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The southern rice black-streaked dwarf virus (SRBSDV) is a severe threat to the yield

and quality of rice products worldwide. Traditional detection methods for diagnosing

SRBSDV infection show several false positives and thus provide inaccurate findings.

However, Western blotting (WB) can precisely solve this problem. In this study, P6—a

viral RNA-silencing suppressor—was expressed and purified in vitro. Two polyclonal P6

antibodies were obtained and quantified by enzyme-linked immunosorbent assay and

WB. Subsequently, WB was performed using the P6 antibodies to identify SRBSDV

antigens derived from the suspected rice samples collected from nine districts in

Guizhou, China. The assay results showed that Libo, Pingtang, Huishui, Dushan, and

Anshun districts had experienced an SRBSDV outbreak. The virus content in the sampled

rice tissues was quantified byWB. Our results revealed that SRBSDVmainly accumulated

in rice stems rather than rice leaves. Thus, the findings of our study show that the

SRBSDV P6 antibody can be used in WB for detecting and monitoring SRBSDV infection

in infected rice plants.

Keywords: SRBSDV, P6, antibody production, virus detection, western blot

INTRODUCTION

Southern rice black-streaked dwarf virus (SRBSDV) is a severe threat to both the yield and quality
of rice products worldwide (Wang et al., 2019). In 2010,∼2.97 million acres of agricultural land in
China was affected by SRBSDV infection (Wu et al., 2017).

Similar to rice black-streaked dwarf virus (RBSDV), SRBSDV is an icosahedral virus with a
diameter of 70–75 nm. The SRBSDV genome comprises ten segments (S1–S10) in the decreasing
order of molecular weight. Ten SRBSDV segments encode five putative structural proteins (P2, P3,
P4, P8, and P10) and eight putative nonstructural proteins (P1, P5-1, P5-2, P6, P7-1, P7-2, P9-1,
and P9-2) (Mao et al., 2013; Wang et al., 2013; Li et al., 2017; Yu et al., 2017). Among these proteins,
P6 is a viral RNA-silencing suppressor that may affect its interaction with other viral proteins such
as P7-1 and P9-1 (Wang et al., 2011; Jia et al., 2012; Wu et al., 2013). Thus, P7-1 and P9-1 were used
as targets for detecting SRBSDV infection (Wang et al., 2015; Ran et al., 2018).

Several methods have been used to detect SRBSDV infection such as polymerase chain reaction
(PCR) with SRBSDV using S7-1, S9-1, and S10 genes (Wang et al., 2015); immunoassays with
SRBSDV P9-1 (Wang et al., 2015); dot enzyme-linked immunosorbent assay (dot-ELISA) with
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SRBSDVP7-1, P9-1, and P10 (Chen et al., 2012;Wang et al., 2012;
Uehara-Ichiki et al., 2013); yeast two-hybrid screening assay with
P9-1 (Wang et al., 2015); and proteomics with SRBSDV proteins
(Wang et al., 2017; Yang et al., 2017; Yu et al., 2017). Dot-ELISA
is a simple and rapid method, but it shows an increased number
of false positives. However, Western blotting (WB) can precisely
solve this problem. In Spodoptera frugiperda cells induced by
SRBSDV infection, P6 is recruited in the whole viroplasm matrix
by directly interacting with P9-1 and P5 (Li et al., 2013, 2015a).
To date, no study has reported the detection of SRBSDV with P6
using WB.

In the present study, P6 was expressed and regarded as a
potential target of antiviral compound because of the importance
of P6 in the whole viroplasm matrix (Wang et al., 2015). In
our research, P6 was initially expressed and purified in vitro.
Two polyclonal P6 antibodies were obtained and measured
using ELISA. Subsequently, a WB approach was developed for
identifying SRBSDV antigens derived from SRBSDV-infected
rice samples collected from nine districts in Guizhou, China. The
primary aim of the present study was to use WB to diagnose
suspected SRBSDV infection in rice plants. To the best of our

FIGURE 1 | Investigation and collection of SRBSDV in Guizhou Province. Rice samples from Tianzhu, Meitan, Dejiang, Puan, Libo, Pingtang, Huishui, Dushan, and

Anshun 9 districts of Guizhou were selected in this assay.

knowledge, this is the first study to diagnose SRBSDV infection
in rice using WB with P6.

