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Legumes are of primary importance for agroecosystems because they provide

protein-rich foods and enhance soil fertility through fixed atmospheric nitrogen. The

legume-rhizobia symbiosis that makes this possible has been extensively studied, from

basic research on biochemical signaling to practical applications in cropping systems.

While rhizobia are the most-studied group of associated microorganisms, the functional

benefit they confer to their legume hosts by fixing nitrogen is not performed in isolation.

Indeed, non-rhizobia members of the rhizosphere and nodule microbiome are now

understood to contribute in multiple ways to nodule formation, legume fitness, and other

agroecosystem services. In this review, we summarize advances contributing to our

understanding of the diversity and composition of bacterial members of the belowground

legume microbiome. We also highlight applied work in legume food and forage crops

that link microbial community composition with plant functional benefits. Ultimately,

further research will assist in the development of multi-species microbial inoculants

and cropping systems that maximize plant nutrient benefits, while reducing sources of

agricultural pollution.
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INTRODUCTION

Legumes are at the heart of sustainable agricultural strategies to alleviate global hunger, reduce the
carbon footprint of farming, and improve soil fertility (Peoples et al., 2009; Smith et al., 2016).
As one of the main sources of nitrogen (N) in terrestrial soils, biological nitrogen fixation (BNF)
performed via interkingdom legume-rhizobia symbiosis is critical for ecosystem functioning. It
is estimated that agriculturally important legumes fix between 40 and 90 Tg N yr−1 (Galloway
et al., 2008; Taylor et al., 2020). Although humans have studied BNF for nearly 200 years, our
understanding of how legumes impact agroecosystem function is still evolving. While scientific
advances have propelled cereal crop yields to historic levels in the past 50 years, advances in grain
legume production lag far behind with annual yield increases stalling at 0–2% (Foyer et al., 2016).

In the following sections, we highlight work that has expanded our understanding of the legume
microbiome beyond rhizobia-associated benefits to soil fertility from BNF. Plant microbiomes are
defined as complex networks of bacteria, fungi, viruses, and other microfauna that interact with
the plant host on a cellular level or may impact plant fitness by modifying the immediate soil
environment (Quiza et al., 2015; Leach et al., 2017). In this mini-review, we limit our focus to
legume interactions with bacterial communities within the nodule and rhizosphere.
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LEGUME-ASSOCIATED RHIZOBACTERIAL
COMMUNITIES

Mounting evidence pointing to the breadth of microbial taxa
that influence and are influenced by legumes suggests that
this is an area scientists should critically examine to maximize
potential benefits from legume crops. Importantly, we do not yet
understand the specific mechanisms involved in rhizobacterial
recruitment, their functional implications at the field scale, or
the specificity of the interaction. This is partly due to difficulties
in parsing out effects of rhizodeposition from other dynamic
soil processes in the rhizosphere (Tsiknia et al., 2021). Below,
we describe work that examines legume-mediated impacts on
rhizobacterial communities with potential consequences for
broader agroecosystem functioning.

Legume-Microbial Signaling in the
Rhizosphere
Rhizospheric legume-microbe interactions and bacterial
community composition are largely mediated by root exudates
(Tian et al., 2020), the synthesis of which can account for 10–20%
of net photosynthetic carbon (Tsiknia et al., 2021). Intracellular
symbiosis with rhizobia and capacity for BNF result in some
specific differences in how legumes modify rhizobacterial
communities compared to non-legumes.

Legumes initiate microbial interactions in the rhizosphere
through communication pathways involving root-exudates
known as flavonoids which trigger the production of nodulation
(Nod) factors by compatible rhizobia symbionts (Peck et al.,
2006; Wang et al., 2018). Flavonoid production is further
stimulated by legume root perception of Nod factors, creating
a positive feedback between legume and rhizosphere signaling
that is reinforced by rhizobia presence (Liu and Murray, 2016).
Studies involving mutant legumes unable to nodulate or form
mycorrhizal symbioses revealed significant effects of symbiont
absence on bacteriome structure in the rhizosphere (Uroz et al.,
2019). Nodulation induces unique metabolic changes within
the legume host that may explain this effect, including the
production of cysteine-rich peptides in some legumes that
control bacteroid differentiation but also act as antimicrobials
against non-symbionts (Maróti et al., 2015). However, the role
of these peptides in modulating microbial community structure
has not yet been thoroughly tested.

