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Staple crops are grown by millions of smallholder farmers yet estimating field-level

yields over broad regions can be challenging. Furthermore, agricultural productivity can

be impacted by nearby forests and trees. In an agricultural-forest mosaic in Southern

Ethiopia, we used remote sensing imagery to identify and differentiate among dominant

crops and assess the impact of nearby forest patches on wheat productivity. Using a suite

of vegetation indices (VIs) derived from high spatial resolution (5–10m) satellite imagery as

a proxy for wheat productivity, we determined whether VIs were enhanced or suppressed

with increasing distance to forest. We found that 5–10m resolution satellite imagery

was sufficient for identifying and differentiating among field boundaries and dominant

crops, however, imagery from higher spatial resolution satellites would see increased

benefits in accuracy. VIs increased by as much as 5% in areas of the fields within 30m

of forest edges compared to fields further from forests. Our results highlight potential

benefits of a landscape approach for enhancing smallholder agricultural productivity in

Southern Ethiopia. High spatial resolution imagery is a cost-effective method to map and

identify promising landscape approaches in agricultural-forest mosaics dominated by

smallholder farms. Thus, a landscape perspective aided by remote-sensing can provide

a straightforward and cost-effective way to monitor crop productivity and track changes

in agricultural productivity due to forest fragmentation and/or restoration. A landscape

approach to achieving food security goals, particularly within the context of climate

considerations, and should play a more prominent role in planning forest conservation

and restoration.

Keywords: forest edge effects, vegetation indices, landscape approach, smallholder agriculture, high spatial

resolution imagery, food security, ecosystem services, forest fragmentation

https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org/journals/sustainable-food-systems#editorial-board
https://www.frontiersin.org/journals/sustainable-food-systems#editorial-board
https://www.frontiersin.org/journals/sustainable-food-systems#editorial-board
https://www.frontiersin.org/journals/sustainable-food-systems#editorial-board
https://doi.org/10.3389/fsufs.2020.00130
http://crossmark.crossref.org/dialog/?doi=10.3389/fsufs.2020.00130&domain=pdf&date_stamp=2020-09-02
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org
https://www.frontiersin.org/journals/sustainable-food-systems#articles
https://creativecommons.org/licenses/by/4.0/
mailto:k.yang180@gmail.com
https://doi.org/10.3389/fsufs.2020.00130
https://www.frontiersin.org/articles/10.3389/fsufs.2020.00130/full


Yang et al. Wheat Productivity in Ethiopian Smallholder Farms

INTRODUCTION

Maize (Zea mays), rice (Oryza sativa), and wheat (Triticum
aestivum) are vital to food security, accounting for over half
of the world’s dietary caloric supply (FAO, 2018). Global food
security has improved during recent decades and the number
of people who are undernourished has fallen by more than
200 million people since 1990 (FAO, 2015). However, despite
this progress, one in nine people remain undernourished (FAO,
2018). Numerous international, national, and regional initiatives
have made food security a priority. For example, the United
Nation’s second Sustainable Development Goal (SDG 2) aims
to end all hunger and food insecurity by 2030 (UNHCR, 2017).
Staple crops are especially important in the least developed
countries, where food insecurity is very common (FAO, 2015)
and many people rely most heavily on subsistence agriculture for
their livelihoods.

Remote sensing is one approach that can help support food
security goals by lowering costs and reducing logistical challenges
associated with the monitoring of crop yields and other
landscape factors that may influence agricultural productivity;
yet a problematic data gap exists for smallholder farms. To
date, a greater emphasis has been placed on remote sensing of
yields at broad spatial extents and coarse spatial resolutions,
and often on industrial-scale agriculture in developed countries
(Mulla, 2013). For example, yields of staple crops such as
maize and wheat are routinely monitored over large areas using
coarse or moderate resolution satellite imagery such as MODIS
(Moderate Resolution Imaging Spectroradiometer) and Landsat
(Doraiswamy et al., 2004; Ren et al., 2008). However, such
approaches are unable to differentiate heterogeneous crops in
smallholder fields (Grassini et al., 2015).

Almost 85% of the world’s estimated 570 million farms
are smaller than 2 ha in size (Lowder et al., 2016). As with
any farm, assessing the productivity and health of smallholder
farms can help identify problems and improve yields. However,
obtaining direct yield measurements from small, fragmented,
and highly diverse fields and farms common to smallholders
can be particularly challenging. High spatial resolution satellite
imagery such as Sentinel-2 (10m), RapidEye (5m), and
Quickbird (2.5m), can help fill this data gap for smallholder
fields otherwise impossible to analyze with coarser resolution
imagery. In addition, high spatial resolution imagery also enables
identification of small yet important fine resolution features such
as small forest patches and scattered trees which can impact
agricultural productivity (Pu and Landry, 2012).