MATERIALS AND METHODS

Plant Materials
Suspected SRBSDV-infected rice samples with typical dwarf
symptoms were collected from Tianzhu, Meitan, Dejiang, Puan,
Libo, Pingtang, Huishui, Dushan, and Anshun districts in
Guizhou, China (Figure 1). The samples were kept in liquid
nitrogen and subsequently stored at−80◦C.

Gene Cloning and Plasmid Construction
SRBSDV RNA was extracted from SRBSDV-inoculated rice
leaves using the TRIzol reagent method (TaKaRa, Japan), and the
cDNA of P6 was obtained through cDNA synthesis. P6 gene was
amplified using forward and reverse primers (5′-CGGGATCCA
TGTCTACCAACCTCACGAACATA-3′) and (5′-GCTCTAGAT
TACTCTGAAATAAGTTGCCACAA-3′), with a BamH I and
Xho I at both ends, respectively. The target gene and the pCold-
SUMO vector (Novagen, USA) were digested, purified through
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FIGURE 2 | Symptoms of rice infected with SRBSDV. Dashed oval represents rice infected by SRBSDV in the field. The right figures are enlarged symptoms of

infected rice leaves (Upper) and stems (Lower) by SRBSDV.

electrophoresis, and ligated with T4 ligase. The ligation products
were transformed into DH5α competent cells. Colonies were
identified by PCR. Positive clones were sequenced and identified
by restriction enzyme digestion.

P6 Protein Expression and Purification
The recombinant SRBSDV P6 plasmid was transformed into the
Escherichia coli strain BL21 (DE3). The cells were harvested at 4 h
after inoculation and after isopropyl-β-d-thiogalactopyranoside
(IPTG) induction at 25◦C. Subsequently, the cells were
resuspended in a lysis buffer (50mM Tris pH 7.5, 100mM NaCl,
1mM EDTA, 1% Triton X-100, 1 mg/mL lysozyme, and bacterial
protease inhibitor cocktail) and sonicated for 2min on ice. The
lysates were incubated on ice for 30 min.

Protein purification was performed according to the protocols
reported previously (Ran et al., 2018). The extracted cell lysates
were incubated with equilibrated agarose beads (GE Healthcare,
IL, USA) for at least 2 h at 4◦C. Centrifugation was performed at
2,000 × g for 2min to remove the supernatant. Thereafter, the
beads were washed 5 times with a wash buffer [1×phosphate-
buffered saline (PBS), 0.5% Triton X-100, and 1mM EDTA]. The

purified protein was eluted in a freshly prepared elution buffer
(10mM reduced glutathione, and 50mM Tris pH 8.8).

Rabbit Immunization
Immunization and blood sample collection were performed at
a biotechnology company (Youke, China). In this assay, two
rabbits were injected with the suspended antigen in Freund’s
Adjuvant solution (Sigma, USA). On day 1, each rabbit was
subcutaneously injected with 2mL antigen solution (1mL
antigen with 1mL Freund’s Complete Adjuvant solution). The
rabbits were administered three booster doses on days 15, 29,
and 43 after immunization with 2mL antigen solution (1mL
antigen with 1mL Freund’s Incomplete Adjuvant solution) as
per the protocol in the first immunization. Pre- and post-
immunization blood samples were collected, and 55mL of each
post-immunization blood sample was purified using protein A
(Millipore, MA, USA).

Antibody Titer Detection
The titers of the purified antibody were tested by ELISA.
Antigens were diluted to 1µg/mL with citrate-buffered saline
buffer (15mM Na2CO3, 35mM NaHCO3, pH 9.6) and blocked
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FIGURE 3 | Efficiency of P6 antibody in detecting SRBSDV. (A) SRBSDV detection of P6 antibody in healthy rice, protein antigen, and infected rice. (B) SRBSDV

detection sensitivity of P6 antibody. Antigen diluted in series times such as 1:1250, 1:2500, 1:5000, 1:10000, 1:20000, 1:40000, 1:80000, and 1:160000 was used to

test for P6 antibody detection limitation.

with 5% non-fat milk in PBS. Incubation was performed with
the first and second antibodies. Then, the results of ELISA
were detected using a spectrophotometer at A450 nm after the
addition of the 3,3′,5,5′-tetramethylbenzidine reaction buffer
(CWBio, China). For the titer test, antigens were diluted in a
series ratio as follows: 1:1250, 1:2500, 1:5000, 1:10000, 1:20000,
1:40000, 1:80000, 1:160000, 1:320000, 1:640000, and 1:1280000.
A healthy rabbit was used as the control.

