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Contiguous United States
Sarah C. Goslee*
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The spatial heterogeneity of vegetation types on a landscape has been linked to multiple

ecosystem functions, including habitat for wildlife and pollinators, water cycling, human

aesthetic values, and nutrient cycling. Although agricultural land uses are sometimes

combined into a single unit when quantifying landscape heterogeneity, diverse cropping

systems are a valuable alternative to near-monocultural croplands and contribute more

strongly to ecosystem service provision, including services such as pest regulation and

carbon sequestration that are of direct interest for agriculture. The USDA Cropland Data

Layer was used to characterize crop diversity across the contiguous US for 2008–2018.

Percentage of each crop type, along with non-crop uses such as forest and development,

were calculated for each 4 km PRISM climate data grid cell. To better understand the

drivers of crop diversity, Random Forest modeling was used to assess the importance

of climate, soils, and irrigation for patterns of crop effective richness for the contiguous

United States, stratified by USDA Land Resource Region. The models explained 57–89%

of the variation in maximum crop diversity, with irrigation being by far the most important

explanatory variable in regions where it was employed. The drivers of change from 2008

to 2018 were less clear. Random Forest models explained only 20–60% of the change

in agricultural diversity over the 11-year period; both soil and climate properties were

important, with no clear dominant drivers. Potential crop effective richness was greater

than actual across the entire region studied, but substantial increases would require

irrigation. Major changes in agricultural systems and infrastructure may be necessary

to increase agricultural diversity at large spatial extents, and declining availability of water

for irrigation could threaten the agricultural systems that are now most diverse.

Keywords: agricultural diversity, Cropland Data Layer, ecosystem services, irrigation, Random Forest

INTRODUCTION

Multifunctional managed landscapes are necessary for the maintenance of the ecosystem services
that sustain both humans and their environment. Not all landscapes are equal: some uses and
configurations are more effective at maintaining ecosystem services than others. Large areas
of a single land cover, core areas, provide habitat for species that cannot be found in more
disturbed areas. Increasing human population requires increasing agricultural productivity without
compromising the ecosystem; such developments will require detailed understanding of the
positive and negative ecological consequences of agricultural management decisions (Bommarco
et al., 2013). Manipulation of crop diversity within existing agricultural areas may offer a pathway
for improving ecosystem service provision in agroecosystems without compromising food security.
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Goslee US Agricultural Diversity

Agriculture is a major component of landscapes in the
United States, where 35% of the land surface is used for cropland
and pasture (USDA, 2019), and fills the crucial ecosystem service
of providing food, fiber and fuel. Both total agricultural area
and agricultural diversity within that area are determinants of
ecosystem service provision. At a global scale, separate factors
drive agricultural diversity and agricultural expansion (Martin
et al., 2019); the same is likely true at smaller scales.

More diverse agricultural landscapes have been demonstrated
to provide environmental benefits (Altieri, 1999). Choice of
crop identity and spatial and temporal configuration contribute
to agricultural diversity. Spatial diversity improves habitat for
birds, wildlife, and pollinators (Jerrentrup et al., 2017). Temporal
diversity in the form of multi-species rotations and cover crops
has been shown to increase soil carbon storage and improve
nutrient cycling (McDaniel et al., 2014; Spawn et al., 2019).
Agricultural diversity also benefits the farmer, by buffering
unexpected events and potentially reducing revenue variability,
and may reduce agrochemical usage, including pesticides and
fertilizers (Di Falco and Perrings, 2005).

Globally, crop diversity has decreased with increased reliance
on a few dominant commodity crops, even as the total crop
richness has increased (Khoury et al., 2014; Martin et al., 2019).
About 90% of the calories consumed globally are provided by
20 crop species; this reliance on only a few dominant crops may
threaten food security at national and global scales (Khoury et al.,
2014; Massawe et al., 2016). In the central U.S., monoculture
cropping has increased (Plourde et al., 2013). Production
costs, existence of markets, and subsidies and crop insurance
programs all contribute to the maintenance of monocultural
crops (Bowman and Zilberman, 2013). Contrary to ecological
theory, diverse crop portfolios do not lead to revenue stability
when high market prices and agricultural subsidies promote
monocultures of specific crops (Di Falco and Perrings, 2005;
Weigel et al., 2018).

