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The purpose of this study was to evaluate the prediction accuracy of a newly

developed crop yield prediction system, composed of a dynamical seasonal climate

prediction model (SINTEX-F2) and an eco-physiological process-based crop growth

model (PRYSBI2). We explored the 3-months lead prediction accuracy of year-to-year

variations in yield of four major crops (maize, rice, wheat, and soybean) in global regions

and evaluated for which crops and in which areas the system performs well. The results

indicated the system is more accurate for wheat relative to the other crops. Also, we

found that different strategies would be useful in improving the system, depending on

the crop. For winter wheat and rice, we need to improve the temperature predictions,

particularly over the mid-latitudes, whereas improving rainfall predictions was more

important for maize. For spring wheat and soybeans, the crop growth simulation itself

should be improved. Although this study is only a first step, we believe that additional

efforts to improve the system by understanding and incorporating processes of climate

and crop growth will potentially provide useful prediction information to big stakeholders

like global agribusiness companies and countries for improving food security in regions

where crop yield is vulnerable to extreme climate shocks and where food markets are

isolated from international trade.

Keywords: seasonal prediction, crop yields, process-based prediction, dynamical seasonal climate prediction,

eco-physiological crop-growth simulation

INTRODUCTION

Food production is highly sensitive to seasonal climate variability throughout the world
(Iizumi et al., 2013b, 2014a, 2018b; Yuan and Yamagata, 2015; Oettli et al., 2018). Therefore,
seasonal climate predictions linked to a crop simulation model can provide potentially useful
information for stakeholders to reduce risks related to crop failure (Hansen and Indeje,
2004; Crane et al., 2010; Hayashi et al., 2018; Rodriguez et al., 2018). For example, an
early warning of an abnormal seasonal climate-induced crop failure could serve as useful
information for better management of national food balance by imports, insurance systems,
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and stabilization of commodity markets (FAO, 2016). The recent
development of improved numerical seasonal climate prediction
technologies has enhanced the possibility of predicting crop
yields several months prior to harvest, but there is still room
for improvement.

One possible approach to improving the prediction system
is to better understand processes for abnormal climate events
and their impacts on crop growth. Simple statistical methods
are not suitable for this purpose because they implicitly link
output (crop yields) and input (climate prediction) using
available data (e.g., Lobell and Asseng, 2017). Therefore,
developing hybrid systems of dynamical seasonal prediction
systems and process-based crop growth models is a necessary
step for potentially improving seasonal predictions of crop
yields. Previous studies have evaluated the prediction accuracy
and usefulness of dynamical seasonal prediction systems linked
with process-based crop growth models. Brown et al. (2018)
showed the benefits of using a climate model to predict
wheat yield in the Australian cropping zone. Rodriguez et al.
(2018), focusing on sorghum yield in Australia, showed
that a dynamical seasonal prediction system linked with a
crop simulation model can be used to inform optimum
crop designs to increase farmers’ profits and reduce risks.
However, there still has not been sufficient discussion about
which crops and areas have a high predictive ability on a
global scale.

Our aim was to develop a scheme for forecasting worldwide
crop yield variations based on seasonal climate predictions.
We developed a hybrid system of a dynamical seasonal
prediction model and an eco-physiological process-based
crop growth model for four major crops (maize, rice, wheat,
and soybean) and investigated its prediction accuracy in
global regions. We chose these four crops because together
they account for about two-thirds of the world’s food
calories and are crucial as agricultural commodities in
international trade.

MATERIALS AND METHODS

Seasonal Climate Prediction System
The SINTEX-F2 seasonal prediction system (Doi et al., 2016)
was used. It is based on the fully coupled ocean-atmosphere-
land-sea–ice SINTEX-F2 climate model (Masson et al., 2012;
Sasaki et al., 2013) and is an upgraded high-resolution version
of the earlier SINTEX-F1 system (Luo et al., 2005). The
atmospheric component has a horizontal resolution of 1.125◦

(T106). System details and an overview are given in Doi
et al. (2016). This system has been used to make accurate
predictions of El Niño/Southern Oscillation (ENSO), the Indian
Ocean Dipole (IOD), and associated seasonal climate variations
(Doi et al., 2016, 2017; Ratnam et al., 2017, 2018, 2019).
In consideration of uncertainties of both initial conditions
and model physics, the system has six ensemble members.
Here, we used retrospective forecast experiments with a 3-
months lead period beginning on the first day of every month
in 2000–2010.