Protein Extraction and Western Blotting
Analysis
Rice leaves and stems were collected and ground in liquid
nitrogen and were then resuspended in a protein lysis buffer
(50mM Tris PH 7.5, 6M urea, 150mM NaCl, 0.1% NP40, and
1mM PMSF). The lysates were vortexed for 30 s and placed
on ice for 30min. Following lysis, the protein mixture was
centrifuged at 20,000× g for 20min at 4◦C to eliminate insoluble
materials. The extracted protein was boiled with the sodium
dodecyl sulfate (SDS)-loading buffer (250mM Tris PH 6.8, 10%
SDS, 0.5% bromophenol blue, and 50% glycerol) for 5min and
cooled on ice.

WB was conducted via the following steps. The extracted
protein was loaded and run on SDS-polyacrylamide gel
electrophoresis (SDS-PAGE) gel for protein electrophoresis. The

protein in the gel was transferred onto a PVDF membrane for
antibody detection (the PVDF membrane was soaked for 30 s
in methanol before use). The PVDF membrane was blocked for
2 h at room temperature in 5% non-fat milk in PBS Tween-
20 (PBST: PBS with 0.5% Tween-20). The first and second
antibodies were incubated for 2 and 1 h, respectively, at room
temperature in 5% non-fat milk in PBST. Signals were detected
by adding the horseradish peroxidase substrate (Millipore, cat.
WBKLS0100, USA).

RESULTS

SRBSDV and Symptoms in Rice
Our group collected 50 rice samples with suspected SRBSDV
infection from nine districts in Guizhou, China, from June
to September 2017 and 2018. All the samples were collected
from Tianzhu, Meitan, Dejiang, Puan, Libo, Pingtang, Huishui,
Dushan, and Anshun districts in Guizhou, China (Figure 1).
Most of the samples had at least one of the typical symptoms of
SRBSDV infection such as serious dwarfing, wrinkled leaves, and
tumor-like protrusion symptoms on their stems (Figure 2).

P6 Cloning, Expression and Purification
The results of 1% agarose gel electrophoresis showed that 2,382
bp of the P6 fragment was cut in pCold-SUMO-P6 by BamH I
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FIGURE 4 | Antibody titer detection by ELISA. Sera from rabbit one, rabbit two, and healthy rabbit were diluted to 1:1250, 1:2500, 1:5000, 1:10000, 1:20000,

1:40000, 1:80000, 1:160000, 1:320000, 1:640000, and 1:1280000. The values of OD450 were recorded.

and Xho I, and the target gene segment was matched with the
reported length of the P6 gene (Supplementary Table 1). P6 was
overexpressed at 101 kDa (with a SUMO tag about 11 kDa) when
the final concentration was increased to 0.7mM IPTG and when
the solution was left for 16 h at 25◦C. These His-tagged fusion
proteins were purified in an Ni-NTA column (GE Healthcare).
More than 90% of P6 was eluted from the beads with 100–
300mM imidazole in 50mM Tris-HCl and 100mM NaCl buffer
at pH 7.5, as revealed by the results of 8% SDS-PAGE analysis
(Supplementary Table 2). These purified P6 at 101 kDa were
then concentrated to∼1mg/mL in 20mMTris-HCl and 100mM
NaCl at pH 7.5 for further analysis.

Rabbit Immunization and Antibody
Induction
To detect SRBSDV, we produced SRBSDV antibodies in rabbits
(rabbits 1 and 2). Two rabbits were injected with the purified
P6. At 40 days after immunization, rabbit serum was collected
and purified to obtain the P6 antibody. To verify the capability of
this antibody, the purified P6 and rice leaves infected by SRBSDV
were used as antigens. Our results showed that the P6 antibody

displays specificity in detecting SRBSDV using WB (∼101 kDa)
(Figure 3A). Subsequently, the titer of the P6 antibody was
tested by ELISA. As shown in Figure 4, the titers of the P6
antibody from rabbit one and rabbit two were about 1:80000
and 1:160000, respectively. Thus, the antibody generated from
rabbit two was used for further assays. The antibody from rabbit
two was further confirmed by WB (Figure 3B). The P6 antibody
could detect SRBSDV, although the antigen was diluted 320,000
times (Figure 3B).

