequency (%) of each
farm falling in each category based on data presented in Masiello
et al. (2017), which includes sample data from 56 different farms
in New York state. As an example, given a random producer,
there is an 18% chance that it usually produces raw milk in
category five. Note that the MPN/HGP values are integer values
and not fractional in reality but our non-overlapping intervals
need to cover all the continuous values since the model cannot
round up final average spore counts that may be fractional.
Therefore, we partitioned the intervals in a way that they contain
all the intended spore levels. For example, in reality category
two represents milk with 53-203 spores, but the interval for
this category is [53.5001,203.4999]. Also, note that the current
categories of raw milk consider spore levels between –4 and 7
log MPN/HGP. These values were based on the existing data
(Masiello et al., 2017); however, if applicable to a particular
processor, the raw milk categories could include even higher
contamination levels.

Masiello et al. (2017) reported spore count data for 10 farms
with data collected for each month in a year. After categorizing
the data based on our five spore count intervals, we calculate
that farms produce milk in one main category and its first and
second-hand neighboring categories with probability 70, 20, and
10%, respectively. This means producers do not always produce
milk in one category and it is possible for them to produce
better or worse quality milk on some days depending on many
on-farm factors.

We now explain how daily spore counts are generated for
each producer. All random numbers are generated based on the
spore count distribution of lognormal (2.56, 0.99) MPN/HGP
adapted from Buehler et al. (2018). For each day and producer
(e.g., producer p with PC = 4), with a probability of
70%, we keep generating values until it is within the PCp

category, which is four for producer p. With a probability of
20%, the generated value is within the neighboring categories,
which are three and five for producer p. With the remaining
10% probability, the value should be within the second-
hand neighboring categories, which is just category two for
producer p.

Daily weighted average of initial spore counts – The
weighted average of spore counts on day d is calculated using
the following formula. In this formula, we calculate the weighted
average of absolute spore counts inMPN/HGP and then translate
it back to the logarithmic format.

ISC
avg

d
= log10[

1
∑
p∈P

NPd
dp

∗
∑

p∈P

NPddp ∗10
ISCd

dp] ∀ d ∈ D

(33)
In rare cases, the total number of spores in all collected milk
can be less than the total number of packages of milk that
day. In such a case, we assume that ISC

avg

d
is equal to one

spore in HGP for TPd − TP0
d
of the packages and zero for the

remaining ones.
Parameters associated withMF and BF – The costs and spore

reduction parameters associated with MF and BF are explained
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TABLE 3 | Dairy cattle herd size by inventory and sales: 2017 (National Agricultural Statistics Service, 2019).

Herd size 50 to 99 100 to 199 200 to 499 500 to 999 1,000 to 2,499 2,500 to 4,999 5,000 and more

Number of farms 12,137 6,757 3,830 1,511 1,239 525 189

Relative Frequency (%) 46.3 25.8 14.6 5.8 4.7 2.0 0.7

TABLE 4 | Milk production for 24 selected states in the United States in 2018 (United States Department of Agriculture, 2019).

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Average

Monthly milk

per cow (lb)

1,973 1,817 2,033 1,976 2,051 1,961 1,977 1,968 1,880 1,931 1,876 1,964 1,951

Average daily milk

per cow (lb)

63.6 64.9 65.6 65.9 66.2 65.4 63.8 63.5 62.7 62.3 62.5 63.4 64.13

FIGURE 1 | Five categories of raw milk based on spore count values.

TABLE 5 | Five categories of raw milk used for initial contamination data generation.

Category Minimum value of spore count log10

MPN/HGP (MPN/HGP)

Maximum value of spore count log10

MPN/HGP (MPN/HGP)

Probability of a producer to be in this

category

1 −4 (0.0001) 1.72836 (53.4999) 16%

2 1.72837 (53.5001) 2.30857 (203.4999) 20%

3 2.30858 (203.5001) 2.80990 (645.4999) 32%

4 2.80991 (9645.5001) 3.39217 (2466.9999) 14%

5 3.39218 (2467.0001) 7 (10000000) 18%

in the Supplementary Material. Note that all the costs associated
with SRT units are translated into daily costs.

Daily budget – In the MSLOP, the processor has a fixed
budget that can cover the costs of sample tests, premiums,
and expenditures of SRTs’ implementation and utilization. This
budget can be provided by a few sources such as a possible
existing budget for the current premium payments and the
income they gain because of any extension in the shelf-life. Note
that budgets for our case studies are solely provided by the
first source and considering the profit that the processors might
gain for any extension in the shelf-life is beyond the scope of
this paper. We calculate the daily budget for different sizes of
processors based on the data we obtained from our industry
partners. The existing premium payment systems suggest that

processor pay $2-$3 for each 1000 lb of raw milk. We assumed
small, medium, and large processors pay premiums up to $3, $2.5,
$2, respectively, for each 1000 lb of rawmilk in a day (e.g., smaller
processors may pay more because they have more personal
relationships with their producers), but we appreciate that the
relationship between processors size and premium payment may
be different.

Premium/penalty systems – According to our experts,
a spore test [e.g., test for aerobic bacterial spores (Frank
et al., 2004)] of one raw milk sample costs $25 in a
laboratory; however, a contract lab charge is between
$10.75 and $21 if asked to perform regular tests on
multiple samples each week. Therefore, we assume
each test’s cost to be $21, $16, and $11 if less than
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10, between 11–20 and more than 21 weekly tests are
requested, respectively.