Forests and scattered trees can help improve food security
by providing ecosystem services and improving agricultural
productivity (Zomer et al., 2009; Bommarco et al., 2013; Reed
et al., 2017). For example, when grown alongside staple crops as
part of an agroforestry system, Faidherbia albida (F. albida) can
improve water availability, soil moisture, and water use efficiency
(Laike, 1991; Camargo and Kapos, 1995; Jackson et al., 2000;
Payne, 2000; Sida et al., 2018a). This tree species can also enhance
soil fertility via nitrogen fixation (Giller, 2001; Kho et al., 2001),
organic matter build-up (Gelaw et al., 2014), and nutrient cycling
(Cannell et al., 1996). Importantly, forests near field margins also

moderate microclimatic conditions within fields (Gehlhausen
et al., 2000; Chen et al., 2010), enhancing agricultural yields
especially for C3 crops such as wheat (Reed et al., 2017). In
certain ecosystems, forests and trees may provide habitat for both
pollinators and natural enemies that prey on agricultural pests,
thereby increasing yields (Dix et al., 1995; Bianchi et al., 2006;
Garibaldi et al., 2013).

The landscape mosaic of smallholder farms interspaced
with forest patches throughout Southern Ethiopia represents
an ideal location for exploring relationships between forest
edges and agricultural productivity. Here, smallholder farms are
often composed of a complex mosaic of croplands, pastures,
home gardens, and forest patches integrated into a mixed
crop-livestock system (Baudron et al., 2017). Wheat is a major
staple crop for smallholders in the cooler Ethiopian highlands
(Tanner and Hulluka, 1991) and is among the primary cereal
crops grown in Ethiopia, following only teff (Eragrostis tef )
and maize in terms of total production and cultivated area
(Taffesse et al., 2012). Additionally, wheat yield is extremely
dependent on water availability and temperature (Pinter et al.,
1990; Baldocchi, 1994; Streck, 2005), and is therefore potentially
susceptible to microclimatic effects from nearby forest edges.
Within this context, we explore two primary questions regarding
the relationship between forests and wheat productivity:

Can high spatial resolution remote sensing be used to distinguish
among crops and estimate productivity on smallholder farms?

Using recently available high spatial resolution satellite imagery
(RapidEye and Sentinel-2), we aimed to identify and distinguish
between wheat and maize fields and measure patterns of
agricultural productivity in smallholder farms. RapidEye is a
series of commercial satellites capturing 5m resolution imagery
from five multi-spectral sensors. The geographic extent of
image capture depends on commercial demand, and therefore,
archived historical imagery is limited. In contrast, the European
Space Agency Sentinel-2 satellites with 10m resolution imagery
has a free and open data policy and an average global revisit
time of 5 days. To distinguish wheat and maize fields, we first
use RapidEye and Sentinel-2 imagery to discriminate field
boundaries and identify crop types based on seasonal differences
due to vegetation phenology and field preparation (including
timing of plowing and handling of crop residue).

Does proximity to forest edge impact wheat productivity in
smallholder farms?

Second, we also explored whether forest proximity affects sub-
field-level wheat productivity using remotely sensed vegetation
indices (VIs). A vegetation index is a simple empirical index
derived from two (or more) spectral responses, which can be
used as a surrogate of vegetation conditions such as plant
health and vigor. Agricultural productivity can be estimated in
this way because higher productivity and healthier crops are
often associated with higher VIs (Hatfield, 1983; Doraiswamy
et al., 2004; Ferencz et al., 2004; Burke and Lobell, 2017; Jin
et al., 2017). Because certain VIs exhibit higher correlations
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FIGURE 1 | Map of land cover classification in Arsi-Negele, Oromia, Ethiopia. Land cover is classified from 5m RapidEye imagery (“Forests, plantations, and tree

cover,” “Grassland,” and “Other agricultural areas and bare soils”) and from 10m Sentinel-2 imagery (“Wheat” and “Maize”). Sample and control fields from the

landscape are also shown as points (color).

with crop status, we assessed and compared several VIs. Using
VIs we examined how agricultural productivity is affected
by forest edges. We hypothesized that VI will be highest
in sections of the field closest to forests due to potential
benefits from forest edges. Understanding this relationship as
well as how the configuration of landscape mosaics affects
crop productivity is key to improving food security by
helping farmers better optimize agricultural productivity at the
landscape level.