Crop selection is heavily dependent on market prices
(Weigel et al., 2018), infrastructure, and landscape history.
Nonetheless, agricultural decisions are embedded in a
biophysical template which constrains the choices available.
Crop-specific requirements for temperature and water
availability determine the palette of crop species which may be
selected. Irrigation augments water availability, but water and
temperature experienced by crops are predominantly functions
of climate and soil properties.

Crop selection decisions made at field and farm scales have
consequences for ecosystem service provision at those same
scales, and also at landscape scales. While some ecosystem
services, such as soil erosion and nutrient cycling, are primarily
determined by field-scale conditions, others, including wildlife
habitat and pollinator suitability, are relevant at larger scales.
For instance, bees are known to forage within a 3–5 km radius
(Kennedy et al., 2013).

Previous studies of crop diversity have summarized patterns
of change over longer timescales using USDANational Census of
Agriculture data, but have not attempted to relate those patterns
to quantitative environmental variables because the county-scale
nature of that dataset makes it difficult to do so (e.g., Aguilar

et al., 2015; Hijmans et al., 2016). The USDA Cropland Data
Layer (CDL) provides 30-m resolution gridded agricultural land
cover data for the contiguous United States for 2008–2018, for
major agricultural crops/land covers (Boryan et al., 2011). This
dataset offers the richest available information about the spatial
distribution of commercially-important crops, and forms the
basis for potential assessments of agricultural diversity at a variety
of scales.

The objectives of this analysis were to identify the
relationships between biophysical variables representing
temperature and water availability and the agricultural area
and crop diversity across the contiguous United States from
2008 to 2018. Characterizing the drivers of agricultural land use
patterns at this scale will enable better regional understanding
of potential ecosystem service provision, both under current
conditions and given expected changes in climate. Specifically,
the maximum diversity and area across the 11-year period were
modeled for each USDA Land Resource Region (LRR) using
machine learning techniques, as were the changes in diversity
and area from 2008–2013 to 2013–2018, and across the entire
timespan. The maximum value model for the full US was used to
predict the potential agricultural diversity across the region, by
identifying areas that are similar and dissimilar to current areas
of high diversity.

METHODS

Assembling a complex dataset comprising agricultural land cover,
climate, soils properties, and irrigation data at continental scale
necessarily requires consideration of trade-offs and arbitrary
choices. Data sources are provided at different spatial and
temporal scales, and merging them effectively is a complex affair.
Care must be taken at all steps to preserve the attributes most
relevant to the questions posed, while recognizing that no perfect
solutions (yet) exist. For this study, the guiding principle was to
aggregate all datasets to the coarsest spatial resolution dataset, the
4 km PRISM daily climate data (PRISM Climate Group, 2018),
using procedures appropriate for each type of data.

To facilitate analysis and interpretation, the 20 LRRs, an
agriculturally-based regionalization, were used to organize the
analyses (Table 1; USDA, 2006). Given the diversity of climates
and agricultural practices in the US, any implicit assumption
that important drivers are consistent across the entire continent
is flawed. Dividing the analysis based on predetermined
agricultural regions allows the identification of regional patterns
in determinants of agricultural diversity and area. However, for
characterizing potential diversity, the full contiguous US was
modeled and used for prediction. Extrapolating from a model
trained on a single region limits the predictions to only those
practices currently found within that region. A model trained on
the contiguous US makes it possible to extrapolate agricultural
potentials across regions, a more interesting analysis.

Agricultural Diversity
The USDA Cropland Data Layer provides spatially-referenced
area data for major crops (Boryan et al., 2011). Aggregating
the 30m data to a coarser spatial scale reduced reliance on
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TABLE 1 | USDA Land Resource Regions (USDA, 2006).

