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The combination of high spatial resolution and multi-date satellite imagery offers new

opportunities for mapping and monitoring crop types of different agricultural field sizes.

However, mapping of crop types at high spatial resolution requires high-quality crop type

reference data typically collected from the ground-based surveys to create the maps

and/or to assess the map accuracy. The availability of sufficient crop type reference data

is limited over large geographic regions because of the time, effort, cost, and accessibility

in different parts of the world. To generate large area crop type maps, any existing, but

limited reference data must be spatially extended to other regions using appropriate and

available non-ground-based sources. There is the potential to classify High Resolution

Imagery (HRI) using a phenology-based approach as demonstrated in this paper to

generate additional reference data within similar agriculture ecological zones (AEZs)

based on the crop characteristics, their types, and their growing season. Therefore, the

objective of this study was to evaluate if existing, limited crop type reference data could

be extended using this approach. Multi-date, high spatial resolution satellite images were

used to spatially extend the limited crop type reference data from one region [called the

training region (TR)] to another region [called the test region (TE)] within the same AEZ

using a phenology-based Decision Tree (DT) classifier for three different field sizes. The

results demonstrate that this phenology-based classification approach can efficiently and

effectively extend the limited crop type reference data to other regions in same AEZ for

different field sizes.

Keywords: crop mapping, reference data, high resolution imagery (HRI), agriculture ecological zones (AEZs),

phenology-based classification, decision tree (DT) classifier

INTRODUCTION

Food security is one of the major challenges that human beings are facing (Zhong et al., 2014).
By 2050, the global population of 9.8 billion will demand 70% more food than is consumed today
(Schwab et al., 2014). To meet this demand, cropland areas are increasing using current agriculture
practices causing greenhouse gas (GHG) emissions and environmental degradation (Adams and
Eswaran, 2000; Beach et al., 2008). The required knowledge to improve these current agriculture
practices and model GHG variability in different agriculture systems demands the identification
of different crop types (Ramankutty et al., 2008; Peña-Barragán et al., 2011; Gong et al., 2013).
Therefore, acquiring crop type information over large geographic regions is extremely relevant for
decision making and policy actions (Yang et al., 2011; Foerster et al., 2012).
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Remote sensing technology provides reliable and cost-
effective imagery and tools for crop type mapping over space and
time, repeatedly, and consistently at various spectral, spatial and
temporal resolutions (Ulabay et al., 1982; Congalton et al., 1998;
Castillejo-González et al., 2009; Vinciková et al., 2010; Rodriguez-
Galiano et al., 2012; Ustuner et al., 2014; Zhou et al., 2014; Htitiou
et al., 2019). Satellite imagery such as that available from Landsat
(Oetter et al., 2000), SPOT (Murakami et al., 2001), Indian
Remote Sensing satellite data (Panigrahy and Sharma, 1997),
ASTER (Peña-Barragán et al., 2011), and MODIS (Teluguntla
et al., 2017) have been used to identify different crop types in
the past.

With the development of high spatial resolution sensors such
as RapidEye (2008), GeoEye-1 (2008), World View-2 (2009),
and Sentinel-2 (2015), crop type identification has increased in
accuracy and detail (De Wit and Clevers, 2004; Palchowdhuri
et al., 2018). Multi-date, High-spatial Resolution Imagery (HRI)
is being used to generate crop type maps of different regions
around the world (e.g., Castillejo-González et al., 2009; Conrad
et al., 2014; Gumma et al., 2016; Lebourgeois et al., 2017;
Teluguntla et al., 2017). However, the potential of using single vs.
multi-dates of imagery still needs further evaluation to generate
effective crop type maps especially for different agriculture
field sizes.

Crop type mapping at high spatial resolution requires high-
quality crop type reference data typically collected from ground-
based surveys as input to create the maps and/or as an
independent data set to assess the map accuracy. A well-
distributed, consistent, and sufficient amount of crop type
reference data over large areas substantially reduces the mapping
cost and improves the accuracy of the crop type maps. However,
the availability of sufficient crop type reference data from ground-
based methods is typically severely limited over large geographic
regions because of the time, effort, cost, and accessibility in
most parts of the world (South et al., 2004). Therefore, whatever
limited reference data that does exist must be spatially extended
by using non-ground-based sources in order to effectively
generate and/or assess large area crop type maps.

A possible non-ground-based source that could be used to
extend the limited crop type reference data to every region
is through the classification of HRI. Previously, classification
of HRI has been used to extend the crop type information
to multiple years (Zhong et al., 2014). The potential exists
to use such a classification approach to extend the limited
crop type reference data within a single year to other similar
regions (Botkin et al., 1984). This extension method could save
labor, cost, and time by substituting for traditional field surveys
typically required to collect the crop type reference data over large
regions (Tatsumi et al., 2015).

Regional intra-class variation exists in a single agriculture
crop type due to farmer’s decisions to plant crops at different
dates in different regions (Wardlow et al., 2007). These variations
remain consistent within similar agriculture ecological zones
(AEZs) and field size landscapes (e.g., large, medium, and small)
due to similar agriculture and ecological conditions (Serra and
Pons, 2008; Simonneaux et al., 2008). Therefore, the limited
crop type reference data has the potential to be effectively

extended by identifying the crop types in similar regions based
on their spectral characteristics at specific growing stage/time
(i.e., phenology).