Eco-Physiological Process-Based
Crop-Growth Simulation Model
PRYSBI2, an eco-physiological process-based crop growth
simulation model, was used. It can successfully describe the
response of crop growth and yield to abnormal weather and
climate in global regions at a large scale, taking soybean as
the example (Sakurai et al., 2014; Müller et al., 2017). The
model is sufficiently complex to describe important factors,
such as the enzyme kinetics in photosynthesis, to simulate yield
response to abnormal weather and climate conditions. However,
it is simplified as much as possible to enable us to do the
huge number of calculations (see the Supplementary Material)
needed because we used a Bayesian statistical approach with a
Markov-Chain Monte Carlo (MCMC) method based on field
observations and statistical yield data to estimate the parameters
of the process-based model. The horizontal resolution was 1.125◦

(T106) to match the outputs of the climate prediction system.
The original model is a global gridded crop model (Müller

et al., 2017) in which the representative value of crop yields of a
target area is estimated. Our crop model simulates representative
crop yield in each 1.125◦ grid cell using daily meteorological data.
The sowing date of Sacks et al. (2010) is used, and the harvest
date is determined by accumulated temperature from sowing date
(Sakurai et al., 2014). The parameter value relevant to harvesting
day is also estimated using the data of Sacks et al. (2010) for each
grid cell. More details and an in-depth overview of the original
model are presented in Sakurai et al. (2014) and Okada et al.
(2015). A description of the updated model used in this study is
available in the Supplementary Material.

Reforecast Experiment
For the retrospective forecast (re-forecast) experiments, the
daily outputs from the SINTEX-F2 seasonal prediction system
(shortwave radiation, precipitation, relative humidity, wind
speed, and daily average, maximum, and minimum temperature)
were used as the climate inputs to the crop model after bias
correction. In the bias correction, the daily climatology for 365
days for the period 2000–2010 was computed using a global
retrospective meteorological forcing dataset (Iizumi et al., 2013a)
with a spatial resolution of 1.125◦. The daily climatology for the
same 11-years period was then derived using the SINTEX-F2
outputs, and the climate-model data were adjusted to have the
same climatology as the forcing dataset. The day-to-day deviation
in a climatic variable relative to the climate-model climatology
was maintained, although the systematic error in the climate-
model climatology was removed. This procedure was conducted
for each crop, 1.125◦ grid cell, and six climate-model ensemble
member. We also used the retrospective meteorological forcing
dataset (Iizumi et al., 2013a) to estimate past crop yields to
evaluate the upper limitation of the prediction accuracy of the
crop model itself.

Prediction Accuracy Metrics
Country-level yield data from the Statistical Division of the
UN Food and Agriculture Organization (FAOSTAT) (see www.
fao.org/faostat/en/#home) were used for verification of global
average yield in 2000–2010. Global average yield data were
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calculated from country-level yield and harvested area data. We
also used grid-cell crop yield datasets in the years of 2000–2006
by Iizumi et al. (2014b), which are 1.125◦ grid-scale yield data
estimated using satellite data (NOAA/AVHRR), and country-
level yield data by FAO (Iizumi et al., 2013b). Although data in
the grid-scale dataset are estimates and not ground truth, they
have been shown to be in good agreement with actual yield data
when the dataset was compared to other yield datasets solely
based on national and subnational yield statistics (Iizumi et al.,
2018a).

The six-member ensemble mean of the yield and climate
simulations was used to calculate anomaly correlation coefficients
(ACCs) as a deterministic accuracy score. ACCs were calculated
as follows.

ACC =

1
n

∑

δe,iδo,i
√

1
n2

δ2e,iδ
2
o,i

, (1)

δe,i = (ei − ei)/ei, (2)

δo,i = (oi − oi)/oi, (3)

where ei indicates simulated yield values at time i and oi indicates
observed yield values at time i. ei and oi indicate the trends
of simulated and observed yield values, respectively. The trend
lines of the yield values are estimated using the local regression
(LOESS, span = 0.7, degree = 1) available in the R statistical
package (R Development Core Team, 2016). For the general
calculation of ACC in the field on climate science, the average
values of eiand oi would be used instead of ei and oi. Moreover,
the differences between the simulated (or observed) value and
the average would not be divided by ei or oi. However, we
used the above equations because: (1) crop yield data have time
trends that can be attributed to non-climatic factors and; (2) crop
yield variability tends to change according to the average yield
(Hawkins et al., 2013). Although this derivation of ACC is slightly
different from that generally used, the derived value has the same
characteristic—it increases as the prediction improves, with an
upper limit of 1. When calculating the predicted global average
yield, we calculated the average yield weighted by harvested area
(Monfreda et al., 2008) for each crop.