On-farm intervention parameters – There are a variety of
on-farm interventions that can result in supplying raw milk with
a lower spore count. Producers with different milk quality can
select from a variety of on-farm interventions to improve their
milk’s quality regardless of what category of milk they supply.
In our models, we consider two different types of interventions
that producers can apply in order to improve their raw milk
quality. The first one includes interventions that start from day
one and lasts until the intervention is ceased. We assume a
reduction of RPR1 = 0.2 log10 MPN/HGP for this intervention;
examples of these interventions include (i) enhanced laundering
of towels used in the milking parlor and (ii) training of milking
parlor employees (Evanowski et al., 2020). The second one is
a hypothetical repetitive intervention that gradually improves
the milk quality by a small amount each year and continues
reducing the spore counts by RPR2 = 0.05 log10 MPN/HGP
compared to the previous year. Note that for each of these
two types, there are a variety of interventions from which
producers with different milk quality can select. Even though
high-quality milk producers may already be doing many of
the on-farm interventions, due to the absence of data about
their behavior and effectiveness of different interventions, we
assume that they could implement additional strategies to further
improve milk quality. This simplifying assumption should be
tested when more data becomes available. Note that due to
the limitation of all the units being in logarithmic values, in
this model, we cannot have farm-specific values of reduction
as it is impossible to calculate the final average spore levels by
linear functions.

Given the on-farm interventions’ impact and the differences
between the spore levels of consecutive categories in Table 5,
producers are able to improve their milk quality one category
in the short run and two categories in the long run via on-farm
interventions. In our model, we assume α = 0.7 and β = 0.3
since intuitively it takes less time (e.g., 1–2 years) and effort for
a producer to improve their raw milk to be in the next better
category and remain there for a long time until they can reach
the next category which for our purposes we assume can take
up to 5 years. Note that when generating the data for the daily
ISCs of each producer, the probability of the spore counts being
in the producer’s main category was equal to 0.7. That is also
why the effort to reach the next category is 0.7 compared to
0.3 for the second next category. Also, in the long run, it is
unlikely that producers would improve their milk more than two
categories as it requires more than 1 log10 MPN/HGP spore
reduction and this would be challenging unless they had very
high initial spore contamination levels. Thus, just the two next
categories’ premiums are the ones with which the producers
are concerned.

Since P̂R represents how much producers are motivated by
the premium for just one HGP of milk, its value going to be
small, so we need to scale its impact by multiplying it by a scaling
factor (i.e., aq). In order to estimate this value, we assume P̂R
to be exactly the same as the current average premiums; that
is $2-3 for 1000 lb or $0.0083-0.0125 for an HGP. Considering

the middle range of $0.01 for P̂R, aq has to be equal to 100, so

that for each P̂R ∗ aq = 1, one reduction of RPRq occurs. Thus,
in our model, aq = 100 for both of the on-farm interventions.

We also set P̂R
max

to be 0.02 so that P̂R ∗ aq do not exceed
two. This means the premium payments’ impact has a limit (i.e.,
≤ 2RPRq for intervention q) on the reductions resulted from the
on-farm interventions. PRmax is also considered to be equal to
0.1, which means a premium for a CWT cannot exceed $2.4.
Based on the current premium/penalty system values $2.4 is a
fairly large upper bound for the premiums.

Generated instances – We present 24 generated instances
(representing 24 processors) in Table 6. These instances mainly
vary in parameters: (i) processor size, (ii) number of producers,
and (iii) planning horizon. Among these 24 instances, there
are eight cases each for small (i.e., S1-S8), medium (i.e., M1-
M8), and large (i.e., L1-L8) processors. Note that the size of
the problems are based on the annual lb of processed milk by
the processor explained earlier in this section. For each of the
three processor size categories, we selected two numbers as the
annual lb of milk processed (i.e., 4M, 8M, 40M, 70M, 100M,
and 150M) and generated instances for planning horizons of 5
and 10 years. Then, for each of the combinations, we generated
two instances, one with a lower and one with a higher number
of producers (e.g., instances M1 and M2 have three and nine
producers, respectively).

The maximum penalty for these instances is considered
to be $0.6 per 100 lb of raw milk in category five. Finally,
based on the number of producers and the daily volume of
milk that needs to be processed, the daily budget and costs
(e.g., test costs, MF costs) are determined, as shown in the
remaining columns of the table. In the next section, the optimal
solutions of the model for these instances are presented. All
optimization problems were conducted on a 6-core 16 GB
computer in Python using Gurobi 8.1.1. with a time-limit of
one hour. Note that due to reasonable solving time of the
problems with a standard solver (i.e., Gurobi), it was not
deemed necessary to develop a new solution approach for this
application paper.

2.3.2. Monte Carlo Model
In order to predict the shelf-life of packaged milk which is
contaminated with a given level of spores, we first determine
the category of milk for this level of spore contamination
and then assume its shelf-life is equal to the shelf-life of the
representative point of that category. To this end, we first
calculate the shelf-life for the representative points of the
five categories of raw milk, shown in Figure 1, by using a
Monte Carlo simulation model in R software adapted from
the model in Buehler et al. (2018). This model is further
explained in the Supplementary Material. In our adaptation
of the model by Buehler et al. (2018), the underlying Monte
Carlo simulations are based on exactly the same parameters
with the only exception that the initial contamination level
of spore-formers was used as a set of fixed values shown
in Table 7 instead of a probability distribution. This change
allowed us to reduce the number of iterations from 100,000
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TABLE 6 | Instance data.