Detection of SRBSDV in Guizhou Province
To shed light on the dynamics of the occurrence of SRBSDV
in Guizhou, China, we collected rice samples showing SRBSDV
infection symptoms (Figure 2) in rice-growing areas such as
Dejiang, Meitan, Tianzhu, Anshun, Puan, Huishui, Pingtang,
Dushan, and Libo (Figure 1). Samples from three different
locations of the same district were harvested and stocked in liquid
nitrogen immediately. Their proteins were extracted and detected
using the P6 antibody for identifying SRBSDV. As shown in
Figure 5, the rice samples from Anshun, Huishui, Pingtang,
Dushan, and Libo, which are the southern districts, showed
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FIGURE 5 | SRBSDV detection in nine districts of Guizhou province. Rice samples from Huishui (HS), Dejiang (DJ), Libo (LB) (A), Meitan (MT), Dushan (DS), Tianzhu

(TZ) (B), and Puan (PA), Pingtang (PT), and Anshun (AS) (C) were investigated by Western blot. P6 antibody was used to detect SRBSDV, and rice protein HSP90 was

used as the internal control.

FIGURE 6 | Comparison of SRBSDV content in rice tissues. Rice leaves and stems from Huishui (HS), Pingtang (PT), and Libo (LB) were used to evaluate SRBSDV

content. Healthy rice was used as a negative control, and rice internal control HSP90 was used as the internal control.
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the P6 band, indicating that the rice plants in these areas were
infected by SRBSDV. However, we did not detect the P6 band
in the samples from the northern and western districts such as
Dejiang, Meitan, Tianzhu, and Puan, thereby indicating that no
SRBSDV existed in these districts. These findings implied that
SRBSDV in Guizhou may have spread from the south to north
of China.

Quantitative Comparison of SRBSDV
Content in Rice Tissues
The virus content could vary across the plant tissues (Rettcher
et al., 2015; Morán et al., 2018). To determine the SRBSDV
content in rice leaves and stems that showed different symptoms
when infected with SRBSDV (as illustrated in Figure 2), we
quantified the SRBSDV content in rice leaves and stems using
the P6 antibody. SRBSDV was detected in the rice leaves and
stems from Huishui, Pingtang, and Libo districts. As shown in
Figure 6, the SRBSDV content in rice stems was much higher
than that in rice leaves. These findings indicate that SRBSDV
is mainly accumulated in rice stems and then transmitted
to rice leaves.

DISCUSSION

Rice plants infected by SRBSDV have caused a significant
economic loss mainly in China and other Asian countries in
recent years (Alonso et al., 2019). Moreover, rice plants infected
by SRBSDV show a long latent period and are difficult to
detect at an early stage, but they result in serious destruction
at the later stage. Therefore, a reliable early monitoring and
detection method will be useful for managing this infection
and evaluating its risk (Zhang et al., 2008; Zhou et al., 2008;
Hoang et al., 2011). To date, several methods have been
used for detecting plant viruses, such as reverse transcription
(RT) loop-mediated isothermal amplification, RT–PCR, and RT–
qPCR; however, these methods provide false positive results,
thereby causing inaccurate determination (López et al., 2006;
Londoño et al., 2016; Malandraki et al., 2017; Treder et al.,
2018). WB is a stable, reliable, and highly sensitive method
that has been widely used for determining protein interaction
and identification, quantifying protein expression, and detecting
pathogen and virus movement (Samuilova et al., 2013; Huo et al.,
2018; Wu et al., 2018). In our study, we established a WB assay
to detect and quantify SRBSDV in infected rice plants. Using
P6—a non-structural protein in SRBSDV—as the target, we could
effectively detect SRBSDV in a rice paddy field and quantify
the concentration of SRBSDV in different rice tissues, indicating
that this assay is a salutary method for SRBSDV monitoring

and forecasting as well as controlling and managing SRBSDV
infection in the early stage.

Monoclonal antibodies have been produced and applied for
detecting several plant virus infections (Tian et al., 2014; Li
et al., 2015b; Zhang et al., 2018), but compared with polyclonal
antibodies, monoclonal antibodies are much more expensive;
they have a longer production period and are at more risk for
failure. In this study, we aimed to detect SRBSDV infection in
rice plants using polyclonal antibodies. First, the solubility of
P6 was determined and then P6 was purified in E. coli. Second,
two polyclonal P6 antibodies were obtained and quantified using
WB. Then, a WB assay was developed for identifying SRBSDV
infection in Guizhou, China. Finally, our results had shown for
the first time that WB could be used to identify SRBSDV infected
using the SRBSDV P6 antigen.
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