LRR Name Description

A NW Forest Northwestern Forest, forage, and Specialty

crop region

B NW Wheat Northwestern Wheat and range region

C California California subtropical fruit, truck, and specialty

crop region

D West Range Western Range and irrigated region

E Rocky Mtn Rocky Mountain range and forest region

F N G Plains Northern Great plains spring wheat region

G W G Plains Western Great plains range and irrigated region

H C G Plains Central Great plains winter wheat and range

region

I SW Plateaus Southwest Plateaus and plains range and

cotton region

J SW Prairies Southwestern Prairies cotton and forage region

K N Lake St Northern Lake States forest and forage region

L Lake St Lake State fruit, truck crop, and dairy region

M C Grains Central feed Grains and Livestock region

N EC Farming East and Central Farming and forest region

O MS Delta Mississippi Delta cotton and feed grains region

P S Atlantic South Atlantic and Gulf slope cash crops,

Forest, & Livestock region

R Northeast Northeastern forage and forest region

S N Atlantic Northern Atlantic slope diversified farming

region

T Atlantic Atlantic and Gulf Coast lowland forest and crop

region

U Florida Florida subtropical fruit, truck crop, and range

region

The regions and dominant crops are shown in Figure 1.

pixel-scale accuracy, and integrated over crop rotation patterns
in space rather than in time. Aggregated proportional areas
were used to calculate both the percentage of each grid cell
in agricultural land cover, and the percentage of grid cell area
in each CDL-identified crop. This dataset was not developed
for tracking change over time, and may also be inaccurate
in its representation of field boundaries and sub-pixel areas
(Reitsma et al., 2016; Lark et al., 2017). Because each year is
classified independently of previous years, comparing two time
points without considering the intervening years may lead to
erroneous results. Aggregating to a 4 km grid cell smoothed over
many of these issues, because individual CDL pixels were not
being compared, and any uncertainty on pixel boundaries is
far smaller than the overall area of interest. It would possibly
still be inappropriate to investigate a single grid cell, but this
analysis of the CDL provided an effective overview of trends at
the continental scale.

For the purposes of this study, double-cropped areas were
counted as their own individual crop category. Thus, double-
cropped winter wheat and soybeans was counted as distinct from
winter wheat alone. The contribution of double-cropping to crop
diversity is clearly higher than that of a single crop, although this
may not be the most effective adjustment. Pasture/hay was also

FIGURE 1 | The boundaries of each of the twenty USDA Land Resource

Regions (A) and the dominant crop area in each from the 2018 Cropland Data

Layer (B). The full names of each region are given in Table 1.

counted as a crop type since it is an agricultural land cover. No
attempt was made to propagate error in crop identification to the
diversity measurements.

Defining diversity is a second complex issue, one that
has spawned an extensive literature (e.g., Devictor et al.,
2010). Taxonomic diversity? Functional diversity? Phylogenetic
diversity? Structural diversity? For the purposes of this analysis,
agricultural diversity has been defined as the crop effective
richness (CER), calculated from the Shannon diversity of
percentage area of each CDL-identified crop within a 4 km grid
cell. Effective richness increases interpretability of information-
theoretic indices such as the Shannon diversity by expressing
them as the number of equally-abundant species that would have
the same diversity index (Jost, 2006). Effective crop richness
retains both richness and evenness components, but expresses
the combined value in terms of number of crop species, an
intuitively familiar metric. Note however that the lowest possible
value of CER when used with Shannon diversity is 1, rather
than 0. In this study, use of CER brings the implicit assumption
that it is possible to raise at least one crop species everywhere
in the region studied, even if there is currently no agriculture
conducted there.

Environmental Data
The potential driver variables were chosen to represent
temperature and water availability, basic requirements for plant
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growth. The PRISM daily gridded climate data formed the basis
of the dataset (PRISM Climate Group, 2018). Derived variables
representing aspects of precipitation and temperature relevant
for crops were calculated for the period 2001–2015; selected
variables follow Wang et al. (2017), and include a subset of
BIOCLIM indices such as precipitation during the warmest
quarter, maximum and minimum monthly temperatures, and
temperature seasonality (Busby, 1991), and additional agronomic
variables such as growing degree days (Table 2).