The identification of different agriculture crops based on their
spectral characteristics is usually performed by classifying multi-
date HRI (Castillejo-González et al., 2009; Yang et al., 2011;
Conrad et al., 2014; Lebourgeois et al., 2017). Recently, the
classification of HRI using conventional pixel-based classification
methodology has been replaced with an Object-Based Image
Analysis (OBIA) approach to develop more accurate crop type
maps (Castillejo-González et al., 2009; Belgiu and Csillik, 2018).
OBIA includes the classification of objects into different crop
types based on their spectral, spatial, and texture features using
different phenology-based classifier approaches such as a Rule-
Based Classifier (RBC), Decision Tree (DT) (Peña-Barragán et al.,
2011), Random Forest (RF) (Tatsumi et al., 2015; Belgiu and
Csillik, 2018), and/or Support Vector Machine (SVM) (Peña
et al., 2014; Neetu Ray, 2019). However, the three approaches
(e.g., DT, RBC, and RF) that are increasingly used for the
classification of remote sensing data (Berhane et al., 2018). The
DT method is an efficient inductive machine learning technique
(Kuhn and Johnson, 2013). The non-parametric decision tree
classifier is robust to nonlinear interactions between variables and
capable of handling the regional intra-class variation of a single
agriculture crop type that exists at multiple places. Decision tree
classifier is simple in understanding, visualizing, and interpreting
(Neetu Ray, 2019). The RBC approach creates a series of “if-then”
rules to effectively classify landscapes, and can similarly couple
different types of data in the process (Hansen et al., 1996; Friedl
and Brodley, 1997). This approach is similar to the DT approach,
but generally has fewer rules and contains contextual information
within the ruleset, hence it is simpler to understand than the
complex bifurcating DTs. The spatial context and association
information can be easily integrated into the RBC constructs
an ensemble of decision trees which is capable of generalizing
the data more effectively than decision tree classifier. The RF
approach is a relatively novel classification technique based on
ensemble machine learning and has been increasingly used as a
classifier. The RF approach can be used for both classifications
and regressions, as well as determining variable importance
(Belgiu and Dragut, 2016). The random forest algorithm has the
potential to incorporate multiple spectral and texture variables to
discriminate different crop types and improve the classification
performance (Lawrence et al., 2006; Oliveira et al., 2012; Pelletier
et al., 2016). Therefore, these phenology-based classifiers (e.g.,
RBC, RF, and, DT) could be used as effective algorithms to create
crop/no-crop and crop type maps from multi-dates of satellite
imagery and identify the agriculture crops over similar regions.

A well-distributed and consistent crop type reference data
set must be collected either from ground-based or non-ground-
based sources to create and/or assess crop type maps. The
basic pre-requisites for collecting crop type reference data that
must be carefully considered include: (1) the classification
scheme and (2) the sampling strategy (Congalton, 1991). A
mutually exclusive and totally exhaustive classification scheme
is necessary to define and, if necessary, translate (or cross-
walk) the reference crop type labels to classify the HRI and
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generate the extended crop type reference data. The choice of an
appropriate sampling strategy is needed to collect sufficient and
efficient reference data for the classification and assessment of the
crop type maps (Congalton, 1991; Congalton and Green, 2009,
2019). A stratified random sample combined with a sufficient
number of samples for each class has been effectively used
by Yadav and Congalton (2018) to perform an assessment of
crop extent maps with varying map class proportions. This
stratified sampling approach with sufficient samples in each
map class is appropriate to generate a valid crop type reference
data set in order to conduct an effective accuracy assessment
of crop type maps of both the dominant and rare agriculture
crop types.

The evaluation of the extension of crop type reference
data methods proposed in this study was conducted in the
United States (US) where high-quality crop type reference
data [e.g., Cropland Data Layer (CDL)] already exists (Yadav,
2019). This existing reference data (CDL) provided an effective
comparison with the reference data generated in this study.
Without such a ready source for comparison, this study would
not have been possible. After testing these methods and
comparing their results with the CDL reference data in the
US, this approach can be effectively employed in the future to
generate consistent and large area crop type reference data for
rest of the world where existing crop type reference data are
limited. Therefore, the objectives of this study are to spatially
extend the crop type reference data from TRaining (TR) to TEst
(TE) regions based on the investigation of one, two, and three
dates of high spatial resolution imagery (HRI) and to assess the
results of this extension approach using the CDL reference data
of the US.

MATERIALS AND METHODS

This section provides a description of the materials and methods
used to extend the crop type reference data using classification of
multi-dates of HRI, respectively. It consists of the following sub-
sections: (1) study area and the cropping schedule of different
crop types, (2) datasets, and (3) methodology.

Study Area and the Cropping Schedule of
Different Crop Types
The study areas used in this research includes three pairs (i.e.,
total six) of ∼6 km by 6 km regions selected randomly within
three different AEZs (AEZ 6, 10, and 11) and agriculture field
sizes (large, medium, and small) (Figure 1) in the United States
(US). The AEZs were defined based on the length of the
agricultural crop growing period days using the GAEZ (Global
Agro-Ecological Zones) layer (Fischer et al., 2012). The length of
AEZ 6, 10, and 11 are 120–149, 240–269, and 270–299 growing
period days, respectively. Likewise, the agriculture field sizes
were derived from the IIASA (International Institute for Applied
System Analysis) field size layer by grouping the field sizes from
10-40 ha into three classes: (1) large (35–40 ha), (2) medium (22–
35 ha), and (3) small (10–22 ha) (Fritz et al., 2015). Each study

area pair includes a region used for TRaining (TR) and the other
to TEst (TE).

Figure 1 shows the location of the three pairs of TR and
TE regions (total six regions); one pair in each separate AEZ
(e.g., AEZ 6, 10, and 11) and for one of the three field sizes
(e.g., small, medium, and large). The pairs of large, medium,
and small field size TR and TE regions are located in North
Dakota/South Dakota, North Carolina/South Carolina, and New
Jersey/Pennsylvania in the US, respectively.