Flavonoids not only initiate symbiosis with rhizobia but also
play a central role in shaping legume rhizosphere community
structure. In vitro experiments using RNAi soybean roots
deficient in flavonoid production showed that flavonoids
significantly affect rhizosphere bacterial community composition
(White et al., 2015). One explanation might be that the common
symbiosis pathway in legumes is shared beyond rhizobia and
arbuscular mycorrhizal fungi (AMF) (Skiada et al., 2020). For
example, Medicago truncatula mutants unable to establish AMF
symbiosis grown in field soil under greenhouse conditions had
reduced microbial abundance in the rhizosphere, suggesting
a role for conserved symbiotic pathways in rhizosphere
enrichment processes (Wang et al., 2021). Although flavonoids

are present across the plant kingdom (e.g., Lapcik et al., 2006;
Tian et al., 2021), accumulated evidence suggests they are
particularly prevalent among legumes (Veitch, 2007; Jasiński
et al., 2009) and their importance in multiple initiation and
regulatory functions pertaining to intracellular symbiosis cannot
be understated. While there is limited research on differences
in flavonoid profiles among legumes and non-legumes, Weston
and Mathesius (2013) note that species-specific differences in
root flavonoid exudation could be responsible for various root-
microbe interactions. Extensive metabolic and proteomic root
exudate profiling under field conditions is needed to clarify
the role of legume-derived flavonoids in rhizobacterial selection
and enrichment.

In addition to flavonoids and other compounds required
for the symbiosis pathway, legumes differ from non-legumes
by N rhizodeposition. Legumes release N-rich compounds,
principally driven by the decomposition of senescing nodules
and exudation of soluble nitrogenous compounds (Fustec et al.,
2010). Due to the difficulty of measuring root-derived N under
field conditions, estimates of legume N rhizodeposition as
a percentage of total plant N vary widely from 4 to 71%
(Fustec et al., 2010). Legume-derived N transforms the structure
and function of rhizobacterial communities in ways that are
distinct from non-legumes. Legume root zones are associated
with greater microbial abundance and diversity, potentially
by favoring certain metabolic profiles (e.g., N-cyclers) or fast
growing r-strategists (Hamel et al., 2018). For example, a potted
greenhouse experiment demonstrated that intercropping the
legume Medicago sativa with Dactylis glomerata significantly
increased root-associated N-cycling bacteria relative to the
single-species D. glomerata (cat grass) treatment (Zhao et al.,
2017). In another greenhouse study, legumes increased soil
bacterial diversity and the abundance of certain groups
(Verrumicrobia, Actinobacteria, and Nitrospirae) compared to
grass treatments (Zhou et al., 2017).

Legumes and non-legumes alike selectively modify the
composition of microbial communities through root exudates
in ways that promote their own growth and fitness (Zhalnina
et al., 2018). Mucilage, lysed cells, carbohydrates, volatile
organic compounds (VOCs), and other secondary metabolites
or signaling molecules (e.g., strigolactones) serve important
functions in recruiting plant growth promoting bacteria (PGPBs)
to alleviate biotic and abiotic stress in legumes and non-legumes
(Vives-Peris et al., 2020; Figure 1). Compared to grasses, some
legumes secrete a greater quantity of sugars and amino acids,
potentially because of positive feedbacks with symbionts and
PGPBs in the rhizosphere (Cesco et al., 2010). Weisskopf et al.
(2008) found that greater organic acid exudation by lupin
roots compared to wheat in a microcosm explained 15% of
the observed variance in rhizobacterial abundance between the
two species. More evidence is needed to clarify unique features
of legume root exudate profiles and functional impacts on
rhizobacteria across a broader species range.