Soils properties were calculated as weighted mean values of
the top 100 cm from two separate gridded digital reanalysis

TABLE 2 | Climate and soils variables describing aspects of temperature and

water availability relevant for crop productivity.

Name Description Source

T ff d Maximum frost-free consecutive days

(basis−2.2C; 10th%)

PRISM 2001-2015

T GDD Growing degree days, basis (C;

10th%)

PRISM 2001–2015

P annual Annual precipitation (mm; 10th%) PRISM 2001–2015

T min BIOCLIM 6: Minimum temperature of

coldest month (10th%)

PRISM 2001–2015

P driest BIOCLIM 17: Precipitation of driest

quarter (10th%)

PRISM 2001–2015

P coldest BIOCLIM 19: Precipitation of coldest

quarter (10th%)

PRISM 2001–2015

T wettest BIOCLIM 8: Mean temperature of

wettest quarter (10th%)

PRISM 2001–2015

P dry d Maximum consecutive days with <

2.5mm of precipitation (10th%)

PRISM 2001–2015

T range d BIOCLIM 2: Mean diurnal

temperature range (10th%)

PRISM 2001–2015

T isotherm BIOCLIM 3: Isothermality (90th%) PRISM 2001–2015

T seasonal BIOCLIM 4: Temperature seasonality

(90th%)

PRISM 2001–2015

T max BIOCLIM 5: Maximum temperature of

warmest month (90th%)

PRISM 2001–2015

T range yr BIOCLIM 7: Temperature annual

range (90th%)

PRISM 2001–2015

P wettest BIOCLIM 13: Precipitation of wettest

month (90th%)

PRISM 2001–2015

P seasonal BIOCLIM 15: Precipitation seasonality

(90th%)

PRISM 2001–2015

P warmest BIOCLIM 18: Precipitation of warmest

quarter (90th%)

PRISM 2001–2015

T driest BIOCLIM 9: Mean temperature of

driest quarter (90th%)

PRISM 2001–2015

BD Soil bulk density 100m US Soil Grids

Clay Soil clay content (%) 100m US Soil Grids

Sand Soil sand content (%) 100m US Soil Grids

SOC Soil organic carbon 100m US Soil Grids

Restrictive Probability of restrictive layer (%) SoilGrids250

Irrig Irrigated area, 2012 (%) MODIS

Soil depth Maximum soil depth (cm) SoilGrids250

PRISM-derived variables are 10th or 90th percentile over 2001–2015.

products. Texture and chemical properties came from a 100m
US soils dataset (Ramcharan et al., 2018), while soil depth and
probability of a restrictive layer were aggregated from the global
SoilGrids250 product (Hengl et al., 2017). Spatially-referenced
gridded irrigation data were aggregated from theMODIS-derived
2012 gridded 1 km irrigated agriculture layer (Pervez and Brown,
2010; Brown and Pervez, 2014) to produce percentage of grid
cell area that was irrigated. This was referenced to the 2012
total agricultural area for each cell to produce percentage of
agricultural area that was irrigated; the resulting value was
trimmed at 0 and 100% to reduce data inconsistencies.

All datasets were projected into Albers Equal Area and
aggregated to the PRISM grid using GRASS GIS [cite]. Fewer
than 1,000 grid cells did not have complete data for all climate,
soils, CDL, and irrigation layers, resulting in 475,605 grid cells
for analysis. All analyses were conducted in R 3.6.0 (R Core Team,
2019). The packages sp 1.3-1 (Pebesma and Bivand, 2005; Bivand
et al., 2013) and ggplot2 3.2.0 (Wickham, 2016) were essential for
display of results.