Different agriculture crops with specific seasonality or
cropping schedule are grown in the selected study regions.
The cropping schedule of different crop types was derived by
grouping the growing months into early (e), mid (m), and
late (l) stages for the spring (sp), summer (su), fall (f), and
winter (w) seasons based on their planting and harvesting events
(USDA, 2010). First, the cropping schedule of agriculture crops
of the TR and TE regions was used to analyze their growing
pattern within the same ecological and field sizes. Second,
it was also used to select the first, second, and third image
date for the classification of crop types for each of the six
selected regions. The first image date was selected according
to the cropping calendar of dominant crops with maximum
spectral variation and subsequently combined with the second
and third image dates for the identification of different crop
types. Careful consideration of these constraints: seasonality,
cropping schedule, harvesting, growing period days, etc. is critical
to this study. Random selection of study areas for training
and testing was done within a specific AES which controlled
these constraints.

Datasets
Three different datasets were used to perform the extension
and evaluation of the results. The first dataset was the World
View-2 (WV-2) satellite imagery which was selected with <10%
cloud cover, same field size (i.e., large, medium, and small), and
same ecological region for the year 2015 (Figure 2). The World
View-2 satellite imagery has eight multi-spectral bands [i.e.,
coastal-blue, blue, green, yellow, red, red-edge, Near Infra-Red
(NIR) 1, and NIR 2] at a spatial resolution of 0.6m. The multi-
spectral bands along with the derived following nine vegetation
indices were used for the classification of agriculture crops of
the six regions: (1) Difference Vegetation Index (DVI) (ERDAS,
2015), (2) Green Normalized Difference Vegetation Index
(GNDVI) (Gitelson andMerzlyak, 1996), (3) ImprovedModified
Chlorophyll Absorption Ratio Index (MCARI) (Daughtry, 2000),
(4) Modified Soil Adjusted Vegetation Index (MSAVI) (Erdas
Imagine, 2015) (5) Modified Red Edge Simple Ratio Index
(MSR) (Chen, 1996), (6) Normalized Difference Vegetation
Index (NDVI) (Rouse et al., 1973), (7) Soil and Atmospherically
Resistant Vegetation Index (SARVI) (Kaufman and Tanre,
1992), (8) Soil Adjusted Vegetation Index (SAVI) (Panda
et al., 2010), and (9) Enhanced Vegetation Index (EVI)
(Huete et al., 1997).

The second dataset was the Cropland Data Layer (CDL)
(USDA, NASS) which was used for comparison (i.e., as the
reference data) to evaluate the results achieved by the extension
approach developed in this study. Without these data for
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FIGURE 1 | The location of three pairs of TRaining (TR) and TEst (TE) regions selected each in three AEZs and three agriculture field sizes.

comparison, this study would have been far more difficult
to conduct. CDL is generated annually for all the states at
30m spatial resolution beginning in 2009 (USDA-NASS USDA,
2010) using Landsat imagery and ground-based information.
Therefore, CDL could be used to assess the extended crop type
maps (2015) for the six TR and TE regions. The CDL dataset
was also used to provide information about the major crop
types of each TR and TE study region. It was observed that
corn and soybean were mostly growing in the large field size
TR and small field size TR and TE regions in the season from

April/May to November/December. In addition to corn, wheat
and alfalfa were the dominant crops of the large field size TE
region growing from April to September. The agriculture crops
such as corn, soybean, and cotton were the dominant crops
of medium field size TR and TE regions growing from April
to December.

A common hierarchical classification scheme was used to
cross-walk or translate the CDL labels into map labels for
the image classification and reference data generation. This
classification scheme consists of three hierarchical levels. The
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FIGURE 2 | The World View-2 images used to investigate the use of

multi-dates of imagery for extending the crop type reference data from the

TRaining (TR) to TEst (TE) regions in large (L), medium (M), and small (S) field

sizes.

first classification level labeled the imagery as crop, fallow, or
no-crop. The first level classes were re-grouped at the second
level into two classes: cropland which included fallow and no-
crop. At the third level, the cropland class was classified into
different crop types (e.g., corn, wheat, cotton, etc.) for each of the
six regions.

Methodology
The objective of extending the limited crop type reference data
was accomplished using two main methods. First, the extension
of the crop type reference data was performed from the TR
to the TE region using an object-based image analysis (OBIA)
of multiple dates of HRI to classify first as crop /no-crop, and
then into agriculture crop types for the six regions. Second, an
accuracy assessment was performed to evaluate the extension
approach by comparing the phenology approach classification
results to the CDL data used as correct in this study. The
following flow chart shows the overall methodology that was
followed to spatially extend the CDL 2015 crop type reference
data of the TR regions to TE regions within the same AEZ and
field by investigating the use of one, two, and three dates of
satellite imagery (Figure 3).

Extension of Crop Type Reference Data From the TR

Regions to the TE Regions
To extend the available, limited crop type reference data using
satellite image classification of the TR to the TE regions, first
the benefits of using one, two, or three dates of satellite imagery
were investigated. Multiple dates of satellite imagery for each
of the six regions (3 TR and 3 TE regions) were created by
mosaicking nine 2 km by 2 km World View-2 scenes for each
region. Consequently, a single region was comprised of nine
World View-2 scenes, two dates had 18 scenes, and three dates
had 27 scenes. The first image date tested was selected using the
cropping calendar for the major crop types to take maximum
advantage of where high spectral variation might exist between
the crop, fallow, and no-crop fields (Figure 2). This first image
date was subsequently combined with a second and third date of
imagery selected using the cropping calendar to further separate
different crop types to produce crop type maps for the three TR
regions for each of the three field sizes. The crop type maps of the
three TE regions were then generated based on the results of this
TR analysis using the best multiple dates of satellite imagery.