MATERIALS AND METHODS

To answer these questions, we used a suite of field-based
assessments and high spatial resolution imagery from
the Sentinel-2 and RapidEye satellites. We first classified
the landscape into general land cover types and then
distinguished two major crop types (wheat and maize)
using ground verification. After isolating fields of wheat
adjacent to forest patches, we analyzed wheat productivity
at different distances from forest patches using a suite of
vegetation indices. Next, we explain each of these steps in
more detail.

Study Region
The 50 km2 study region is south of the capital city of Addis
Ababa, Ethiopia, within the Arsi-Negele woreda (district) of
the Oromia Region and situated 40 km northeast of the city of
Awassa (Figure 1). The study region has a prominent forest-
agricultural gradient, which provides a large sample of fields
of varying proximity to forest. Bordered by the state forest of
Munesa to the east and the town of Arsi-Negele to the west,
forest patches as well as individual trees become larger and more
abundant moving eastward (Baudron et al., 2017). The main
crops grown in the area are wheat, potato, and maize, often
integrated with livestock as part of a mixed farming system
(Baudron et al., 2017). The main tree species in the forested areas
are Podocarpus falcatus, Eucalyptus sp., Croton sp., Pinus patula,
and Prunus Africana (Baudron et al., 2019).

The site is situated within the oceanic climate (Cfb) zone
(Kottek et al., 2006). The Degaga weather station (∼20 km
north from the study region) reports a mean annual rainfall
of 1,075mm (18-year mean) and a mean annual temperature
of 15◦C (16-year mean) (Halle-Wittenberg University, 2002). A
bimodal rainfall pattern produces a shorter rainy season from
March to May and a longer rainy season from July to September.
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As such, the growing season encompasses two distinct periods
impacted by these two rainy seasons. During the shorter rains,
land is either fallowed or used to grow potato. During the longer
rains, wheat is generally planted following either the fallow or
potato crop. Additionally, maize is planted at the beginning of
the shorter rains and harvested at the end of the longer rains.

Image Classification
To answer our first research question, we classified high spatial
resolution RapidEye imagery into general land cover classes and
then used Sentinel-2 imagery to further differentiate crop types
within agriculture.

RapidEye 2015 Classification
To classify general land cover, we acquired orthorectified
RapidEye 3A imagery (5m resolution) from January 3rd, 2015.
Orthorectification of Rapideye imagery is based on ground
control points and digital elevation models, and has an accuracy
of 10m RMSE (root mean square error). The post-harvest dry
season (December-February) was selected to enable optimal
differentiation between classes using seasonal phenology of
vegetation. We performed a maximum likelihood supervised
classification to distinguish among three broad land cover classes:
(1) forests, (2) grassland (which included pastures, meadows,
and floodplains), and (3) agricultural fields and/or bare soil.
Around 200 training sites (to train the classification algorithm)
were visually delineated from the RapidEye imagery using Google
Earth imagery (from January 24th 2014). Theminimummapping
unit for forests was 125 m2 (i.e., five RapidEye pixels) which
helped minimize the effects of misclassification by ensuring
single trees and extremely small forest patches were carefully
delineated/excluded from the RapidEye classification.

Sentinel 2016 Classification
Orthorectified (surface reflectance based) Sentinel-2 2A imagery
(10m resolution) from December 31st 2016 was used to further
separate the agricultural land into two classes, wheat and maize,
using ENVI 5.4. Imagery from the post-harvest period (i.e.,
December–February) was particularly useful in differentiating
wheat and maize. From this imagery, we performed an object-
based classification to group homogenous pixels into spectrally
similar clusters (similar to patches). First, within the areas
corresponding to the agricultural areas of the RapidEye imagery,
the Sentinel-2 imagery was segmented into clusters of pixels
with homogenous characteristics. This procedure used the “edge”
and “full lambda schedule” merge algorithms. The levels of
edge and merge were set at 50 and 80, respectively, to enable
segmentation of clusters approximating average field sizes in the
region (∼0.3 ha).

Second, classification of clusters was based primarily on
their spectral characteristics. The selected image date optimally
differentiated the two crops because of the distinct bright
signature of straw residue left behind on wheat fields immediately
after harvest. In contrast, post-harvest maize fields were
differentiable by their darker spectral signature associated with
bare soil (because maize crop residues are typically removed
and used as livestock feed). Training data for the classification

TABLE 1 | Mathematical formulas and references for the three vegetation indices

used in this study.

NDVI (Normalized

Difference Vegetation

Index)

(NIR − Red)

(NIR + Red)
Rouse et al., 1973

MSAVI2 (Modified

Soil-Adjusted Vegetation

Index 2)

[

2∗NIR + 1
√

(2∗NIR + 1)2 − 8∗(NIR − RED)
]

2 Qi et al., 1994

GCVI (Green Chlorophyll

Index)

(

NIR
Green

)

− 1 Gitelson et al., 2003

was selected from the Sentinel-2 imagery guided by these
spectral distinctions.