Plant Growth Promotion
We are at an emergent stage of understanding the functional
relevance of recruited rhizobacteria among major agricultural

Frontiers in Sustainable Food Systems | www.frontiersin.org 2 October 2021 | Volume 5 | Article 668195

https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org
https://www.frontiersin.org/journals/sustainable-food-systems#articles


Schaedel et al. Advances in Legume Microbiome Diversity

FIGURE 1 | Legumes form interspecific associations with endophytes and enrich the growth of other microbial communities within the rhizosphere. Plant-derived

factors in the rhizosphere such as flavonoids, allelopathic phytochemicals, and nitrogenous compounds preferentially favor the growth of certain groups over others.

This “filtering effect” (Xiao et al., 2017) ultimately leads to a decrease in diversity with increasing proximity to the legume root surface. The soil microbiome in turn

influences legume performance through rhizospheric signaling that includes Nod factors, phytohormones, volatile organic compounds (VOCs), and antimicrobial

compounds. Following legume root and nodule senescence, rhizobia, and other endophytes are released back into the rhizosphere. Multiple seasons of legume

cropping may cause shifts in the abundance and activity of symbionts, PGPBs, and other rhizosphere-associated groups over time (Thies et al., 1995; Ai et al., 2015).

Legume impacts on the structure and function of the soil microbiome are mediated by numerous environmental factors and management practices, such as soil pH,

tillage, and residue management. Created with BioRender.com.

grain legumes, although early studies have suggested a role in
adaptation to abiotic stress. In a greenhouse experiment using
field collected soils, soybean rhizosphere isolates (Bacillus cereus)
alleviated the inhibitory effects of salt stress on nodulation when
co-inoculated with Sinorhizobia (Han et al., 2020).

Recent studies have documented rhizobacterial-mediated
stress adaptation under field conditions that is strongly
influenced by legumes and rhizobia rather than soil factors.
Kamutando et al. (2017) showed that the invasive legume Acacia
dealbata associates with a core set of microbial rhizosphere taxa
across eight geographically diverse locations in South Africa.
Subsequent metagenomic sequence analysis revealed higher
abundance of plant growth promoting traits in the rhizosphere
compared to bulk soil, with the majority involved in nutrient
metabolism and membrane transport systems (Kamutando et al.,
2019). Amplicon sequence analysis of Kersting’s groundnut

rhizobacterial communities from a field trial in Ghana similarly
identified the enrichment of a core group of taxa that could be
involved in plant growth promoting functions such as indole-
3-acetic acid (IAA) production (Jaiswal et al., 2019). These
results suggest the potential to exploit legume rhizospheric
interactions to improve agroecosystem productivity under a
changing climate.

Studies focused on agroecosystem-wide benefits suggest
legume-mediated PGPB enrichment in the rhizosphere also
improves non-legume companion crop performance. Benefits
accrued to non-legume crops in rotational systems with legumes
could be due to soil “legacy effects,” which are residual soil-
transferred effects imparted to the microbiome following legume
removal. We have known about legume-derived benefits to
succeeding crops for many years: Stevenson and van Kessel
(1996) found that field pea rotations benefited wheat growth,
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with 91% of the yield benefit attributed to reduced disease
pressure. While there was no connection made to plant-mediated
microbiome shifts at the time, subsequent work made this link
more apparent. For instance, Latz et al. (2012) found that legumes
from a long-term field experiment promoted antifungal gene
abundance among soil bacteria. Similarly, long term soybean
cropping systems are known to reduce the diversity, abundance,
and pathogenicity of the root rot-causing fungal pathogen
Fusarium within the rhizosphere (Wei et al., 2014).