The extension of crop type reference data from the TR regions
to TE regions was conducted using the following five steps:

First, the crop/no-crop maps of the six regions were produced
using the hierarchical classification scheme (described in the
section Datasets) and an Object-Based Image Analysis (OBIA)
of the first date of satellite imagery. The imagery of each region
was segmented into homogeneous groups of pixels (i.e., objects)
based on the spectral, spatial, and texture characteristics using the
Multi-Resolution Segmentation (MRS) method in the Trimble
eCognition 9.3 software. The segmentation was performed by
defining the scale, color, and shape parameters using a bottom-up
merging approach. Scales of 100, 70, and 60 were used for large,
medium, and small agriculture field sizes, respectively which
provided an appropriate segmentation of the field boundaries.
The color and shape parameters were defined as 0.5 and 0.3,
respectively, for the three different field sizes, providing more
weight to the spectral features of the objects while merging them
into homogeneous groups. The segmentation parameters were
selected iteratively to achieve an appropriate/accurate overlay
of the homogeneous segmented polygons over the agriculture
field boundaries for the large, medium, and small field size TR
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FIGURE 3 | The overall methodology flow chart showing the extension of the limited crop type reference data for the six regions.

and TE regions. The homogeneous objects were then classified
into crop (cropland and fallow) and no-crop using the Rule-
Based Classifier (RBC) based on their mean spectral response and
texture values for each of the six regions.

Second, the crop types of the three TR regions were classified
into crop classes according to the hierarchical classification
scheme. The crop type classification was performed using the
Random Forest (RF) classification algorithm for one, two, and
three dates of satellite imagery using both the original imagery
as well as the Vegetation Indices (VIs) described in the section
Datasets. A total of 50 samples per map class (crop type) were
collected from the 2015 CDL of the TR regions for training the
RF algorithm and assessing the crop type maps (Olofsson et al.,
2014). These samples were divided into independent training and
assessment samples based on a 40–60% split rule. A stratified
random sample with 20 training samples for each crop type
class was used in the RF classifier to create the crop type maps
leaving 30 independent samples for each crop type to perform
the accuracy assessment.

Third, the results of the multi-date image analysis of the TR
regions, as described above, was used to select the best imagery
for each of the three TE regions. The same training samples used
in the RF classification algorithm for the TR regions were used for
training the DT algorithm and creating the crop type maps of the
TE regions. However, since the training samples of the TR regions

are spatially located on the TR imagery, the actual training sample
locations could not be directly used for the TE regions. Instead,
the statistics derived from the 20 training samples for each class
of the three TR regions were used to derive unique spectral and
texture thresholds for the different crop types and applied to a
decision tree (DT) algorithm to classify the TE regions. The RF
algorithm could not be used to classify the TE regions as this, and
many other algorithms, require spatially locating training areas
on the imagery. However, a DT algorithm could be and was used
with the training statistics acquired for the TE regions.

Fourth, the thresholds of spectral and texture characteristics
(i.e., training statistics for the TE regions) were derived for the
different crop types using the combination of the following two
steps: (1) Decision Tree (DT) modeling on the TR regions and
(2) plotting the relationship of vegetation indices for different
crop types of the TR regions. The DT modeling created models
from the pool of all the spectral and texture features acquired
from each TR region using the recursive partitioning platform
in the statistical software JMP 8 (SAS Institute Inc., Cary, NC,
USA). This binary recursive algorithm splits the training data for
each of the three TR regions and builds Decision Trees (DTs)
by choosing the features and corresponding values that best fit
the partial response in every split. The algorithm examined a
very large number of possible splits and determined the most
significant ones using the largest likelihood-ratio chi-square (χ2)
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FIGURE 4 | The crop/no-crop maps of the three TR and three TE regions in large (L), medium (M), and small (S) field sizes.

statistic. A cross-validation method was applied to define and
evaluate each of the models in which samples were randomly
separated into 40% for model training and 60% for model
validation. This procedure was repeated ten times to generate
results using random combinations of training and validation
sets (Friedl and Brodley, 1997). The best DTs were chosen for
each of the three TR regions by selecting the optimalmodel which
provided the smallest error rate when run on the independent
dataset (Mingers, 1989). In addition, the relationship between
the Vegetation Indices (VIs) (e.g., NDVI, MSR, DVI, GNDVI,
MCARI, SARVI, and EVI) were also plotted to determine
the most useful and important indices. Consequently, the best
DTs and plots of VIs were used to determine the threshold
values of spectral and texture characteristics for the different
crop types.

Finally, the threshold values of spectral and texture
characteristics derived from the training samples of the TR
regions were used in the DT classification algorithm to produce

the crop type maps for the three TE regions. The crop type
maps of the TE regions were assessed using 30 assessment
samples for each crop type collected from 2015 CDL of the
TE regions.

Accuracy Assessment
The results of the extension of the crop type reference data
for the six regions were evaluated individually by comparison
with the CDL reference data in the form of error matrices. The
CDL reference data for the assessment were always collected
independently of the training data. The reference dataset consists
of 30 samples collected from the 2015 CDL data for each crop
type to assess the crop type maps of the three TR and three TE
regions. In addition to the crop type maps, the crop/no-crop
maps of the three TR and three TE regions were also assessed
using the reference dataset collected from the 2015 CDL data.
The crop/no-crop reference dataset consists of the crop samples
which were subsequently derived by combining the crop type
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FIGURE 5 | The Decision Trees (DTs) built from the CDL 2015 reference data of the three TR regions for large (L), medium (M), and small (S) field sizes.

samples used in the assessment of crop type maps while the no-
crop samples were collected proportional to their area for each of
the TR and TE regions.

Finally, the CDL data were used to assess the crop/no-
crop maps, and the crop type maps of the three TR and
three TE regions in the form of object-based error matrices
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FIGURE 6 | The relationship between vegetation indices of different seasons for large, medium, and small agriculture field size TR regions.

presenting the accuracy measures (i.e., overall, user’s, and
producer’s accuracy).