Ground Verification
An accuracy assessment was performed on both the RapidEye
2015 classification and the Sentinel-2 2016 classification. Seventy-
one randomly selected ground verification points collected via
field work in April 2015 were used to assess the RapidEye
classification. Additionally, 25 photos of fields with identifiable
crop residue were taken in February 2017 and used as ground
verification points for the Sentinel-2 classification. We created a
confusion matrix to evaluate the producer’s, user’s, and overall
accuracy, as well as the Kappa coefficient. User’s accuracy helps
identify over-mapping of a class, as user’s accuracy is inversely
proportional to errors of commission. Producer’s accuracy is
inversely related to errors of omission (or exclusion), indicating a
given class was missed and erroneously mapped as another class
(Congalton and Green, 2008). The kappa statistic is a measure of
the quality of the classification relative to assignment of classes by
random chance (Congalton and Green, 2008).

Forest Edge Yield Relationships Using
Vegetation Indices
To answer the second question, we conducted a proximity
analysis using the results of the classified wheat map and then
derived a suite of vegetation indices from Sentinel-2 imagery
from October 31st, 2016 just prior to harvest. We evaluated three
VIs for comparative purposes: modified soil-adjusted vegetation
index 2 (MSAVI2), normalized vegetation index (NDVI), and
green chlorophyll vegetation index (GCVI) (detailed in Table 1).
NDVI is a simple indicator calculated using the red and infrared
bands and was selected due to its widespread use among
various scientific and natural resource applications (Xue and
Su, 2017). However, as NDVI products have been shown to
produce incorrect results when it comes to landscapes with
exposed soil, MSAVI2 was included to minimize the impact
of bare soil on canopy reflectance in a way that differs from
other soil-adjusted indices by quantitatively streamlining the soil
brightness correction (Qi et al., 1994). Lastly, we included GCVI,
a VI utilizing green reflectance, which is more responsive to
leaf chlorophyll than the more oft-used red reflectance. Leaf
chlorophyll is a photosynthetic pigment in plants that correlates
with nitrogen levels (Shangguan et al., 2000; Cartelat et al., 2005).
As a result of this link with plant nutrient deficiency, GCVI is
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TABLE 2 | Raw tally confusion matrix of land cover and accuracies of the RapidEye (January 3rd 2015) classification.

Ground verification

Classification data Agriculture and bare soil Grassland Forest Plantations Grand total User’s accuracy

Agriculture and bare soil 15 1 16 0.94

Grassland 1 16 17 0.94

Forest 19 1 20 0.95

Plantations 18 18 1.00

Grand total 16 17 19 19 71

Producer’s accuracy 0.94 0.94 1 0.95

Seventy one total verification points were used to assess accuracy for this classification. Overall accuracy is 0.96 while the Kappa statistic is 0.83.

potentially more highly correlated with yield (Burke and Lobell,
2017).

Taking advantage of a newly available dataset which wasn’t
originally available during the start of the project, we compared
wheat yield values of 11 fields to these three VIs in order to
confirm the VI-yield relationship assumption underlying this
work. Wheat yields (for the 2014 growing season) came from
farm surveys and were calculated by dividing the quantity of
grain harvested from the field as recalled by the farmer by the
field area measured with a GPS (Wood and Baudron, 2018).
These yield values were then compared to VI values derived from
RapidEye imagery (October 26th 2014) at identical locations.

Statistical Analysis
To examine patterns of wheat productivity, we compared VIs
within sub-sections of wheat fields, where sections of the field
were located at different distances from forest. To do so, we
first delineated boundaries of all individual wheat fields (using
the above classification). From these, potential “treatment” fields
were identified as those adjacent to a forest patch (using a
minimum forest patch width and length of 20 and 80m,
respectively). From these fields, 40 fields were randomly selected
and further partitioned into “treatments” based on distance from
forest edge: 10–30, 31–40, 51–70, 71–90m. Additionally, we left
a 10m gap between the first distance class (10–30m) and the
forest edge to minimize potential “mixed-pixel” problems (i.e.,
tree crowns overlapping into the first distance class). Lastly, we
randomly selected another 25 fields which were more than 200m
from any forest patch to serve as “control” fields which required
some important assumptions. A distance of 200m was chosen
because it is far enough away that microclimatic effects from
forest edges would be negligible (Davies-Colley et al., 2000),
however, ecosystem services such as pollination and pest control
could extend more than 200m from forests (Chacoff et al.,
2008; Ricci et al., 2009; Bailey et al., 2014). Further, the general
configuration and interspersion of forests in the study area did
not allow for creation of a sufficient number of controls at
distances any further than 200m. At the pixel level, we compared
VIs among distance classes using a linear model. Additionally,
we conducted post-hoc pairwise comparisons using Tukey’s range
tests. Each distance class within each field had various replicates
(pixels), with a total of 2,431 pixels in treatment fields and
1,611 in control fields. Lastly, to evaluate the underlying assumed

TABLE 3 | Raw tally confusion matrix of land cover and accuracies of the

Sentinel-2 (December 30th 2016) classification.

