AUTHOR=Diaz-Garza Aracely Maribel , Fierro-Rivera Judith Ivonne , Pacheco Adriana , Schüßler Arthur , Gradilla-Hernández Misael Sebastián , Senés-Guerrero Carolina TITLE=Temporal Dynamics of Rhizobacteria Found in Pequin Pepper, Soybean, and Orange Trees Growing in a Semi-arid Ecosystem JOURNAL=Frontiers in Sustainable Food Systems VOLUME=4 YEAR=2020 URL=https://www.frontiersin.org/journals/sustainable-food-systems/articles/10.3389/fsufs.2020.602283 DOI=10.3389/fsufs.2020.602283 ISSN=2571-581X ABSTRACT=
Harsh environmental conditions in drylands force plants and their associated microbial communities to adapt to abiotic stresses. In semi-arid environments, climatic conditions and poor agricultural management have a strong impact on plant yield and thus, enhancing soil fertility by means of beneficial microorganisms such as plant growth-promoting rhizobacteria (PGPR) has been proposed as part of sustainable agricultural management. As drylands will increase due to climate change, studying microbial community dynamics of crops under such conditions is crucial as it might favor rhizobacteria adapted to drought. While the microbiome of many native dryland crops has been characterized, the microbial community composition from non-native crops under semi-arid environmental conditions is understudied. Thus, the aim of this study was to characterize the bacterial community associated with the roots of three crops with different growth cycles, cultivated in the same semi-arid environment, to understand their microbial community composition during the season with the highest temperature in northeast Mexico. We performed high throughput sequencing of the V3-V4 region of the 16S rRNA gene from root samples of Pequin pepper, soybean and orange trees. Classified taxa were evaluated according to crop, sampling time and climatological parameters. Our findings revealed that changes in temporal dynamics of microbial communities correlate with environmental temperature. Moreover, the microbial community of pepper was more diverse and differed from that of soybean and orange. Regarding PGPR, 47.6% of the genera were shared among crops with a high relative abundance of