RESULTS

The results of this study are presented in the following two sub-
sections: (1) the extension of crop type reference data from the
TR regions to the TE regions, and (2) the assessment of the
reference data using error matrices generated for the crop/no-
crop and crop type maps of the six regions.

Extension of Crop Type Reference Data
From the TR Regions to TE Regions Based
on the Investigation of One, Two, and
Three Dates of Imagery for the TR Regions
The crop/no-crop maps of the six regions (3 TR and 3 TE
regions) were first generated from the classification of the most
appropriate World View-2 satellite imagery using a rule-based
classifier and an object-based image analysis. Figure 4 presents
the crop/no-crop maps of 3 TR and 3 TE regions for the large,
medium, and small field sizes.

The crop/no-crop maps of the six regions were subsequently
classified into the crop types using the phenology-based
classification algorithm and training data collected from the
2015 CDL of the TR regions. The crop type maps for the
TR regions were produced from the investigation of one, two,
and three dates of satellite imagery and training data from the
CDL of these regions. However, the crop type maps of the
TE regions were developed from the multi-dates of satellite
imagery and training data derived from the TR regions using a
Decision Trees (DT) approach since the goal was to extend the
classification into similar regions without collecting training data
in those regions.

Figure 5 presents the Decision Trees (DTs) that were used
to derive the thresholds of the spectral and textural features for
different crop types in the TR regions using the hierarchical
recursive partitioning algorithm in JMP software. Figure 6

present the plots of the Vegetation Indices (VI’s) for the different
agriculture crops for the three TR regions, respectively.

A total of 20 samples for each map class were collected for
training the classification algorithm to create the crop type maps
of the TR and, by extension, the training statistics used in the
TE regions. Table 1 summarizes the training data collected from
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TABLE 1 | The training data collected from the 2015 CDL of the TR regions to

classify the crop type maps of the TR and TE regions.

Crop types Field size AEZ Training data (TR) Training data (TE)

Corn

Large AEZ 6 20 × 5 = 100 85 (5 Crop types)

Soybean

Spring wheat

Alfalfa

Other hay

Cotton

Medium AEZ 11 20 × 4 = 80 63 (4 Crop types)
Corn

Soybean

Double crop

Corn

Small AEZ 10 20 × 5 = 100 120 (6 Crop types)

Soybean

Other hay

Double crop

Fallow

the 2015 CDL and their derived statistics of the TR regions to
classify the crop types of the six regions for each of the field sizes
and AEZs.

The crop type maps of the six regions were produced using
the training data described in Table 1. Figure 7 presents the three
sets of crop type maps each for the three TR regions in the large,
medium, and small field sizes classified using one, two, and three
dates of imagery, respectively. Figure 8 presents the crop type
maps for the three TE regions developed from the classification
of multi-dates of satellite imagery using the DT algorithm and
training samples derived from the DT and VIs of the TR regions.

Accuracy Assessment
The results of the accuracy assessment include the reference data
collected to assess the crop/no-crop and crop type maps of the
six regions and the accuracy measures generated for the crop/no-
crop and crop type maps of the six regions. Table 2 presents the
assessment reference data collected from the CDL of the US to
assess the crop/no-crop, and crop type maps of the six regions.

The accuracy assessment was performed to assess both the
crop/no-crop and the crop type maps of the six regions through
the use of error matrices and calculations of the overall, user’s,
and producer’s accuracies for the large, medium, and small field
sizes. Table 3 presents the error matrices of the crop/no-crop
maps of the TR and TE regions for large, medium, and small
field sizes. The overall accuracy of the crop/no-crop maps of the
three TR regions in the large, medium, and small field sizes are
89.6, 91.9, and 94.2%, respectively. The overall accuracy of the
crop/no-crop map of the three TE regions in the large, medium,
and small field sizes are 97.8, 96.2, and 97.9%, respectively.
Table 4 presents the overall accuracy of 73.8, 90.2, and 83.3%,
respectively for the crop type maps of the three TR regions
developed from one, two, and three dates of satellite imagery.

Table 5 presents the evaluation of the crop type maps of
the three TE regions developed from the extended 2015 CDL

reference data of the TR regions and multi-dates of satellite
imagery in large, medium, and small field sizes, respectively.
The overall accuracy of the extended crop type maps for
large, medium, and small fields sizes are 93.7, 93.2, and
84.5%, respectively.

DISCUSSION

The goal of this research was to evaluate our ability to
extend existing, but limited reference data used for assessing
thematic map accuracy. The limited crop type reference data was
extended using multi-date satellite imagery and a phonology-
based classification approach. The classification of multi-date
satellite imagery requires sufficient reference data to create
and/or assess the crop type maps for large geographic regions. To
generate/extend accurate crop type maps and sufficient reference
data, the potential of a multi-date satellite imagery, phenology-
based, classification must be explored, and evaluated for different
field sizes.

Identification of Crops to Investigate the
Benefits of Multi-Dates of Imagery for the
Extension of Crop Type Reference Data
The crop/no-crop maps of the six regions were developed from
the most appropriate, single date imagery using a spectral and
textural rule-based classification algorithm (Figure 4). Using
these crop/no-crop maps, the crop type maps were subsequently
developed by evaluating one, two, and three dates of imagery
using the random forest (RF) classifier because of its robustness
to the spectral variations of similar crop types (Figure 7). The
non-parametric RF approach was effectively used over DT
because of its robustness to normal distribution departures for
determining important variables to classify all the WV-2 multi-
spectral bands along with nine indices, spatial context, and
texture information. Figure 7 presents nine crop type maps
generated from the single, two, and three date satellite imagery
for each of the three TR regions with different field sizes.
The crop type maps developed from one, two, and three dates
of imagery demonstrate the benefits of using more than one
date satellite imagery for crop type mapping by providing
more spectral variations for the growing season of different
crop types and therefore, increased accuracy. Figure 9 shows
multiple dates of satellite imagery and the crop type map
developed from a combination of three dates of imagery for a
medium field size TR region. The first single date of imagery
acquired in September provides unique spectral characteristics
for discriminating different types of crops including both
harvested and standing crops (e.g., corn and soybean) (Figure 9).
However, the additional dates of satellite imagery acquired
in May and February provide more spectral and textural
variations among the crop types (e.g., cotton and double crop).
Consequently, the crop type map developed from the three dates
of satellite imagery clearly shows the benefits of using multi
dates of imagery for effective crop type mapping in different field
size regions.
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FIGURE 7 | Crop type maps of three TR regions produced from one, two, and three dates of satellite imagery in the large, medium, and small field sizes.