Ground verification

Classification data Wheat Maize Grand total User’s accuracy

Wheat 13 2 15 0.87

Maize 0 10 10 1.00

Grand total 13 12 25

Producer’s accuracy 1.00 0.83

Twenty five total verification points were used to assess accuracy for this classification.

Overall accuracy is 0.91 while the Kappa statistic is 0.83.

relationship between VI and wheat yield, we conducted a simple
linear regression between ground verified wheat yields in 11 fields
to VIs from 2014 imagery.

RESULTS

High Spatial Resolution Remote Sensing
Can Distinguish Wheat and Maize Fields
and Estimate Wheat Productivity on
Smallholder Farms
The RapidEye image was classified into three broad classes (forest
and tree cover, grasslands, and agricultural areas and bare soils)
(Figure 1). Overall accuracy of the RapidEye classification was
96%, with a kappa statistic of 0.83 (Table 2). Both the producer’s
and user’s accuracy ranged from 94 to 100%. The two land cover
classes of most importance to our analysis, forest and agriculture,
had high user’s and producer’s accuracies.

A subset of RapidEye-derived agriculture class was then
classified into wheat and maize using Sentinel-2 imagery
(Figure 1). The mapped extent of wheat was 1,806 ha whereas
the total extent of maize was 1,835 ha. Overall accuracy, based on
25 ground verification points, was 91% (Table 3). Per class user’s
accuracies for wheat and maize was 87 and 100%, respectively,
and producer’s accuracy was 100 and 83%, respectively.

Through a simple linear regression analysis we found a
moderately strong, positive relationship between NDVI and yield
(R2 = 0.3675) (Figure 2).
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FIGURE 2 | Scatterplots for NDVI (A), GCVI (B), and MSAVI2 (C) showing the relationship between the VIs and yield for n = 11 fields in the study site.

Closer Proximity to Forest Edges Increases
Indices of Wheat Productivity in
Smallholder Farms
VI values throughout all fields ranged from 0.55–0.78 forMSAVI,
0.52–0.81 for NDVI, and 1.14–3.25 for GCVI. Generally, VIs
decreased with distance from forest edge. Mean VI values were
highest at the 10–30m distance class and generally decreased
with increasing distance from the forest (Table 4, Figure 3).
Mean VI at 10–30m was significantly higher than at 31–50m,
51–70m, and 71–90m (Table 4). However, the latter three
distance classes were generally not significantly different from
one another with a few exceptions (Table 5, Figure 3). Mean VI
values of all distance classes were generally higher than control
fields located >200m away from forest edges (Table 4). Only
the first distance class (10–30m) was statistically significantly
different from the controls (p≤ 0.0001) for all three VIs, while the
second distance class was significantly different from the control
for GCVI and MSAVI2 (Table 5).

DISCUSSION

Forest restoration is receiving renewed attention globally
and particularly in Ethiopia Chazdon, 2008; Pistorius et al.,
2017. Thus, clarifying the relationship between forests and
crop productivity could aid forest restoration as well as
forest conservation planning. By providing guidance for
how to optimize landscape features to provide multiple

benefits, it is conceivable that multiple stakeholders, from
subsistence smallholder farmers to governments planning carbon
sequestration programs could benefit. Our research estimated
agricultural productivity using a suite of vegetation indices (VIs)
derived from remote sensing of wheat and maize fields within
a forest mosaic. We found that wheat fields could be well-
discriminated from other crop types (i.e., maize) and that forests
were associated with higher wheat yields, with some caveats.

Successful Mapping of Crop Types and
Productivity Using High Resolution
Remote Sensing on Smallholder Farms
We were able to successfully distinguish between two crops
using high spatial resolution imagery with classification rules
based on seasonal harvest patterns. Overall, user’s, and producer’s
accuracies for both the RapidEye and Sentinel-2 classification
were all high (exceeding 85% in most cases). Additionally,
specific classes of interest (forest, agriculture, and wheat in
particular) were mapped with a high degree of accuracy.
Arguably, some of the success in achieving high accuracies is
attributable to implementation of a classification scheme with
few classes (Olofsson et al., 2014). However, we also captured
and incorporated land use practices (fallows and crop residues)
in a novel way in heterogeneous smallholder farms. The use
of post-harvest field phenology for crop identification (light
vs. dark spectral signatures for wheat and maize, respectively)
uniquely and effectively differentiated between these two crop
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TABLE 4 | Mean and LS means across all distance classes and control for all three VIs.