Instance

number

Annual lb of

processed

milk (lb/yr)

Planning

horizon (yr)

Number of

producers

B ($/day) TC ($) FCMF

($/day)

VCMF

(¢/HGP)

FCBF1

($/day)

VCBF1

(¢/HGP)

FCBF2

($/day)

VCBF2

(¢/HGP)

S1 4M 5 1 33 21 344 0.013 95 0.039 95 0.039

S2 4M 5 2 33 21 344 0.013 95 0.039 95 0.039

S3 4M 10 1 33 21 344 0.013 95 0.039 95 0.039

S4 4M 10 2 33 21 344 0.013 95 0.039 95 0.039

S5 8M 5 1 66 21 344 0.013 95 0.039 95 0.039

S6 8M 5 3 66 21 344 0.013 95 0.039 95 0.039

S7 8M 10 1 66 21 344 0.013 95 0.039 95 0.039

S8 8M 10 3 66 21 344 0.013 95 0.039 95 0.039

M1 40M 5 3 274 21 344 0.013 95 0.039 110 0.029

M2 40M 5 9 274 21 344 0.013 95 0.039 110 0.029

M3 40M 10 5 274 21 344 0.013 95 0.039 110 0.029

M4 40M 10 9 274 21 344 0.013 95 0.039 110 0.029

M5 70M 5 5 479 21 619 0.010 110 0.029 120 0.019

M6 70M 5 8 479 21 619 0.010 110 0.029 120 0.019

M7 70M 10 6 479 21 619 0.010 110 0.029 120 0.019

M8 70M 10 10 479 21 619 0.010 110 0.029 120 0.019

L1 100M 5 3 548 21 619 0.010 110 0.029 163 0.013

L2 100M 5 11 548 16 619 0.010 110 0.029 163 0.013

L3 100M 10 7 548 21 619 0.010 110 0.029 163 0.013

L4 100M 10 14 548 16 619 0.010 110 0.029 163 0.013

L5 150M 5 8 822 21 619 0.010 120 0.019 163 0.013

L6 150M 5 17 822 16 619 0.010 120 0.019 163 0.013

L7 150M 10 9 822 21 619 0.010 120 0.019 163 0.013

L8 150M 10 24 822 11 619 0.010 120 0.019 163 0.013

to 50,000, while still being able to effectively sample the
whole probability space (this was confirmed by obtaining
the same predictions in simulations ran with five different
random seeds).

For the five raw milk categories shown in Figure 1, we
determine representative points whose cumulative distribution
functions are equal to 0.1, 0.3, 0.5, 0.7, and 0.9. For example,
category 2 is the interval [1.73, 2.31] with 2.04 as its
representative point. Running our Monte Carlo model for
each of the five representative points’ values, the predicted
shelf-lives are 26, 25, 24, 22, 20 days, respectively. After
examining other values of ISCs with the simulation model, we
notice considerable differences between shelf-lives of category
one’s values and the other categories. Since implementing
SRTs will result in lower levels of spore counts in packaged
milk compared to raw milk, we took a closer look at the
category 1 and tried multiple values of ISCs other than
its representative point. We break down category one into
four subcategories making the total number of subcategories
for packaged pasteurized fluid milk’s bacterial counts equal
to eight. Table 7 presents the details of the eight categories
and their assigned shelf-lives obtained from the Monte Carlo
simulation model.

3. RESULTS

In this section, we present the results of the proposed models
for the 24 case studies (instances), described in section 2.3, and
sensitivity analysis for the main parameter of each model.

3.1. Computational Results of MSLOP
Table 8 shows the optimal solutions of the MSLOP model for
the 24 instances. In columns 2-6, we show the percentages of
annual milk volume in each category. These percentages help
us better understand the relationship between the distribution
of raw milk in different categories and the premium values in
the optimal solutions. The details of the optimal solutions, the
optimal objective values, and the solution times are presented
in columns 8-16, 17, and 18, respectively. The solutions include
whether or not the processors should implement any of the SRTs
or pay premiums, and the premium they should pay for each
category of rawmilk. Note that a blank cell means the value of the
corresponding variable is zero in the optimal solution. We also
compute the optimal objective value assuming no intervention is
implemented, which is shown in column 19. In the last column,
the increases in the objective values when interventions are
allowed are shown.
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TABLE 7 | Eight categories of packaged milk used for shelf-life calculation.

Category C̄min - log10 CFU/HGP

(CFU/HGP)

C̄max - log10

CFU/HGP (CFU/HGP)

Representative point’s bacterial

count log10 CFU/HGP

(CFU/HGP)

Shelf-life (day)

1 –10 (≃0) –0.30111 (0.4999) –4 (0.0001) 34

2 –0.30112 (0.5001) 0.17610 (1.4999) 0.0000 (1) 28

3 0.17611 (1.5001) 0.81291 (6.4999) 0.7282 (6) 27

4 0.81292 (6.5001) 1.72836 (53.4999) 1.4771 (30) 26

5 1.72837 (53.5001) 2.30857 (203.4999) 2.0414 (110) 25

6 2.30858 (203.5001) 2.80990 (645.4999) 2.5587 (362) 24

7 2.80991 (9645.5001) 3.39217 (2466.9999) 3.0777 (1196) 22

8 3.39218 (2467.0001) 7 (10000000) 3.8275 (6722) 20

Looking at the optimal solutions’ details, it seems that the
majority of the small processors do not have enough budget to
implement any of the SRTs and they mainly take advantage of
the premium/penalty system to improve their raw milk quality.
Note that except for instance S7, all the small processors need
to apply penalties for the least desirable milk. This means
that the premium payments for categories 1-4 are sourced
by the processors’ available daily budgets and the income
gained from the applied penalties. The only small processor
that did not implement any of the interventions, including
the premium/penalty system, is instance S7. In this instance,
the optimal objective value does not change when we allow
the implementation of the interventions. This is because the
processor in instance S7 is already supplied by raw milk with
good quality (i.e., 51 and 28% of its supplied raw milk volume
is in categories 1 and 2, respectively). On the other hand, the
processor in instance S8, which has the same budget, is supplied
by producers whose milk is in categories with lower qualities
(i.e., 53 and 24% of their supplied milk is in categories 5 and 4,
respectively). This allows the processor to take advantage of the
premium/penalty system. The gained income from the penalty
application allows them to implement double-BF to improve the
milk’s shelf-life. Note that its best weighted average shelf-life is
more than that of instance S7. This means the optimal strategies
are highly dependent on the structure of the supplied raw milk’s
quality and can increase the average shelf-life up to 5.2. days.