In addition to providing additional spectral characteristics for
mapping different crop types of a region, the multiple dates of
satellite imagery help to identify the discrepancies and errors
(e.g., omission or commission) that existed in crop type reference
data. For example, the satellite imagery acquired in the month
of November for the small fields size TR region shows unique
spectral characteristics as dark red patches in the right lower
corner (Figure 10). The agriculture fields with unique spectral
characteristics were expected to be some seasonal crop (e.g.,
cranberry growing in the month of November) and labeled
as fallow land on the CDL reference data of the year 2015
(Figure 10). Comparing the CDL reference data of the year 2014
and 2017 showed that these fields were labeled as cranberry.

Therefore, the crop type mapping using multi-date satellite
imagery acquired in August, September, and November were
effective for identifying the omission errors in the reference data
that existed due to limited field surveys conducted in different
parts of the US.

The use of three dates of satellite imagery demonstrated
advantages over the single and two dates to perform effective crop
type mapping for each of the field sizes for the TR regions due to:
(1) spectral and textural variations and (2) capability to identify
the errors that existed in the reference data (Ehrlich et al., 1994;
Panigrahy and Sharma, 1997; Simonneaux et al., 2008). Based on
this multi-date analysis in the TR regions, the best three dates
of satellite imagery were selected to perform the classification of
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FIGURE 8 | The crop type maps of the three TE regions produced from the classification of multi-dates of satellite imagery in large, medium, and small field sizes.

crop types for two (large andmedium field size) of the TE regions.
Unfortunately, the small field size TE region had only two viable
dates of imagery and therefore, only those dates were used for the
small field TE region analysis.

The extension of limited crop type reference data involves
the identification of crop types for collecting additional reference
data from the classification of the best multi-dates of HRI
for the TE regions. The identification of crop types becomes
complex due to their diverse spectral characteristics in different
regions. The decision trees (Figure 5) and the relationship of
vegetation indices (VI’s) (Figure 6) derived from each of the
TR regions were used to identify the crop types for each of
the large, medium, and small field sizes in the TE regions. For
the TE regions, DT classifier approach was used instead of RF
because it is insensitive to noisy relationships between spectral
band values and class labels. It makes no assumption regarding
normality of input variables (i.e., spectral, spatial, or contextual)
and accommodate the threshold values of each tree node that
branches further to create a terminal node representing a class
label (i.e., crop type).

The crop types of the large field size TR region (Alfalfa,
Corn, Other Hay, Soybean, and Wheat) were discriminated

by means of a sequence of four VIs (NDVI, DVI, MSR,
and GNDVI) (Figure 6). Soybean was characterized by high
green vegetation vigor in late summer and low in mid fall.
Other Hay was characterized by high vegetation vigor in the
late summer and early fall. Wheat was characterized by low
vegetation vigor in early fall. Corn was characterized by high
vegetation in mid spring. The positive slope in MSR and
GNDVI distribution in Alfalfa can be interpreted as increase in
the vegetation vigor in early and mid-fall. No texture feature
offered a consistent solution for the discrimination between
the crops, but several VIs based on NIR bands were useful in
the identification of crops. The mid-spring and early fall were
selected for this initial step to classify the wheat, other hay, and
corn crops in the TE scenes of the large agriculture field sizes
(Figure 6).

The crop types of the medium field size TR region (Corn,
Cotton, Soybean, and Double Crop) were discriminated by
means of a sequence of three VIs (DVI, MSR, and SARVI)
(Figure 6). In early fall, the positive slope in DVI and MSR
distribution in corn can be interpreted as an increase in
the vegetation vigor. A negative slope in MSR and SARVI
distribution can be interpreted as decrease in vegetation.
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Corn was characterized by low vegetation vigor in late spring
and early fall. However, in all the acquired scenes, the
corn was characterized by low vegetation vigor. Double crop
including soybean and winter wheat was characterized by a
positive slope in DVI distribution showing an increase in the
vegetation vigor in late spring and early fall. Soybean was
characterized by high vegetation vigor in early fall and a negative
slope in DVI distribution was identified as a decrease from
early fall to late spring. Cotton was characterized by high
vegetation vigor in DVI, MSR, and SARVI distribution in
early fall.

TABLE 2 | The reference data used to assess the crop/no-crop and crop type

maps of the three TR and three TE regions.

Crop types Field

size

AEZ Reference data

(TR region)

Reference data

(TE region)

Corn

Large AEZ 6

Soybean C: 110* (46%) C: 120* (38%)

Spring wheat NC: 130 (54%) NC: 195 (62%)

Alfalfa Total: 240 Total: 315

Other hay

Cotton

Medium AEZ 11

C: (30 × 4) = 120 C: 95* (36%)

Corn (39%) NC: 170 (64%)

Soybean NC: 187 (61%) Total: 26

Double crop Total: 307

Corn

Small AEZ 10

C: (30 × 5) = 150 C: (30 × 4) = 120
Soybean

(45%) (27%)
Other hay

NC: 180 (55%) NC: 325 (73%)
Double crop

Total: 330 Total: 445
Fallow

*Minimum 30 sample size not achieved for rare crop types; the crop and no-crop area

proportions are presented in percentages for each region; C, Crop; NC, No-Crop; TR,

TRaining; TE, TEst.