Duchene et al. (2017) recently proposed a “complementarity
and facilitation” framework, wherein legume-mediated changes
to rhizobacterial communities promote non-legume crop growth
via niche differentiation and the enrichment of PGPBs. This
means that legume residues or root metabolites favor the
persistence of microbial groups such as symbionts (e.g.,
Burkholderia, Frankia, and Bradyrhizobia), N cyclers (e.g.,
Nitrospira and Nitrosomonas), or microbes involved in soil
organic matter conversions (Fox et al., 2020). Hannula et al.
(2020) found strong evidence for plant species-specific effects
on soil microbes in a potted greenhouse experiment. The
most abundant phyla in legume-conditioned soils were groups
(Actinobacteria, Planctomycetes, and Alphaproteobacteria) that
are known to form associations with rhizobia (Hartman et al.,
2017; Hannula et al., 2020). Similarly, pea and chickpea–
conditioned soils benefited wheat growth in a greenhouse study,
potentially by increasing the abundance of PGPB including
Proteobacteria (Yang et al., 2013).

The degree to which legacy effects from legumes persist over
time is still unclear, especially in field conditions. Furthermore,
many of the putative growth-promoting functions of enriched
rhizosphere taxa have been inferred from sequence analysis that
may not reflect their actual performance in vivo. Nevertheless,
studying enriched PGPBs within the legume rhizosphere can help
researchers identify taxa that can be used to benefit crop growth
and inform future field experiments (Hartman et al., 2017).

THE LEGUME NODULE MICROBIOME

In addition to the previously discussed co-occurrence of rhizobia
with certain bacterial taxa in the rhizosphere, non-rhizobia
endophytes (NREs) co-inhabit legume root nodules with rhizobia
(Table 1). There is growing evidence that rhizobia are not the
sole, nor always themost abundant (Muresu et al., 2008) residents
of legume root nodules. This discovery can be attributed to
advances in sequencing technology, as previous culture-based
studies excluded colonies that did not conform to known
rhizobia morphology or were not culturable at all (Howieson and
Dilworth, 2016). For a comprehensive review on NREs, we refer
readers to Martínez-Hidalgo and Hirsch (2017). Below, we focus
on recent advances in this area.

Contribution of NREs to Legume Growth
and Performance
Domestication and adaptation of legumes to the highly managed
conditions of agricultural soils may have reduced nodule-
associated microbial diversity, which could provide clues as to

the functional benefits of NREs (Cardoso et al., 2018). Divergent
NRE diversity between domestic crops and closely related wild
relatives may be due to differences in root exudates and other
evolutionary adaptations to high-nutrient environments (Pérez-
Jaramillo et al., 2017; Fitzpatrick et al., 2018). Domesticated
legume varieties often have larger seeds, a result of adaptation
to high-input environments where soil N uptake is less costly
than the symbiotic relationship required for BNF (Liu et al., 2020;
Martínez-Romero et al., 2020). This could suggest an energetic
benefit for wild legumes in diversifying nodule occupancy in
N-limited soils.

There is no conclusive evidence that NRE themselves fix
nitrogen from within the nodule, although N-fixing genes
including nifH and narG have been successfully amplified from
multiple NREs isolated from crimson clover nodules in the field
(Moore et al., 2020). Importantly, the presence of these genes
implies a genetic capability to reduce atmospheric nitrogen to
ammonia although we don’t have evidence that NREs transcribe
these genes in planta. Not all NREs house N fixation genes:
Bacillus, accounting for 17.9% of nodule endophytes among a
survey of wild legumes in Belgium, was not found to contain N
fixation genes (De Meyer et al., 2015).