We also calculated the root-mean-square error (RMSE)
as follows.

RMSE =

√

1

n

∑

(

θe,i − θo,i
)2

θe,i = ei − ei

θo,i = oi − oi

Although the RMSE formula is different from the classic formula,
the derived value has the same characteristic—it decreases as the
prediction improves.

Comparison of the Error Contributions
We conducted crop-growth simulations forced by the bias-
corrected re-analysis meteorological forcing dataset (Iizumi et al.,
2014a) to compare the errors generated by the re-analysis
with those simulated with the seasonal climate prediction. By

calculating the difference in the RMSE between the crop yield
predictions of the two analyses, we roughly estimated the degree
of the contribution of the error of the seasonal climate prediction
to the RMSE of the crop yield prediction for each grid cell.

RESULTS

Prediction Accuracy for Global Average
Figure 1 shows the time series of year-to-year variations of
historical global mean yield of four major crops. Maize yield
had the largest year-to-year variation in 2003–2004 (Figure 1A).
Unfortunately, the prediction system cannot capture it, and
the ACC is not statistically significant for maize. Because the
ensemble spread of the prediction is much larger relative to the
standard deviation of the year-to-year variation, the uncertainty
is large. On the other hand, the historical rice yield was rather
stable and did not have large year-to-year variations (Figure 1B).
The prediction system is not accurate in predicting these small
variations in the annual global mean rice yield (ACC = 0.10),
and the uncertainty is large. The predictions for wheat are
relatively better than those for the other crops (Figures 1C,D). As
shown in the relatively small ensemble spreads for winter/spring
wheat, the uncertainties are relatively small. The ACC values
are 0.54 for winter wheat and 0.38 for spring wheat. The
former value is statistically significant at 85% and very close
to the 90% significant level, although the latter value is not
significant at 90% because of the small sample size (n = 10).
Soybean prediction is the most challenging of the four crops.
The ACC score of the global mean yield is even negative, and
the ensemble spread is the largest among the crops considered
here (Figure 1E).

Horizontal Distribution of Prediction
Accuracy
Horizontal distributions of the ACC scores are shown in
Figure 2. Note that an ACC value of >0.669 is necessary to
conclude that our yield prediction is accurate when the sample
size is 7 (5% significance level, one-sided). For maize, the
prediction system is accurate over some parts of the United States
(U.S.), Europe, northeastern China, and Indonesia, although
the horizontal distribution is patchy over the South American
continent and Southern Africa (Figure 2A). The values are
very low over eastern Australia. Rice prediction shows higher
ACC values over some parts of northeastern Brazil, Europe,
and northeastern China (Figure 2B). On the other hand, it
is quite low over southern Brazil, West Africa, South Africa,
Thailand, and Indonesia. The relatively better prediction of
globally averaged wheat (section Prediction Accuracy for Global
Average) is due mainly to the high scores in the eastern
U.S., southern Africa, and western Russia (Figure 2C). For
spring wheat, accurate predictions are seen in some parts of
western/eastern Australia, western U.S., Turkey, and Central
Russia (Figure 2D). Soybean accuracy scores are very low
(negative) over the major soybean-producing regions, including
the U.S., China, Brazil, and Argentina, although the scores
are higher over some parts of India and northeastern China
(Figure 2E).
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FIGURE 1 | Time series of year-to-year variations of global mean yield of (A) maize, (B) rice, (C) winter wheat, (D) spring wheat, and (E) soybean. FAO data are from

the Statistical Division of the UN Food and Agriculture Organization (FAOSTAT). Winter and spring wheat use the same data. The predicted values show a 3-months

lead prediction. The shaded areas show the 95% confidence intervals estimated from a six-ensemble spread. The ACC accuracy score is shown at the bottom left

corner of each panel.

We evaluated the statistical significance of ACCs by
conducting 3,000 bootstrapping sampling in which ACCs were
calculated with the observation values and randomly selected
predicted values for each grid to estimate the percentage of the
global harvested area with accurate prediction by chance (the
number of grids with accurate prediction per number of grids).