The crop types of the small field size TR region (Corn,
Other Hay, Soybean, Winter Wheat, and Double Crop) were
discriminated by means of a sequence of three VIs (DVI, MSR,
and EVI) (Figure 6). Corn was characterized by high green
vegetation vigor in the distribution of GNDVI and EVI in late fall.
Other Hay was identified in the zone enclosed by GNDVI values
greater than 0.3 in the late fall. Soybean was characterized by
high vegetation vigor in GNDVI, EVI, and MCARI distribution
in late summer and late fall. The positive slope in GNDVI
distribution in soybean can be interpreted as an increase in the
vegetation vigor in late fall. No texture feature offered a consistent
solution for the discrimination between the crop types, but
several VIs based on NIR bands were useful for the indentation
of crops.

Potential Benefits of Classification With
Multi-Dates of Satellite Imagery and
Extension of Crop Type Reference Data
From the TR to TE Regions
The evaluation and assessment of the extension approach for
collecting additional crop type reference data tested in the US
are crucial to the effective application for the rest of the world
in the future. Accuracy assessment was performed separately to

TABLE 4 | The overall accuracy of the crop type maps of the three TR regions

developed from one, two, and three dates of satellite imagery.

Regions Accuracy

One date % Two dates % Three dates %

Large TR 67.1 69.2 73.8

Medium TR 88.6 89.6 90.2

Small TR 75.8 80.0 83.3

TABLE 3 | The error matrices of the crop / no-crop maps of TR and TE regions for the large, medium, and small field sizes.

Large field size TR Reference data Large field size TE Reference data

Crop No-crop Total User’s

accuracy %

Crop No-crop Total User’s

accuracy %

Map data Crop 109 24 133 81.95 Map data Crop 119 6 125 95.20

No-crop 1 106 107 99.07 No-Crop 1 189 190 99.47

Total 110 130 240 Total 120 195 315

Producer’s accuracy % 99.09 81.54 89.58 Producer’s accuracy 99.17 96.92 97.78

Medium field size TR Reference data Medium field size TE Reference Data

Crop No-crop Total User’s

accuracy %

Crop No-crop Total User’s

accuracy %

Map data Crop 108 13 121 89.26 Map data Crop 95 10 105 90.48

No-crop 12 174 186 93.55 No-crop 0 160 160 100.00

Total 120 187 307 Total 95 170 265

Producer’s accuracy % 90.00 93.05 91.86 Producer’s accuracy 100.00 94.12 96.23

Small field size TR Reference data Small field size TE Reference data

Crop No-crop Total User’s

accuracy %

Crop No-crop Total User’s

accuracy %

Map data Crop 142 11 153 92.81 Map data Crop 113 0 113 100.00

No-Crop 8 169 177 95.48 No-Crop 9 323 332 97.29

Total 150 180 330 Total 122 323 445

Producer’s accuracy % 94.67 93.89 94.24 Producer’s accuracy 92.62 100.00 97.98
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TABLE 5 | The error matrices of crop type maps generated from multi-dates of World View-2 imagery for the large, medium, and small agriculture field sizes TE regions.

Large field size TE Reference data

Corn Alfalfa Other hay Wheat No-crop Total User’s accuracy %

Map data

Corn 28 0 0 0 0 28 100.00

Alfalfa 0 24 4 0 0 28 85.71

Other hay 0 5 24 0 5 34 70.59

Wheat 2 1 1 30 1 35 85.71

No-crop 0 0 1 0 189 190 99.47

Total 30 30 30 30 195 315

Producer’s accuracy % 93.33 80.00 80.00 100.00 96.92 93.65

Medium field size TE Reference data

Corn Soybean Double crop Cotton No-crop Total User’s accuracy %

Map data

Corn 28 0 0 1 2 31 90.32

Soybean 0 4 0 0 0 4 100.00

Double crop 1 1 27 1 6 36 75.00

Cotton 1 0 3 28 2 34 82.35

No-crop 0 0 0 0 160 160 100.00

Total 30 5 30 30 170 265

Producer’s accuracy % 93.33 80.00 90.00 93.33 94.12 93.21

Small field size TE Reference data

Corn Soybean Other crops Other hay No-crop Total User’s accuracy %

Map data

Corn 24 11 0 0 0 35 68.57

Soybean 5 15 1 0 0 21 71.43

Other crops 1 4 14 2 0 21 66.67

Other hay 0 0 13 23 0 36 63.89

No-crop 2 0 2 5 323 332 97.29

Total 32 30 30 30 323 445

Producer’s accuracy % 75.00 50.00 46.67 76.67 100.00 84.49

evaluate the benefits of using multi-dates of satellite imagery and
extension. The benefits of using multi-dates of satellite imagery
were established by assessing the crop type maps of the TR
region developed from one, two, and three dates of satellite
imagery in the form of error matrices presenting the overall,
producer’s, and user’s accuracy. Table 4 clearly demonstrates
that higher overall accuracy of the crop type maps results
developed frommulti-date satellite imagery for the large (73.8%),
medium (90.2%), and small (83.3%) field size regions than
for using only one or two image dates. The benefits of using
multiple dates of satellite imagery resulted in more spectral
and texture features for the discrimination of the different
crop types.