NDVI GCVI MSAVI2

Mean Least squares mean Mean Least squares mean Mean Least squares mean

10–30m 0.636 0.646 2.413 2.413 0.716 0.716

31–50m 0.627 0.627 2.352 2.352 0.709 0.709

51–70m 0.623 0.623 2.311 2.311 0.708 0.708

71–90m 0.619 0.619 2.294 2.295 0.707 0.707

Control 0.622 0.622 2.262 2.262 0.703 0.703

FIGURE 3 | Plot of least squares mean for NDVI, GCVI, and MSAVI in wheat fields at distances of 10–30, 31–40, 51–70, 71–90m, and control. Derived from linear

model least squares means. Error bars denote standard error. n = 40 for all distance classes, n = 25 for control. *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001.

types. This approach was both simple and cost-effective in that it
only required one image from a post-harvest date. However, our
approach greatly benefitted from familiarity with local farming
practices, on-the-ground local knowledge, and fortuitous spectral
differences in residual post-harvest agricultural biomass.

Crop identification using remote sensing is often complex,
especially in small heterogeneous farms. Crop identification
often uses coarse spatial resolution image time series over
large fields, often on large commercial farms. For example, a
“crop proportion phenology index” was created from a MODIS
(250m) image time series to estimate wheat productivity in
China (Pan et al., 2012). A harmonic analysis on time-series data
from National Oceanic Atmospheric Administration’s (NOAA)
advanced very high resolution radiometer (AVHRR) (1.1 km)
was used to estimate maize, soybean and alfalfa in the USA
(Jakubauskas et al., 2003) and MODIS-EVI time series was used
to identify rice paddies in Japan (Sakamoto et al., 2013). While

these studies aid in crop monitoring of large fields, the same
geodata and methods are unlikely to be successful on smallholder
fields (for example, a 2 ha farm is roughly 200 by 100 m).

Due to its increasing availability, the use of higher spatial
resolution imagery for crop identification has expanded. For
example, in India, sugarcane, ragi, paddy, and mulberry
were distinguished using Quickbird imagery (2.4m) with high
overall accuracies (87–98%) (Senthilnath et al., 2008). Cotton,
winter wheat, and rice were identified in Uzbekistan using a
combination of imagery from the Satellite Pour l’Observation
de la Terre (SPOT) (2.5–5m) and advanced spaceborne thermal
emission and reflection radiometer (ASTER) (15–30m) satellites
with an overall accuracy of 80% (Conrad et al., 2010). With
improved access to higher resolution imagery, remote crop
identification for smallholder farms is becoming increasingly
feasible. Notably, imagery at these higher spatial resolutions
is also capable of characterizing detailed off-farm features
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TABLE 5 | P-values resulting from Tukey’s range test between the distances

classes from linear mixed effect models for each vegetation index.

NDVI GCVI MSAVI2

p-value p-value p-value

10–30 vs. 31–50m 0.1938 0.1039 0.0333

10–30 vs. 51–70m 0.0166 0.0011 0.0162

10–30 vs. 71–90m 0.0003 <0.0001 0.0015

31–50 vs. 51–70m 0.8244 0.3727 0.9952

31–50 vs. 71–90m 0.2623 0.0472 0.9181

51–70 vs. 71–90m 0.9309 0.9467 0.9949

Control vs. 10–30m 0.0006 <0.0001 <0.0001

Control vs. 31–50m 0.5511 0.0002 0.0053

Control vs. 51–70m 0.9998 0.1901 0.0472

Control vs. 71–90m 0.9264 0.4792 0.0705

All three VIs have 4,037 degrees of freedom. P-values <0.05 have been bolded.

important to smallholder food security and health, including
forests and scattered trees (Immitzer et al., 2012), and small water
resources (Sawaya et al., 2003).

Relating Agricultural Yields to Vegetation
Indices (VIs)
While this study does not directly estimate yield, we considered
VIs to be a useful proxy for productivity due to the abundant
literature supporting a strong correlation between the two along
with our ground verification in 11 fields. Higher vegetation
productivity is often indicative of greater yields as strong linear
relationships exist between VIs and crop yield (Hatfield, 1983;
Doraiswamy et al., 2004; Ferencz et al., 2004; Burke and Lobell,
2017; Jin et al., 2017). Despite the influence of additional factors
on yield (such as temperature, precipitation, soil properties, and
fertilizer inputs), this linear relationship is often used to directly
estimate yields using simple linear regression. For example,
maize and soybean yields were estimated in Iowa using NDVI
(at 8 km resolution from the AVHRR), achieving model R2 of
0.78 and 0.86, respectively (Prasad et al., 2006). In Shandong,
China, winter wheat yields were also estimated using MODIS-
derived NDVI with similar levels of agreement (R2 = 0.66–
0.87) (Ren et al., 2008). Successful mapping of yields on broad-
scale commercial farms using VIs derived from low-resolution
imagery has been common over the past decade.