For each bootstrapping sampling, the number of grids with
accurate prediction was defined as those that have a significant
(p < 0.05) correlation coefficient (ACC > 0.729 if n = 6, ACC
= 0.669 if n = 7). In the bootstrap analysis, the average (±SD)
rates of grids that have significant ACCs by chance were 5.7%
(±0.4%), 5.6% (±0.4%), 7.2% (±0.5%), 5.0% (±0.6%), and 5.9%
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FIGURE 2 | Horizontal distributions of ACC accuracy scores for a 3-months

lead prediction of year-to-year variations in yields of (A) maize, (B) rice, (C)

winter wheat, (D) spring wheat, and (E) soybean. Gray indicates non-growing

areas for the respective crops.

(±0.6%) formaize, rice, winter wheat, spring wheat, and soybean,
respectively. For our prediction system, the corresponding rates
were 18, 20, 21, 15, and 15%, respectively. All of the rates obtained
using our prediction system therefore largely exceed the rates
calculated under the random assumption, which means that the
prediction system may have potential benefits.

Contribution to the Errors
Figure 3 shows the difference between the RMSE of the seasonal
climate prediction and that of the crop model for each grid. The
positive values (classes A [0.0–0.5 t/ha], B [0.5–1.0 t/ha], and C
[1.0–1.5 t/ha]) indicate that parts of the prediction errors are
explained by prediction errors of the seasonal climate prediction.
For maize, rice, and winter wheat, many class B and C grids

FIGURE 3 | Horizontal distributions of the degree of the contribution of the

error due to the seasonal climate prediction to the RMSE (i.e., the difference

between the RMSE of the seasonal climate prediction and that of the crop

model for each grid) of the predicted yields for (A) maize, (B) rice, (C) winter

wheat, (D) spring wheat, and (E) soybean. Class X indicates grids where the

RMSE of the predicted yields can be explained by the crop model error.

Classes A, B, and C indicate grids where some of the RMSE of the predicted

yields can be explained by the prediction error of the seasonal climate

prediction. X: < 0.0, A: 0.0–0.5, B: 0.5–1.0, and C: 1.0–1.5 (t/ha). Gray

indicates non-growing areas for the respective crops.

were observed. These results indicate that, for these crops and
grids, the hybrid prediction system would be improved by
elaborating both the seasonal climate prediction and the crop
growth prediction. On the other hand, in soybean and spring
wheat, the classification of most of the grids as class X (negative)
or A indicated that the prediction errors would be caused mainly
by inaccuracy in the crop model.

Figure S1 is same as Figure 2, but for the estimation forced
by the atmospheric re-analysis data. Therefore, the errors are
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FIGURE 4 | Country-level yield of wheat in 2007 (t/ha): (A) FAOSTAT data, (B) error of the predicted yields, (C) error explained by crop model error, and (D) error

explained by the seasonal prediction error.

mainly attributable to the crop model. We can find that there
is room of improvement for maize in eastern China, central
North America, and central Asia and for winter wheat in
central Asia by improving seasonal climate prediction. We also
added horizontal maps of the RMSE for the estimation forced
by the atmospheric re-analysis data (Figure S2) and by the
seasonal climate prediction (Figure S3). The result suggests that
the prediction error of the crop yields are attributable to the
prediction errors of the seasonal climate prediction particularly
in central North America (for maize), Eastern Asia (for maize
and rice) and central Asia (formaize andwinter wheat). However,
for spring wheat and soybean, the greater part of the prediction
error of the crop yields are attributable to the error of the
crop model.

DISCUSSION

Consistency With Previous Works
The results indicate that the prediction accuracy is high
for wheat relative to the other crops. The results are partly
consistent with previous studies (Iizumi et al., 2013b,
2014a; Yuan and Yamagata, 2015), which also showed
that wheat yield can be reliably predicted using simple
regression methods based on the outputs of the SINTEX-
F1 prediction system (Luo et al., 2005). Particularly, Yuan
and Yamagata (2015) showed that the potential source of
seasonal predictability of Australian wheat is due to the
tropical Indo-Pacific climate modes, such as IOD, ENSO, and
ENSO-Modoki. The high prediction accuracies of those climate
variations and their associated teleconnection patterns by
the SINTEX-F2 system (Doi et al., 2016) partly contribute to
the successful prediction of Australian wheat yield, as shown
in Figure 2D.