Besides a putative role in N fixation, NREs may provide
other benefits such as phosphate (P) solubilization (Hakim
et al., 2020) that serve to increase rhizobia and host fitness.
This may be particularly important in weathered and nutrient-
deficient tropical soils, where many NREs have been recovered
from wild legumes (Muresu et al., 2019). The mechanism
and ecological relevance of NRE P solubilization is unknown,
as it is not a function that has been confirmed outside of
culture-based studies. Interestingly, P plasticity increases in
nodules and surrounding root cells under P-limiting conditions
(Vardien et al., 2016). Under such conditions, intracellular
phosphohydrolases improve P availability for N fixation by
“recycling” other cellular proteins. The link between NRE P
solubilization phenotypes in vitro and cellular P cycling in planta
requires further clarification.

NREs may also suppress plant pathogens. Tokgöz et al.
(2020) found that NREs isolated from soybean nodules have
antifungal and antibacterial properties that extend beyond the
nodule and interact with non-legumes. The authors found that
an isolate of the genus Proteus was effective in inhibiting
the growth of several bacterial and fungal pathogens in vitro.
Growth chamber inoculation experiments with the same strain
suppressed bacterial speck disease in tomato seedlings. To
our knowledge, this is the only study that has demonstrated
that NREs provide pathogen protection in non-legume hosts.
If legume nodules are indeed active sites of antimicrobial
production (Hansen et al., 2020), it is possible that these benefits
could accrue in adjacent or succeeding plants in cropping systems
as nodules ultimately senesce (Müller et al., 2001) and the
antibiotic producing NREs are released into the soil.

Nodule Colonization by NREs
Understanding NRE nodule entry mechanisms is critical to
designing climate-adaptive microbial inocula to improve legume
productivity. Legume selection of NREs may occur via host
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TABLE 1 | Selected legume-associated bacteria with confirmed and hypothetical functions.

Microorganism Legume Association/Function Citations

Achromobacter spp. Cicer arietinum (chickpea) • Nodule endophyte

• Plant growth promotion

• Potential salt/osmotic stress protection

Egamberdieva et al., 2017

Azospirillum Glycine max (soybean) • Nodule endophyte

• Nodulation capacity/efficiency

• Environmental stress adaptation

Chibeba et al., 2015

Bacillus spp. Soybean, Medicago sativa • Nodule endophyte

• Disease protection

• Nodulation and N fixation promotion

• IAA production

• Cellulase production

• Antibiotic production

Rajendran et al., 2008; Korir

et al., 2017; de Almeida

Lopes et al., 2018; Brígido

et al., 2019; Hansen et al.,

2020

Burkholderia spp. Soybean • Nodule endophyte

• N fixation promotion

• Disease protection

de Almeida Lopes et al.,

2018

Chryseobacterium spp. Vigna unguiculata (cowpea) • Nodule endophyte

• Osmotic stress protection

Leite et al., 2017

Enterobacter spp. Soybean, Phaseolus lunatus (lima bean) • Nodule endophyte

• Abiotic stress adaptation

Sharaf et al., 2019; Chibeba

et al., 2020

Paenibacillus spp. Soybean • Nodule endophyte

• N fixation promotion

• Plant growth promotion

Korir et al., 2017; Sharaf

et al., 2019

Pseudomonas spp. Cajanus cajan (pigeon pea), Chickpea, Soybean • Enriched in legume rhizosphere

• IAA production

• Cellulase production

• Phosphate solubilization

• Antifungal pathogen protection

Dutta et al., 2014; Brígido

et al., 2019; Sharaf et al.,

2019

Serratia spp. Chickpea • Nodule endophyte

• IAA production

Brígido et al., 2019

Streptomyces spp. Stylosanthes guianensis • Enriched in legume cropped soils

• Pathogen suppression and

antibiotic production

Schlatter et al., 2009*; Zhou

et al., 2017

*Indicates inferred function from a non-legume specific study.

resource sanctioning within the nodule as with rhizobia
(Kiers et al., 2003), or during nodule formation. While
immunofluorescence microscopy has confirmed the presence of
non-rhizobia in nodules in vitro (Muresu et al., 2008), the stage
(i.e., root hair curling, infection thread) of nodule formation
at which these NREs enter the symbiosome is not yet well-
understood (Martínez-Hidalgo and Hirsch, 2017).