One would expect that the accuracy of the large field area

would have the highest accuracy since it is easier to correctly
label crop types that occur in large, homogeneous areas. Our
results, however, show that the maps generated from three dates
of imagery in medium field size regions are more accurate than
large and small field sizes. The reasons for these contrary results
are as follows: First, each study site was randomly selected from
the AEZ. As a result, some study sites were spatially more
homogeneous than others resulting in a simpler and therefore,
better classification. Looking at the random study site selected for
the large field size (Figure 2) shows that this area has an inclusion
of urban or developed classes on the right part of the image.
Some of these areas are then easily confused with the fallow

class causing a lowering of the accuracy as shown in Table 4.
It is this variability in the non-cropland classes that reduced
the accuracy of this area. Presence of an artifact such as this
urban/developed area does not occur in the small or medium
field size areas and therefore, their classifications were simpler
and their accuracies higher. Second, in the medium field size
region, forest and agriculture are the dominant land cover classes
(as seen in Figure 2) whose objects were easily discriminated
based on the texture features. There was no inclusion of an
urban/developed class to cause spectral confusion. Thirdly, the
presence of fallow land in the small field size region created
spectral confusion in the classification of the agriculture crops
and achieved lower accuracy as compared to the medium field
size region. Therefore, it is observed that the accuracy results
of crop type classification using multi-date satellite imagery
depends not only on the size of the agriculture fields, but
also depends on the discrimination between cropland and non-
cropland, dominance, and choice of different agriculture crop
types, and date of the imagery used in the classification process.
However, it is key to remember here that this test was meant only
to show that multiple dates of imagery improve the classification
accuracy. This result proves true for all field sizes. Finally, it is
very important to note that the error matrices shown in Table 5

for the test study sites do conform to the pattern that is expected
where the large field size area has the highest accuracy. Careful
examination of Figure 2 shows that the urban/developed artifact

Frontiers in Sustainable Food Systems | www.frontiersin.org 14 September 2020 | Volume 4 | Article 99

https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org
https://www.frontiersin.org/journals/sustainable-food-systems#articles


Yadav and Congalton Extending Crop Type Reference Data

FIGURE 9 | The crop type map developed from the multi dates of World View-2 imagery showing the unique spectral characteristics for the different crop types of the

medium field size TR region.

that caused a reduction in accuracy reported in Table 4 is not
present in the randomly selected image used for the large field
size test area.

The extension approach of collecting additional crop type
reference data was evaluated by the assessment of crop type
maps of three TE regions (see Figure 8) developed from multi-
dates of satellite imagery and the training crop type reference
data extended from three TR regions representing each field
size. These maps were assessed using the reference data collected
from the CDL map of the year 2015 (Table 2). The error
matrices generated for the crop type maps of the TE region
in Table 5 shows that: (1) the crop type reference data of
more common agriculture crops was extended with high quality
and reliability for all three field sizes, (2) rare crop types
were spatially extended with high accuracy (80–90%) in the
large and medium field sizes, and (3) the extended crop type
reference data has lower accuracy (60–70%) and reliability in
the small field sizes as compared to the large and medium
field sizes for the same crops. The extension approach derives
statistical spectral information of different agriculture crops
for training the crop type classification at another location of
limited reference data. The statistical training data might not
be good as ground collected data; the extension approach will
help to supplement the limited crop type reference data to a
great extent. The statistical information of agriculture crops
can be modified according to any expected or observed natural
change and human activities. For the selected study regions
within a specific AEZ, we carefully considered the constraints
including the cropping schedule of a specific agriculture crop, the

ecology, and the field size. Failure to consider these constraints
would render the method ineffective. However, this project has
shown that, if carefully evaluated, imagery from one region can
be used to extend the reference data to surrounding similar
area within the same AEZ (constraints). It is also critical to
evaluate the replicability of this approach in other parts of the
world. Therefore, while implementing the proposed extension
approach, the cropping pattern of different regions needs to be
analyzed with respect to climate and human activities. Finally,
however, our approach has demonstrated that if the constraints
are evaluated adequately, the limited reference data can be
effectively and efficiently extended using a phenology-based
classification approach to similar areas.

CONCLUSIONS

In this research, we have presented an innovative approach
to extend the crop type reference data within similar regions
representing different agriculture field sizes in the US where
high-quality crop type reference data (e.g., CDL) already exists.
The results demonstrate that the phenology-based classification
approach can efficiently extend the limited crop type reference
data to every region within the same AEZ and for different
field sizes. The most attractive feature of this extension
approach is that it reduces the need to collect additional
field reference data at multiple locations, greatly lowering
the cost and time involved in the mapping of crop types
for large areas. This approach is especially important for the
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FIGURE 10 | The comparison of CDL reference data of the small field size TR region with the satellite imagery.

regions where reference data are often too scarce to routinely
apply the supervised classification methods to effectively map
different agriculture crops. Variables related to phenology and
spectral features at specific phenological stages were utilized
as measurements that reflect the nature of crop types and
remain stable over time and space within similar ecological
conditions and cropping patterns. Therefore, a phenology-based,
robust classification algorithm was developed to identify the
crop types based on the prior knowledge on their cropping
calendar and spectral properties. Resultant crop type maps
demonstrated the potential and capability of extending limited
crop type reference data using phenology-based algorithms
for discriminating agriculture crops at multiple places in
similar regions.

The success of this initial application in the United States
using the non-ground-based sources of crop type information
is encouraging, given the potential of extending the algorithm
to other crop types and other remotely sensed data. To identify
more crop types in other areas, expert knowledge on local
agricultural practices, crop growth modeling, and crop spectral
monitoring and simulation (Jacquemoud et al., 2009) are the
main factors to consider when defining classification rules. For
regions with variable crop types growing throughout the year, the

extended automated approach may improve the classification of
all the available crop types from a single year by incorporating
images from multiple dates. Because the automated algorithm
is not image-specific, it is scalable to utilize these datasets with
minimal revisions. We are confident that the phenology-based
classification approach has great potential as a methodology for
generating additional crop type reference data for creating and
assessing the crop type maps.
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