Comparing different medium processors, we can infer that
all the processors should take advantage of the premium/penalty
system. However, whether or not they should implement SRTs
varies amongst these processors. For example, the processors for
instances M1, M2, M4, M5, and M7 need to implement MF
or double-BF. The optimal weighted average shelf-lives of these
five instances are between 28.3 and 31 days. Other medium-
sized processors’ optimal solutions suggest implementing both
MF and double-BF so that they can reach higher shelf-life (i.e.,
34 days). This means that the other five medium processors the
budget (including the income obtained from the penalties) was
restricting the average shelf-life.

In the larger instances, except for L3 and L4, the processors use
the premium/penalty system, apply the maximum penalty, and
implement MF and double-BF resulting in a maximum weighted
average shelf-life of 34 days; however, premiums are different as

the quality of raw milk is different. In the two instances, L3 and
L4, they just use MF which is still adequate for L4 to obtain the 34
days of shelf-life. This means that many of the larger processors
either have a large budget or, if raw milk quality is poor, the
resulting income from penalties may be used to implement both
MF and double-BF.

Overall, the computational results suggest that optimal
solutions for the small processors are mostly focused on the
premium/penalty system rather than implementing SRTs due
to their costly implementations; however, depending on their
supplied milk’s quality, penalizing the producers can allow
them to implement SRTs, which will increase the maximum
weighted average shelf-life. Medium processors’ best solutions
showed to be the most variable. This means that the optimal
strategic decisions are highly dependent on the processors’
specific situation, including raw milk quality and the processor’s
budget. The optimal solutions for the medium-sized processors
show shelf-life increases between 5.1 and 13.3 days compared
to the cases where no intervention is allowed. Larger processors
showed to have the most similar results. Due to their high
volumes of processed milk, which allow them to have a higher
budget, and penalizing producers with undesirable quality of raw
milk, which provide them with more income, most of them can
reach the maximum possible weighted average shelf-life, which
are 7.5–12. days more than when no intervention is allowed.

3.2. Computational Results of MPBOP
Table 9 shows the optimal solutions of the MPBOPmodel for the
24 instances. The MPBOP model varied when compared to the
MSLOPmodel by targeted shelf-life which is the fixed value of 28
days for theMPBOPmodel. Note that all instances were solved in
less than an hour except for L7 and L8; however, the final integer
solution for those instances are included in the table.

To reach the shelf-life of 28 days, small processors require to
allocate between $94.0 and $287.0 per day. Not all of them are
required to use the premium/penalty system but they all need
to use at least one of the SRTs. The objective values for the
medium and large processors, varies between $122.2–$521.5 per
day and $0–$489.8 per day, respectively. They are all required to
use the premium/penalty system and at least one of the SRTs. An
interesting case in Table 9 is instance L5 which does not need to
allocate any budget to extend its milk shelf-life to 28 days. Since
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TABLE 8 | Computational results - MSLOP model.

Instance Raw milk lb in categories (%) B xMF xBF1 xBF2 xPR Premiums (¢/CWT) Best OFV Running OFV of NIa Increaseb

number 1 2 3 4 5 ($/day) 1 2 3 4 5 (day) time (s) case (day) (day)

S1 2 5 71 14 8 33 1 142 –60 24.8 3 23.8 1.0

S2 32 42 18 7 0 33 1 32 25.7 0 25.2 0.5

S3 2 7 70 14 8 33 1 36 36 –60 25.1 34 23.8 1.3

S4 29 19 16 31 5 33 1 26 26 26 –60 25.0 4 24.1 0.9

S5 5 65 12 17 0 66 1 44 –60 25.7 1 24.8 0.9

S6 1 6 42 41 10 66 1 214 –60 24.1 7 22.5 1.6

S7 51 28 22 0 0 66 25.8 0 25.8 0.0

S8 0 2 21 24 53 66 1 1 87 –60 26.2 186 21.0 5.2

M1 3 44 33 16 3 274 1 1 36 –60 31.0 17 24.1 6.9

M2 3 23 27 16 31 274 1 1 20 –60 28.3 60 21.5 6.8

M3 0 5 11 28 56 274 1 1 1 76 1 1 –60 34.0 102 20.7 13.3

M4 4 24 27 22 24 274 1 1 9 –60 28.8 1349 21.9 6.9

M5 2 13 30 46 9 479 1 1 105 –60 27.8 82 22.7 5.1

M6 5 11 9 16 59 479 1 1 1 19 6 6 6 –60 34.0 27 21.2 12.8

M7 7 13 47 12 20 479 1 1 3 3 –59 28.7 789 22.1 6.6

M8 3 6 25 36 30 479 1 1 1 –60 34.0 1465 21.1 12.9

L1 2 11 45 15 28 548 1 1 1 29 1 –60 34.0 33 21.9 12.1

L2 1 13 40 17 28 548 1 1 1 1 –60 34.0 234 21.4 12.6

L3 26 22 22 17 14 548 1 1 2 2 2 2 –60 30.4 706 22.9 7.5

L4 22 19 21 17 21 548 1 1 4 4 4 4 –60 34.0 2155 22.1 11.9

L5 1 3 17 15 63 822 1 1 1 203 5 5 –60 34.0 39 21.1 12.9

L6 2 21 32 29 16 822 1 1 1 13 34.0 57 21.8 12.2

L7 2 6 50 23 19 822 1 1 1 12 12 –60 34.0 31 21.6 12.4

L8 3 14 33 29 21 822 1 1 1 10 –60 34.0 1308 21.3 12.7

aNI: no intervention is implemented.
b Increase: the increase in the OFV (difference between columns 17 and 19).

they process a large volume of milk 63% of which is in category
five, the money they gain through the penalties is enough for
implementing SRTs.