More recently there have been increasing efforts to map
and estimate crop yield using high resolution imagery on
smaller farms, oftentimes in developing countries. In Kenya,
yield from smallholder farms was estimated from GCVI derived
from Terra Bella imagery (1m resolution) (Burke and Lobell,
2017). Empirical estimation of yields using VIs and ground
measurements was compared to a model comparing VI and
simulations from APSIM (Agricultural Production Systems
Simulator) with reasonable agreement (R2 = 0.4) (Burke and
Lobell, 2017). Furthermore, of all the VIs assessed (EVI, NDVI,
and GCVI) in the study, GCVI consistently showed the best

results in terms of agreement with ground-measured yields
(Burke and Lobell, 2017). Similar methods replicated in Zambia
and India achieved successful results (Jain et al., 2016; Azzari
et al., 2017).

Using a limited dataset from our study area we also tested the
relationship between VI and wheat yield, and found a significant
relationship between wheat yield and NDVI (R2 = 0.3675, p
= 0.048). Our methods constitute a reliable way of estimating
relative productivity throughout a landscape, but further work
would benefit from exploring yield estimates using APSIM
simulations calibrated with detailed soil and weather data and/or
additional field verification.

Effects of Proximity to Forests on Wheat
Yields
Our proximity analysis detected an increase in VI in fieldmargins
situated closest to forests. Regardless of the specific VI used,
mean/median VIs were generally higher in areas of the fields
nearer to than further from forests. Considering the range and
equation for NDVI and MSAVI2 for example (Figure 3); an
increase of 0.01 in VI (half of the difference seen between the
first distance class and control) would equate to around a 3–5%
increase in productivity. For context, yield increases of 2–14.5%
occurred with the addition of fertilizer in two trials in Argentina
and the USA (Díaz-Zorita et al., 2004; Freeman et al., 2006).

While trees and forests within agroforestry systems will
compete with crops for sunlight, water, and nutrients, they
could also provide many positive benefits as well. Trees from
agroforestry systems have been shown to reduce runoff and soil
evaporation (Kinama et al., 2005) as well as increase soil fertility
and create beneficial microclimatic effects (Mbow et al., 2014).
In Central Ethiopia, ∼200 km north of our study area, grain
yield and aboveground biomass of wheat increased under the
canopy of F. albida (Sida et al., 2018a). In this case, temperature
regulation helped mitigate heat stress, promote higher water use
efficiency, and increased soil mineral nitrogen, resulting in higher
wheat yields aided by F. albida (Sida et al., 2018a).

With few exceptions, there has been little research on staple
food crops demonstrating positive impacts of forests on yields.
More commonly reported are instances where trees and forests
negatively impact staple crop yields. For maize and soybean in
Canada, net assimilation and photosynthetic radiation (PAR)
(both highly correlated with crop yield), decreased within 2m
of intercropped trees (Reynolds et al., 2007). Similarly, wheat
yield has generally been found to decrease with proximity to
trees or forest in several other locations (Akbar et al., 1990;
Puri and Bangarwa, 1992; Khan and Ehrenreich, 1994; Reynolds
et al., 2007; Schmidt et al., 2019). However, it is ultimately
external geographic, biological, or other environmental factors
that determine whether trees and forest positively or negatively
impact wheat. For example, extreme heat stress has been shown
to drastically decrease wheat yield (Farooq et al., 2011; Lobell
et al., 2012), leading to instances where wheat yield is higher in
areas that are shaded and have lower temperatures (Sida et al.,
2018b).
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Our results showing higher VI (a proxy for yield) in
close proximity to the forest edge is especially interesting
because the relationship between proximity to forest patches
and wheat productivity can have important implications on
desirable landscape configuration and food security in the region.
Although the results of competition and facilitation between
forests and agriculture may be mixed, our results are suggestive
of some potential benefits which may counteract nutrient, light,
and water competition from trees and forests. Although our
study does not isolate the exact mechanisms behind this increase
in productivity, it is likely that microclimatic effects (such as
those demonstrated with F. albida) play a part (Laike, 1991;
Sida et al., 2018a). If trees and forests can provide beneficial
microclimatic buffering impacts, this could aid climate change
mitigation strategies. Nonetheless, it is important to note that this
benefit may change depending on geographic and biologically-
dependent factors.