Statistical Methods
The core of the analysis is the machine learning method
Random Forest (RF), a flexible tree-based regression approach.
The fast implementation in the ranger 0.11.2 package (Wright
and Ziegler, 2017) provides sophisticated tools for assessing
variable importance. While RF models are empirical, rather
than process- or theory-based, the shape of the relationship
between the dependent variable and each independent variable
was assessed using partial dependence plots (pdp 0.7.0 package
in R; Greenwell, 2017). Preliminary testing using five-fold cross
validation demonstrated that for this dataset, 1,000 trees was
adequate, and that increasing the number of variables per tree
beyond the default did not produce enough improvement in
model fit to justify the large increase in runtime. Impurity, the
variance of the regression responses, was used to assess variable
importance within the forest, and a permutation test with 100
permutations was used to identify potentially important variables
at p < 0.1.

Like most regression-based methods, RF models analyze
the mean value across all samples at a particular level of an
independent variable (or within a node, for tree models such as
this). For modeling the potential values of variables where the
minimum value is unconstrained (there can be zero agricultural
diversity at any point, regardless of site characteristics), quantile
RF enables the analysis of maximum values (quantregForest 1.3-
7; Meinshausen, 2017). For this study, the 90th quantile was used
for prediction. This ability to predict quantiles, not just means,
good capability to assess importance of individual predictor
variables, and the general familiarity of ecologists with Random
Forest models all contributed to the selection of RF rather than
another machine learning model for this study.

Three sets of models were constructed. The first was for the
maximum value of CER for each grid cell over the 11 years
of CDL data available. The maximum value within a grid cell
was used, to reduce the effect of interannual fluctuations due to
factors other than biophysical potentials. Each LRR was modeled
separately. The second set of models described the overall change
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in CER from 2008 to 2011, again stratified by LRR. Finally,
models of maximum CER were constructed for the contiguous
US, treating irrigated and rainfed areas separately. The full US
was used to parameterize the models to ensure that predicted
CER values were not constrained only to those already present
in the LRR, but extrapolated across the entire set of possibilities
found in the dataset.

RESULTS

The relative abundance of different groups of dominant crops in
the 2018 CDL highlights the regional patterns of agriculture in

the contiguous US, and sets the stage for more detailed analysis of
crop diversity (Figure 1). The values are scaled to the maximum
percentage abundance for each crop, so for instance the greatest

percentage area of corn was planted in the Central Feed Grains

region, while the greatest area of cotton production was in the

Mississippi Delta and Central Great Plains regions. Agriculture
dominates the Great Plains regions, Mississippi Delta, California
and the Northwest Wheat LRRs (Figure 1A). Large regions of
arid rangeland in the Southwest and forest in the northern and
eastern US have patchy or no agricultural areas (Figure 2A).
Irrigation in 2012 was most common in the Mississippi Delta,
California, and Western Range regions, as well as portions of the

FIGURE 2 | (A) Maximum percentage of agricultural land, 2008–2018. (B) Irrigated agricultural area, 2012.
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FIGURE 3 | Maximum crop effective richness, 2008–2018.

FIGURE 4 | Change in annual crop effective richness, 2008–2018.
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Central Great Plains and Florida, and smaller portions of other
areas (Figure 2B).

The agriculturally-dominated Central Great Plains
nonetheless had low agricultural diversity; the northern
regions, California, and the southeast had the highest diversity
(Figure 3). California had the maximum value of CER per
grid cell (17.5), while the Lake States had the highest average
value (5.3). The Northern Great Plains and the Northern
Atlantic Slope also had high average CER; these areas have both

extensive and diverse agriculture. Change in CER over the 11
years of data currently available was highly patchy (Figure 4).
The Mississippi Delta lost the most CER overall, an average
of −0.8. The Northeast (−0.3) and the Atlantic (−0.1) LRRs
were the only other regions with a negative mean change in
CER. The Northern Great Plains and the Southwest Plateaus
both increased by an average of 0.4. California had both the
greatest losses and gains within individual grid cells, −9.8 and
9.2 species.

FIGURE 5 | Relative variable importance for the significant variables for each LRR model models of maximum crop effective richness (A) and change in crop effective

richness (B), 2008–2018. The darkest is the most important for each region; lighter colors are relative to that maximum. Region labels include the variance explained

for that model. Color scale is as for Figure 1B.