Improvement
The results suggest that the crop yield prediction errors are
attributable to the prediction errors of the seasonal climate
prediction for maize, rice, and winter wheat. This tendency
was remarkable for maize, particularly the improvement of
seasonal climate prediction in the central U.S. and Iran. It
was also important in the southern U.S. for rice and southern
Africa for winter wheat. Production of maize is sensitive to
water stress, while production of wheat and rice is sensitive to
temperature stress (Iizumi et al., 2013b). Temperature prediction
by the SINTEX-F2 system is generally more accurate relative to
rainfall prediction (Figure S4), which is a common attribute of
dynamical seasonal climate prediction systems (e.g., the North
American Multi-Model Ensemble: NMME; Kirtman et al., 2014).
This feature can partly explain why the prediction error of
maize yield is mostly due to the seasonal climate prediction
errors, relative to those of rice and winter wheat. Low prediction
accuracy of rice yield in Eastern Asia may be due to the
difficulty of prediction of boreal spring-summer temperature
there (Figures S4A,C), while low prediction skill of winter wheat
in central Asia may be related to the difficulty of prediction of
boreal winter temperature there (Figure S4G).

As shown in Figure 1C, an extreme failure of the global
average crop yield for wheat was experienced in 2007. This is
successfully predicted 3 months ahead by our system. Figure 4A
shows the country-level yield of wheat in 2007. Although the
prediction is relatively better over the U.S., Russia, and India,
predicted wheat yield in China is underestimated and that in
Canada is overestimated (Figure 4B). This is also seen by the
grid-level yield (Figure S5). The error in Canada is due mainly to
the crop model itself because the crop model forced by the bias-
corrected re-analysis dataset still has a similar error (Figure 4C).
In contrast, the error in China is due mainly to seasonal climate
prediction error (Figures 4B–D). From the latter half of 2006
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through 2007, we experienced the growth and decay of El Niño
and the positive Indian Ocean Dipole event, which may remotely
influence the East Asia climate, including China (e.g., Behera
et al., 2008). The seasonal prediction system needs to be improved
to capture those teleconnections. We have been developing
the SINTEX-F2 system to improve its prediction accuracy by
updating the initialization scheme and increasing the ensemble
size (Doi et al., 2017, 2019, 2020; Morioka et al., 2019).

For spring wheat and soybean, most of the crop yield
prediction error can be attributed to crop model error
(Figures 3D,E). Although identification of specific reasons for
the crop model error is beyond the scope of this study, poor
estimation of crop phenology may be in part responsible.
Although daylength is not considered in our crop model,
it is known that both temperature and daylength influence
crop phenology (Yan and Wallace, 1998), and the influence of
daylength on crop phenology differs among crops and cultivars
(Major, 1980). For example, whereas soybean phenology is
influenced largely by daylength (Major, 1974), maize phenology
can be modeled using thermal time (Gilmore and Rogers, 1958;
Tollenaar et al., 1979; Plett, 1992). Nutrient stress tolerances are
also different among crops, which might affect the difference in
the prediction accuracy among the crops. For example, soybean
is a crop that establishes a symbiotic relationship with a nitrogen-
fixing bacterium and has high nitrogen stress tolerance. For the
accurate estimation of the crop yield, it would be needed to
consider nitrogen dynamics, the possible input of the nitrogen,
and the difference of the response to the nitrogen input for each
crop. In this study, soil water content and drought stress were
calculated with the Soil & Water Assessment Tool (Neitsch et al.,
2005). However, nitrogen dynamics was not included in our
model (but included in the original model) because of avoiding
the artificial effect on the estimation of the yield. It is possible
that this simplification increased the error of the crop model
in this study. Moreover, soil characteristics in each area were
considered by using the ISLSCP II soil data (Scholes and Brown
de Colstoun, 2011) but not in each crop in this study, although
the soil characteristics may differ among the crops even in the
same area. This simplification might also affect the prediction
error in this study. Detailed analysis of these types of differences
in the prediction accuracy of the crop model is an important
future task. We will try to include this factor in future versions
of the model.

Limitations
The prediction system in this study is accurate for some crops
over some areas. However, a discussion based on statistical
significance is still challenging because this study used data
from a relatively short time period, i.e., 7 years (2000–2006)
for the grid-wise assessment and 11 years (2000–2010) for the
global average. Although statistical significance is not always
the best basis for making conclusions (Amrhein et al., 2019;
Wasserstein et al., 2019), a longer time period is required for a
more reliable assessment of yield prediction accuracy. For that,
we may need more streamline yield data corrections and reduce
the computational cost of the hybrid system of dynamical climate
prediction and eco-physiological crop-growth simulation.