Comparing the results between the two models, it is noticed
that when maximizing the shelf-life, many of the medium and
large processors use double-BF and never use single-BF while
in MPBOP, single-BF is more popular, and double-BF is used
mostly in smaller processing facilities. This is because the targeted
shelf-life is 28 days and the processors do not demand the milk’s
shelf-life to be more; thus, they do not need to spend more on
the second round of bactofugation to reach a lower level of spore
counts. Another main difference between the two models is that
premiums are paid less for categories 1-4 milk and in most of the
cases, they are just used to penalize suppliers who produce milk
in category five.

3.3. Sensitivity Analysis
In this subsection, we analyze the sensitivity of the two models
to two important parameters. Table 10 shows the sensitivity of
the MSLOP model to parameter PRmin and Table 11 shows the
sensitivity of the MPBOP model to parameter SLmin.

We perform sensitivity analysis to examine the sensitivity
of optimal solutions in MSLOP for the maximum allowable

penalty, PRmin, since the total acquired penalty is proportional to
parameter PRmin and the volume of milk processed. The former
can be changed by the managers at the processing facilities in
the MSLOP model; therefore, it can alter the best strategies in
the optimal solutions for different problem sizes. We solve five
instances S6, S8, M2, L3, and L5, described in section 2.3, for
different values of PRmin (see Table 10). The five instances are
solved with maximum penalties of $0, $0.3, $0.6, and $0.9 per
100 lb, shown in the second column of the table. The details of
the optimal solutions and the effects of the changes in PRmin

on the optimal objective values are shown in columns 4-13
and 14, respectively. Note that the percentages of raw milk
in category five (which incurs a penalty) for these instances
are 10, 53, 31, 14, and 63% for instances S6, S8, M2, L3, and
L5, respectively.

Comparing the results for small instance S6, we conclude that
applying penalties has a very small impact (i.e., up to 0.1 days) on
the maximum weighted average shelf-life. This is because only
10% of the milk is in category five. However, the results for the
second small instance, S8, is different since the majority (i.e.,
53%) of its supplied milk represents the lowest quality category.
Applying penalties for this instance improves the objective value
between 3.6 and 3.8 days. This means that even if the total volume
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TABLE 9 | Computational results - MPBOP model.

Instance Raw milk lb in categories (%) SLmin xMF xBF1 xBF2 xPR Premiums (¢/CWT) Best OFV Running OFV of NIa Increaseb

number 1 2 3 4 5 (day) 1 2 3 4 5 ($/day) time (s) case (day) (day)

S1 2 5 71 14 8 28 1 1 24 –60 95.8 72 23.8 4.2

S2 32 42 18 7 0 28 1 94.0 36 25.2 2.8

S3 2 7 70 14 8 28 1 1 –60 94.8 487 23.8 4.2

S4 29 19 16 31 5 28 1 94.0 260 24.1 3.9

S5 5 65 12 17 0 28 1 96.1 28 24.8 3.2

S6 1 6 42 41 10 28 1 1 207 –60 154.5 114 22.5 5.5

S7 51 28 22 0 0 28 1 88.0 37 25.8 2.2

S8 0 2 21 24 53 28 1 1 118 –60 287.0 17.94 21.0 7

M1 3 44 33 16 3 28 1 1 1 –60 122.2 58 24.1 3.9

M2 3 23 27 16 31 28 1 1 11 –60 242.7 242 21.5 6.5

M3 0 5 11 28 56 28 1 1 1 –60 127.3 679 20.7 7.3

M4 4 24 27 22 24 28 1 1 –60 248.9 1515 21.9 6.1

M5 2 13 30 46 9 28 1 1 –60 521.5 169 22.7 5.3

M6 5 11 9 16 59 28 1 1 1 –60 262.0 171 21.2 6.8

M7 7 13 47 12 20 28 1 1 –60 443.5 695 22.1 5.9

M8 3 6 25 36 30 28 1 1 1 –60 456.3 1584 21.1 6.9

L1 2 11 45 15 28 28 1 1 –60 266.5 143 21.9 6.1

L2 1 13 40 17 28 28 1 1 23 –60 400.4 650 21.4 6.6

L3 26 22 22 17 14 28 1 1 –60 489.8 571 22.9 5.1

L4 22 19 21 17 21 28 1 1 –60 440.9 1143 22.1 5.9

L5 1 3 17 15 63 28 1 1 1 –60 0.0 69 21.1 6.9

L6 2 21 32 29 16 28 1 1 7 –60 390.4 776 21.8 6.2

L7 2 6 50 23 19 28 1 1 –60 381.2 3600c 21.6 6.4

L8 3 14 33 29 21 28 1 1 1 –60 397.7 3600c 21.3 6.7

aNI: no intervention is implemented.
b Increase: the intended increase in the OFV (difference between columns 7 and 19).
cGap between the upper and lower bounds = 100%.

of processed milk is relatively low, the quality of milk plays an
important role in applying penalties.