Limitations and Additional Future Research
Despite the high spatial resolution (5 and 10m) of our imagery,
our vegetation indices and resulting proximity analysis could
have been unduly affected by mixed signals from nearby forests.
Pixels at the margin of wheat fields (and thus closest to forest)
could be impacted by spectral signatures of nearby trees and
forests which would artificially inflate measured VI values.
However, we took several measures to lessen this problem. Our
VI values were derived from a coarser resolution Sentinel-2
(10m) imagery while the classification of forests utilized finer
resolution RapidEye (5m) imagery. While this was originally
done due to a lack of RapidEye availability during a specific time,
when incorporated into the proximity analysis, this approach
helped ensure that no wheat pixels located near the forest edge
consisted of mixed forest pixels. Finally, we also tried to mitigate
this problem within our sampling design by leaving a 10m gap
between the forest edge and first distance class (10–30 m) for our
statistical comparisons.

Our study was also limited by a lack of image availability.
High cloud cover during the rainy seasons and high commercial
demand elsewhere (which translates to less archived imagery
of the region) prevented the capture and archival of RapidEye
images during several relevant time periods in the study area.
A lack of imagery during pre-harvest season was one reason the
land cover classification used to characterize the fields was from a
different year and source (2015, RadpidEye) than the image used
to derive the VIs (2016, Sentinel-2). Additionally, the only cloud-
free image available during the pre-harvest period in 2014 was for
October 26th. Because many fields were already harvested before
this date, only 11 out of the 23 fields were able to be analyzed to
determine the VI-yield relationship.

The landscape configuration of our study area also created a
limitation in the sampling design. In selecting the sample fields
wemade sure that a given treatment distance class was sufficiently
far away from any surrounding non-treatment forests edges (at
least 80m). However, because average field size in the region
was small (0.3 ha) and hedgerows were abundantly scattered
throughout the landscape it was hard to find sample fields big

enough where the distance classes were also 80m away from
edges of other fields. Therefore, our study did not account for
non-forest field edges.

Two lines of future research are deemed particularly
important to support and extend our research findings. First,
we propose additional field work to conduct crop cuts to
validate the edge effects on wheat productivity, along with
exploring the potential mechanisms behind such edge effects
(e.g., shade vs. nitrogen-fixing hedgerows). Second, we modeled
different landscape configurations of forests and fields to
explore regional landscape scenarios which maximize benefits to
farmers (Yang et al., 2020).

CONCLUSIONS

Improving food security throughout the developing world
remains one of humanity’s greatest challenges in the twenty
first century. Of the many different facets affecting this
complex problem, the first part of our research improves
regional scale crop yield monitoring in smallholder farms.
By analyzing VIs from accessible, low cost, high spatial
resolution satellite imagery, we provide an alternative to
conventional on-site field monitoring of crops on smallholder
farms. With increasing availability of high and very high
resolution data (e.g., Skysat, Pléiades, Worldview-3, etc.), it
will be increasingly feasible to assess not only crop health
but other variables affecting yields such as forests and
forest edges.

The second half of this research investigated wheat
productivity as it relates to nearby forest patches in Southern
Ethiopia. VIs in wheat fields were significantly higher in field
margins closer to forests. Although the exact mechanisms behind
such VI increases is unknown, it is possible that microclimatic
effects are a contributing factor. Both the grain filling and
antithesis development stages of wheat are significantly affected
by water availability and temperature (Fischer et al., 1998;
Gooding et al., 2003). Heat stress, and potentially a lack
of water availability via drought, are factors that could be
mitigated by the effects of forests. With temperatures projected
to increase significantly in the Central Rift Valley, adoption of
agroforestry based practices or landscape approaches, including
the retention of forest patches could mitigate some of the effects
of climate change.

In addition, future climatic changes are likely to impact
food security in many regions (Schmidhuber and Tubiello,
2007; Wheeler and von Braun, 2013). Higher temperatures and
lower water availability could have severe impacts on crops
such as wheat (Intergovernmental Panel on Climate Change,
2014). In fact, global wheat production is projected to decline
significantly under current IPCC scenarios as a result of heat
stress and drought (Parry et al., 2004; Lobell et al., 2011;
Semenov and Shewry, 2011). Forests have been shown to create
microclimates that alleviate extreme heat and help retain soil
moisture (Camargo and Kapos, 1995; Gehlhausen et al., 2000;
Chen et al., 2010). If forests can provide beneficial microclimatic
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conditions, our research adds to the growing body of literature
suggesting positive edge effects from forests despite some known
potential negative effects.
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