Some other limitations also need to be addressed in
future studies. The current crop model was calibrated using
yield data for 1981–2006 (Supplementary Material), and the
data used for the accuracy assessment are included in this
dataset. The bias-correction procedure does not divide climate
data into calibration and independent subsets. The use of
a more reasonable experimental setup, such as the “leave-
one-out” cross validation technique, is necessary. In addition,
calibration of the crop model with a Bayesian approach is
currently computationally expensive and not feasible at the
present time.

Global mean yield may not be a good metric when evaluating
predictions of seasonal yield variability because crop durations
(planting to harvesting) vary by geographic location. For
example, maize is harvested from October to November in
the U.S., whereas first- and second-season maize in Brazil is
harvested from February to June and from June to September,
respectively (U.S. Department of Agriculture, 1994). In the most
of the countries in Central America and the Caribbean (such as
Mexico) and African countries (such as Nigeria), second season
maize is also planted (U.S. Department of Agriculture, 2020).
Particularly in Brazil, the production of the second season maize
is substantially increasing in recent years (van Benthem, 2013).
In contrast, seasonal climate forecasts for the coming 3 months
are issued at a single point in time (e.g., 1 January), and crops in
some regions would be harvested within the 3-months period,
but crops in other regions would not. For this reason, global
mean yield can be computed in the re-forecast experiments, but
it never appears in the operational forecast mode. Country mean
yield forecasts are most likely better for use in the assessment of
operational yield prediction service.

The computational cost of the model might be a serious
limitation for some researchers in third-world countries, who
would be some of themost benefited from suchmodeling.We are
thinking to share our outputs in future. Also, we may reduce the
horizontal resolutions and/or focus on some target regions from
the worldwide calculation to reduce the computational cost.

Future Potential
The results indicated that the prediction accuracy of the system
varies according to area and crop species. This indicates
that an important direction of future study would be not
only elaborating the prediction models but also searching for
combinations of areas and crops that are appropriate for
seasonal prediction. Further studies need to summarize the
advantages and disadvantages of using statistical and process-
based crop models in seasonal yield prediction and make careful
comparisons based on coordinated reforecast experiments. One
of the notable advantages with the process-based prediction
system in this study is that it can provide prediction results
supported by reasons. As an additional improvement, we need
to carefully compare the processes to understand the system’s
predictive potential by focusing on particular regions and
years. This type of information will provide clues on how to
improve and optimize the system. This research approach is not
possible by using only a simple statistical method, as shown

Frontiers in Sustainable Food Systems | www.frontiersin.org 7 June 2020 | Volume 4 | Article 84

https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org
https://www.frontiersin.org/journals/sustainable-food-systems#articles


Doi et al. Seasonal Predictability of Crop Yields

in previous studies (Iizumi et al., 2013b, 2014a; Yuan and
Yamagata, 2015). Although this study is only a first step, we
believe that further efforts to improve the system by more deeply
understanding climate and crop growth processes can provide
useful prediction information to society. Although a global
prediction system is still challenging, the accurate information
could be beneficial for agro-businesses (for example, a bank
that issues credits worldwide for agriculture) and for improving
food security in regions where crop yield is vulnerable to
climate shocks and food markets are isolated from international
trade. In addition, a process-based prediction system may
provide information to country-level institutions responsible for
agriculture, which in turn could inform farmers, to prevent
possible yield losses, for example, choice of sowing date based
on seasonal prediction. Such a research stream is also already
underway (Sakurai et al., 2018).

CONCLUSIONS

This study presented a newly developed system combining an
eco-physiological process-based crop model and a dynamical
seasonal climate model to predict worldwide yields for four
major crops and evaluated the system’s results. The 3-months
lead predictions of year-to-year variation in the wheat yield were
more accurate relative to those of maize, rice, and soybean. Maize
yield is difficult to predict because of its huge intrinsic variability.
Conversely, small variations in rice yield also make it difficult to
predict. Soybean yield is the most difficult to predict. For winter
wheat and rice, temperature predictions need to be improved,
particularly over the mid-latitudes, whereas for maize, rainfall
predictions should be improved. For spring wheat and soybeans,
the crop growth simulation itself needs to be improved. However,
we don’t completely buy that low prediction scores in maize,
rice and winter wheat are just because errors of seasonal climate
prediction. It may be also due to intrinsic genetic variation
in those crops and other biological and management factors.
We also believe that further efforts to improve the system can
contribute to provide a possible tool to concern food security
under future climate change because process-based models allow

representing future climate and management conditions not
sampled in the historical record and new locations to which
cultivation may shift (Franke et al., 2019).
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