The impact of the penalty parameter is more significant for the
medium-sized processor, M2. The maximum weighted average
shelf-life shows that the optimal objective value will suffer 1.5
(= 28.3 − 26.8) days if the original maximum allowable penalty
is cut in half (i.e., $0.6 to $0.3) and 1.6 days if the penalty
is not applied. In both of these cases, the optimal solutions
suggest implementing double-BF instead of MF and paying
higher premiums. On the other hand, increasing the penalty by
$0.3 per 100 lb only improves the objective value by 0.2 (=
28.5 − 28.3) days; this means applying more penalty does not
always result in significant improvement in the shelf-life and the
processors need to investigate the impacts of different levels of
penalties with this model to decide what level of penalty works
best for them without penalizing producers more than required.

We purposefully selected two different instances in categories
of small and large processors from Table 6 so that we have two
small and two large instances with a smaller percentage of low
milk quality (i.e., S6 and L3) and two with a larger percentage
of milk with low-quality (i.e., S8 and L5). In contrast with the
two small instances, we observe different changes in the objective

values for the two larger instances. L3, in which only 14% of milk
in category five, benefits from applying penalties more than L5,
which is supplied 63% by low-quality milk. Applying penalties
for instance L5 can only increase the average shelf-life by 0.1
days whereas in L3, applying a small amount of penalty can
improve the objective value by 2.8 days. This happens because
the volume of milk processed by L5 is higher, hence they have
assigned more budget to increase their shelf-life. The results
for L5 show that it is not always the best action to penalize
producers even when the majority of the supplied milk is in
category five.

Overall, the sensitivity analysis of the maximum allowable
penalty parameter shows that its impact is highly dependent on
the quality of the supplied milk and the assigned budget by the
processor which is relative to the total volume of processed milk.

In the MPBOP model, parameter SLmin, minimum shelf-
life, defines the main limitation of the problem. Therefore, we
perform sensitivity analysis for three instances, S6, M5, and L1,
with three values of 26, 28, and 30 days for this parameter (see
Table 11). The second column of the table shows the minimum
shelf-life for each problem and the last column presents the
difference in the objective value of each problem to that of the
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TABLE 10 | MSLOP sensitivity to parameter PRmin.

Instance number PRmin ($/CWT) B (¢/day) xMF xBF1 xBF2 xPR PR1 (¢/CWT) PR2 (¢/CWT) PR3 (¢/CWT) PR4 (¢/CWT) PR5 (¢/CWT) OFV (day) Diffa

S6

0 66 1 210 24.0 0.0

–0.3 66 1 214 –30 24.0 0.0

–0.6 66 1 214 –60 24.1 0.1

–0.9 66 1 217 –90 24.1 0.1

S8

0 66 1 31 31 31 31 22.6 0.0

–0.3 66 1 1 87 –30 26.2 3.6

–0.6 66 1 1 87 –60 26.2 3.6

–0.9 66 1 1 172 –90 26.4 3.8

M2

0 247 1 1 39 26.7 0.0

–0.3 247 1 1 47 –30 26.8 0.1

–0.6 247 1 1 20 –60 28.3 1.6

–0.9 247 1 1 27 –90 28.5 1.8

L3

0 548 1 1 13 13 13 13 27.4 0.0

–0.3 548 1 1 1 1 1 –30 30.2 2.8

–0.6 548 1 1 2 2 2 2 –60 30.4 3.0

–0.9 548 1 1 3 3 3 3 –90 30.5 3.1

L5

0 822 1 1 25 33.9 0.0

–0.3 822 1 1 1 160 –30 34.0 0.1

–0.6 822 1 1 1 203 5 5 –60 34.0 0.1

–0.9 822 1 1 1 33 33 33 33 –60 34.0 0.1

aDiff: the difference between the current OFV and the OFV when no penalty is applied.

TABLE 11 | MPBOP sensitivity to parameter SLmin.

Instance number SLmin (day) xMF xBF1 xBF2 xPR PR1 (¢/CWT) PR2 (¢/CWT) PR3 (¢/CWT) PR4 (¢/CWT) PR5 (¢/CWT) OFV (day) Diffa

S6

26 1 –60 94.2 -60.3

28 1 207 –60 154.5 0.0

30 1 47 –60 316.4 161.9

M2

26 1 47 –60 27.4 -215.3

28 1 1 20 –60 242.7 0.0

30 1 1 1 1 27 –60 315.1 72.4

L1

26 1 –60 0.0 -266.5

28 1 1 –60 266.5 0.0

30 1 1 1 –60 384.5 118.0

aDiff: the difference between the current OFV and the OFV when SLmin = 28.

problem where SLmin = 28. The rest of the table is similar to
Table 10.

As seen in this table, 2 days difference in the targeted shelf-life
can have a significant impact on the amount of required budget.
This difference varies for different processors. For example, if
the processor in instance S6 decides to have a 26-day shelf-
life, then they can spend $60.3 per day less compared to
when they targeted 28 days of shelf-life. On the other hand,
it will cost them an additional $161.9 to increase the shelf-
life by 2 days. Therefore, the MPBOP model provides dairy
processors a tool by which they can determine the increase
in costs when aiming for a higher shelf-life compared to their
product’s current shelf-life. Such information would allow them

to evaluate whether or not each day of shelf-life extension is
profitable for them depending on their knowledge of how much
additional income they can gain by each day of extension in
the shelf-life.

3.4. Use of MSLOP and MPBOP Models
Simultaneously
It should be noted that themodels aremeant to be used separately
since they solve two different problems [i.e., when the processor
has (i) a limited budget or (ii) a shelf-life threshold]. However,
processors with limited budgets can also take advantage of
both models simultaneously. In order to use both models, the
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processor would first use the MSLOP model to reach the optimal
value of shelf-life they can obtain with their limited budget. Then,
they feed the obtained optimal shelf-life value (or a rounded
down value) as an input value to MPBOP model and see if
they can reach that shelf-life threshold with a lower value of
budget. Running both models for problem instances S6, S8, M2,
L3, and L5, we found that larger processors who typically have
higher budget values can take advantage of this and optimize
interventions to reach the same shelf-life with a reduced budget.
Among the five instances, only processor L5 could benefit from
running both models. Instead of spending a budget of $822/day,
processor L5 can spend $672.2/day to reach the same value of
shelf-life (i.e., 34 days).