There is limited research on the molecular signaling involved
in NRE legume colonization, although some studies have
reported an absence of nodC among cultured NRE isolates
(Ibáñez et al., 2009; Zgadzaj et al., 2015). Importantly, nodC
encodes the N-acetyl glucosamine backbone of Nod factors
required for root hair curling and infection (Perret et al.,
2000). The absence of nod genes thus implies that NREs
opportunistically gain entry to the legume host via rhizobia-
initiated infection threads rather than initiating the symbiosis
themselves (Ibáñez et al., 2009). Alternatively, NREs could also
enter through root cracks that may not require Nod factor
signaling, as is the case with some photosynthetic Bradyrhizobia
(Giraud et al., 2007), although this has not been thoroughly
tested. Several NREs are known to produce IAA which stimulates
lateral root growth and therefore increases the number of suitable

infection sites for root colonization by “crack entry” (Ibáñez et al.,
2009; Hakim et al., 2020).

Evidence suggests that NREs may “eavesdrop” on molecules
involved in the symbiosis pathway to opportunistically gain entry
to the nodule via the infection thread. For example, Zgadzaj et al.
(2016) found that rhizobacterial community assembly and root
colonization by NREs in Lotus japonicus requires a functional
symbiosis pathway. Involvement of legume-derived root signals
in NRE enrichment was further supported by evidence that both
WT and mutant L. japonicus enriched significantly different root
microbiota from both Arabidopsis and three Brassicaceae species
(Zgadzaj et al., 2016). More recent work has also found evidence
for legume-specific changes to rhizobacterial communities in
both field (Hamel et al., 2018) and greenhouse (Zhou et al.,
2017) settings. However, no studies have yet been successful
in identifying which signals are required for successful NRE
nodule colonization or if these signals are legume-specific. For
instance, both cytokinin and abscisic acid responses are crucial
for nodulation and different in nodulating legumes compared to
other plant species; this may present another avenue for future
research in this area (Liang and Harris, 2005; Gauthier-Coles
et al., 2019).
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The specificity of legume-NRE interactions and whether the
host is able to select for beneficial NREs (as some legumes select
for efficient N-fixing rhizobia) is not yet clear. Evaluation of
NREs obtained from diverse wild legume species demonstrated
that the majority belonged to the genera Flavobacterium and
Pseudomonas with little evidence of host-symbiont specificity
(Cardoso et al., 2018). Similarly, low abundance and inconsistent
occurrence of NRE strains among nodules collected from the
same soybean host plant led to the recent conclusion that legumes
exert little selective pressure (Mayhood and Mirza, 2021).
Nevertheless, recent work has shown that host genetic control
exerts a stronger influence on nodule community composition
than edaphic factors (Brown et al., 2020; Shah et al., 2021),
suggesting at least some degree of specificity. Legume selection
of NREs across diverse environments merit further study to
understand how we can leverage plant-soil-management drivers
to address critical priorities in agriculture.

DISCUSSION

While there are a growing number of studies (e.g., McDaniel
et al., 2016; Yang et al., 2016; Zhou et al., 2017; Wang et al.,
2020) that link soil microbial community composition and
function to legumes, the practical implications of these changes
are difficult to predict. Moving from controlled laboratory and

greenhouse settings to testing legume-specific microbiome shifts
under field conditions is a critical step toward providing practical
applications of this line of research.

In this mini-review, we have discussed a broad range of
legume-bacteria interactions to illustrate that future research
beyond N fixation by rhizobia has the capacity to broaden
legume agroecosystem services. As our understanding of
legume-microbe interactions grows, we will be better equipped
to design sustainable cropping systems and inoculants that not
only boost crop production, but also improve ecological diversity,
retain plant-available N, and facilitate the long-term enrichment
of PGPBs to reduce our reliance on inorganic inputs.
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