4. DISCUSSION

In this study, we developed two models to facilitate decision-
making for dairy processors. Specifically, the MSLOP model
can be used to determine the maximum shelf-life that can be
reached within a processor’s defined budget (e.g., $100/day),
whereas the MPBOP can be used to assess the minimum cost of
reaching a set shelf-life target (e.g., 21-day shelf-life). In total, 24
case studies, varying by (i) processor size (i.e., small, medium,
or large) and its annual lb. of milk processed, (ii) number of
producers and the quality of milk they supply to the processors
with respect to contamination with spores of Psychrotolerant
bacteria, (iii) processor’s budget for shelf-life improvement, and
(iv) planning horizon (i.e., 5 or 10 years), were evaluated for
both the MSLOP model and the MPBOP model, respectively
(Table 6). Overall, our findings showed that the optimal solutions
across the case studies appear to differ by processor size and are
determined by the quality of raw milk with which processors are
supplied, giving rise to processor-specific optimal combinations
of the proposed premium/penalty system and SRT interventions.
As such, the developed models provide a novel tool that will
aid processors in the optimization of their pasteurized fluid
milk’s shelf-life.

4.1. Optimal Combinations of the Proposed
Novel Premium/Penalty System and SRT
Interventions Are Processor-Specific
Fluid milk processors who aim to extend product shelf-life
need evidence-based solutions that are optimal for their raw
milk supply and processing characteristics. Our previous
studies have shown nearly 50% of HTST pasteurized fluid
milk spoils due to sporeforming bacteria (Alles et al., 2018;
Reichler et al., 2018); however, the reasons for spoilage
vary within a facility across time and among products
(Murphy et al., 2021). Our study specifically addresses
needs of processors whose product is primarily spoiled by
psychrotolerant sporeforming bacteria (i.e., not dealing with
spoilage issues due to post-pasteurization contamination).
Optimal solutions differed considerably between the small,
medium and large processors (referred to in our models
as “instances"), and they were the most diverse across the
medium-sized processors.

Notably, our findings demonstrate that premium/penalty
systems are often beneficial for processors targeting shelf-life
extension through the reduction of spores in their raw milk.
However, the optimal system to implement will depend on a
number of processor-specific factors (e.g., expected quality of the
rawmilk supply, volume ofmilk processed, and available budget).
Based on our findings, we recommend that fluid milk processors
seeking to extend shelf-life by reducing spore levels in raw milk,
consider implementation of premium/penalty systems based on
raw milk spore count. Given this novel finding, it is necessary to
discuss the value and potential implications of implementing a
premium/penalty system for both processors and producers.

Previous studies support that premiums and penalties are
used as a tool to motivate producers (e.g., Sargeant et al.,
1998; Valeeva et al., 2007; Nightingale et al., 2008). While
there are examples of premium payment systems for low-
spore raw milk (Vissers et al., 2007a,b), the majority of studies
evaluating aspects of quality-based premium payment programs
for raw milk focus on somatic cell count (Sargeant et al., 1998;
Nightingale et al., 2008; Botaro et al., 2013; Volpe et al., 2016).
In practice, these systems may include only penalties for low-
quality raw milk (Sargeant et al., 1998), only premiums for high-
quality raw milk (Nightingale et al., 2008), or a combination
of penalties and premiums (Botaro et al., 2013; Volpe et al.,
2016). For example, Nightingale et al. (2008) evaluated the
impact of a premium payment system implemented by a
large United States milk cooperative, which paid producers a
premium for supplying raw milk with a low somatic cell count
(<100,000 cells/mL), and found that implementing premiums
was effective in reducing mean somatic cell counts in overall
raw milk supplied to the cooperative. Nightingale et al. (2008)
also reported that only relatively high premium levels provided
enough incentive for producers to lower somatic cell counts in
their raw milk; thus, the authors recommended that a combined
penalty and premium payment program would be most effective
for motivating producers to strive toward reducing somatic
cell counts in their raw milk. Considering our findings, the
design of such a premium/penalty system based on spore levels
in raw milk should be processor-specific. While penalties may
provide motivation to producers, there also could be unforeseen
consequences of such a system (e.g., potential for negative
impact on producer-processor relationship), which should be
considered. Importantly, our study showed that the impact
of applying a penalty, as part of a premium/penalty system,
will not always have a significant impact on shelf-life. Thus,
prior to implementing a system that includes a penalty for
low-quality raw milk, a processor should assess the potential
impacts of different levels of penalties (e.g., using our MSLOP
model) to decide the appropriate level of penalty that will
benefit the processor while without penalizing producers more
than is required. Overall, implementing a premium/penalty
system may be relatively attainable especially for processors
with restricted budgets below what is needed to implement an
SRT. For an individual processor that considers implementing a
premium/penalty system based on spore levels in their supplied
raw milk, we recommend our models be used to assess the
optimal design of this system to maximize the processor’s
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budget (using the MPBOP model) and/or to achieve a target
shelf-life (using the MSLOP model). It should be noted that
for such processors, we recommend baseline spore levels of
the incoming raw milk be determined (e.g., to be used as
an input for expected raw milk quality in our models), prior
to implementation.

Installing, operating, and maintaining SRTs are expensive
(e.g., the purchasing cost of a MF unit is $1-2M); therefore,
it can be challenging for processors to decide to implement
an SRT in their facility. Our findings suggest that a processor
aiming to greatly extend the shelf-life of their HTST fluid
milk will need to invest in one or multiple SRTs in order
to achieve the desired shelf-life. Again, it is important to
emphasize that this finding only applies to processors with
milk consistently spoiling due to sporeforming bacteria and
not due to post-pasteurization contamination. In particular, for
small processors, implementing a SRT is often not economically
feasible and thus, providing a premium for the highest quality
raw milk and/or a penalty for the lowest quality raw milk
has been shown here a more affordable option in some cases.
While not considered in our case studies, a processor may
have reasons to invest in the SRT technologies that are not
motivated by extension of their pasteurized milk shelf-life. For
example, MF is used in cheese making to increase cheese
yield and thus, increase profit (Papadatos et al., 2002). This
means certain processors may already have a MF unit for other
purposes. An advantage of our models is their capability of being
customized for the processors who already implemented one
of the SRTs. This means by changing the cost parameters and
fixing the associated variables (e.g., xMF = 1 if they already
implemented MF), they can address and assess their specific
processing situation.

4.2. The Developed Models Provide a Novel
Tool for Processors to Optimize Shelf-Life
of Pasteurized Fluid Milk
Our study provides two novel mixed-integer linear programming
models that can be used as decision support tools for dairy
processors to set economically rational shelf-life targets for
their final products. Importantly, our two MILP models are
capable of providing decision support for individual dairy
processors by applying processor-specific parameters. Thus,
managers can use our models to reach their optimal strategies
in regards to maximizing the weighted average shelf-life
depending on their available budget (MSLOP) or minimizing
their budget depending on their targeted weighted average shelf-
life (MPBOP).

In contrast to our study, most optimization models developed
for perishable agri-foods lack the consideration of the shelf-life
aspect. For example, Papadatos et al. (2002, 2003) developed
non-linear optimization models to investigate how MF can be
used to increase cheese yield and increase the revenue without
considering its impact on the shelf-life. Regarding agri-food
planning models, Ahumada and Villalobos (2009) suggest shelf-
life is often excluded from planning models because shelf-life
features complicate the problem. Yet, it is obvious that shelf-life

has major practical implications for the dairy industry and thus
should be considered when developing models for perishable
foods. As such, our models specifically focus on maximizing
shelf-life that is directly influenced by microbial aspects of raw
milk quality. It is well-established that a major cause of spoilage
in many perishable foods is due to microorganisms. However,
the majority of previous studies including optimization models
targeting the shelf-life of dairy products (e.g., Lütke Entrup et al.,
2005; Bilgen and Çelebi, 2013), such as studies focusing on how
dairy products can gain the maximum profit by considering the
operations scheduling, transportation, and distribution aspects
of the milk supply chain, do not address the impact of
microbial contamination on product shelf-life. For example,
Lütke Entrup et al. (2005) developed a mathematical model
that maximized the contribution margin considering a shelf-
life-dependent pricing component in the yogurt supply chain,
but did not address the impact of spoilage microorganisms on
product shelf-life. Similarly, Bilgen and Çelebi (2013) optimized
an integrated production scheduling and distribution planning
for a yogurt supply chain and maximized the profit by taking
into account the shelf-life-dependent pricing component and
costs such as processing, storage, and transportation costs,
but also did not consider the impact of microorganisms
on product shelf-life. Thus, this paper presents a valuable
foundational approach for studying optimization models for
milk and other food supply chains in which microorganisms
play a crucial role in diminishing the shelf-life and/quality of
the food.

We acknowledge that there were limitations in defining the
problem and parameterization of the models in this work.
In particular, an intervention study is necessary to establish
an understanding of the actual impact a premium/penalty
system would have on the spore levels in raw milk at the
processing level. Additionally, while the impact of individual
MF and BF on spore levels in raw milk has been studied, the
impact of combining MF and BF in a facility, needs to be
investigated. It should be noted that the scope of our models
was limited to the spore-forming bacteria in raw milk; however,
our models could be adapted in the future to consider other
spoilage microorganisms (e.g., whose source is contamination
during processing). Also, due to the novelty of the proposed
premium payment system, no suitable data were available for
validation of that component of our optimization models.
However, other components of our optimization models were
based on synthesis of published data and models, including the
Monte Carlo model that has been validated in Buehler et al.
(2018). Additionally, as also mentioned in Section 2.3.2, our
optimization models as presented in this study incorporated
the output of predicted shelf-life of packaged milk from a
Monte Carlo model (Buehler et al., 2018). The Monte Carlo
model had limitations that, in turn, impacted our optimization
models. Specifically, the Monte Carlo model had an assumption
of constant storage temperature across the milk supply chain;
version 2 of the Monte Carlo model, which is currently under
development, will allow for modeling of temperature variation,
which will in turn, allow for further development of our
optimization models to include this feature. Finally, a more
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comprehensive model should be developed to consider the
monetary impact of extension in the shelf-life, by considering
shrinkage caused by the SRT units (which was omitted here)
and evaluating the overall Return on Investment for shelf-
life extension.

5. CONCLUSION

In this paper we propose a new raw milk premium/penalty
system structure based on levels of psychrotolerant spores in
raw milk, a microbiological agent which limits the shelf-life
of conventionally pasteurized fluid milk products. Our novel
approach, which combines microbiology and operations research
in the form of two mixed-integer linear programming models
is aimed at addressing these shelf-life limitations from the
dairy processors’ perspective. Using our models, processors of
various sizes, with unique processing parameters and distinct
raw milk supplies, will be able to optimize their available
budgets to obtain shelf-life goals. These decision support tools
will ultimately allow processors to reach new markets, improve
distribution efficiencies and provide consumers with long-
lasting, high quality dairy products. The future development of
a user-friendly interface will facilitate more widespread use of
these models.
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