FIGURE 6 | Partial dependence plots for growing degree days for both maximum CER (A) and change in CER (B), for several LRRs showing different responses,

following the colors and letter code given in Figure 1 and Table 1.
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The RF models of CER explained 57.1–89.1% (Mississippi
Delta and California, respectively; average 75.7%) of the variance
in crop diversity (Figure 5A). There was a general tendency
for the LRRs with a broad range of CER values to be the
best-fit by the models; machine learning techniques like RF
perform best across a range of potential predictors, rather
than in regions where very little area is in agriculture (West
Range), or where almost all of the area is in homogeneous
agriculture (Mississippi Delta). Variability in crop diversity
was substantially related to temperature and water availability.
Growing degree days, length of the growing season, minimum
and maximum temperature, and temperature seasonality were
the major temperature variables; soil texture, irrigation, and
presence of a soil restrictive layer were frequently-important
controls on water availability, more so than precipitation directly.

It was more difficult to model change in CER 2008–2018:
RF models did not explain as much variance, nor were certain
variables as clearly important (Figure 5B). Only 20.3% of the
variance was explained in the Northwestern Wheat region,
while 59.5% was explained in the South Atlantic LRR (mean
41.8%). This was not unexpected: while temperature and water
availability constrain potential agricultural uses, many other
factors, such as market availability, population density, and
agricultural policy, go into determining actual uses. There was no
relationship across LRRs between change in CER and maximum
CER (r2 = 0.022, p = 0.5283), between maximum agricultural
area and maximum CER (r2 = 0.087, p = 0.2056), or between
change in CER (r2 = 0.001, p = 0.9722). Growing degree days,
temperature seasonality, and soil texture were again frequently
important variables.

The shape of the partial dependence plots for maximum
CER and change in CER differed across regions, demonstrating
the importance of stratifying very large datasets when variable
interpretation is desired. Growing degree days illustrates this
clearly; the Northern Lake States (K) and the Northern Great
Plains (F) showed opposite relationships with CER, even
over the same range in growing degree days (Figure 6A).
Relationships between environmental variables and change in
CER did not necessarily have the same shape as with maximum
CER (Figure 6B). For instance, in the Atlantic Coast LRR (T),
CER declined with increasing growing degree days, but change
increased with growing degree days, while for the Northern Great
Plains, both CER and change in CER declined with growing
degree days.

Describing Potential Diversity
The final phase of the analysis was to develop quantile RF
models of irrigated and rainfed maximum CER across the
entire United States. These models characterize potential CER by
identifying regions similar to those where diverse agriculture is
currently found, and cannot extrapolate beyond existing systems.
The RFmodels were quite good, explaining 79.6% of the variance
in CER in irrigated areas, and 84.8% in primarily rainfed grid
cells. These models were then used to predict the 90th percentile
of potential CER across the contiguous US, based on soils
and climate.

Agricultural diversity could be increased with irrigation in
most parts of the US (Figure 7). The Mississippi Delta would

FIGURE 7 | The 90th percentile of maximum CER predicted by irrigated and

rainfed RF models for the contiguous US. Values are mean and standard

deviation for each LRR, following the colors and letter code given in Figure 1

and Table 1.

FIGURE 8 | The actual maximum CER for 2008–2018 and the maximum

predicted value (rainfed or irrigated). Values are mean and standard deviation

for each LRR, following the colors and letter code given in Figure 1 and

Table 1.

not increase, because its agricultural systems are already designed

for irrigation. Florida CER also did not increase with irrigation;

this region has high annual precipitation, but uses irrigation

to compensate for precipitation variability (Zhang et al., 2018).
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FIGURE 9 | The potential change in CER if the most diverse current system were applied across the contiguous US, given soils and climate.

Western Range, however, showed a large potential increase in
agricultural diversity with irrigation. Interestingly, so did the
Northern Lake States.

In all cases, the maximum potential agricultural diversity,
the higher of the irrigated and rainfed predictions, was greater
than the current agricultural diversity (Figure 8). Mapping that
potential change (Figure 9), shows that some of the gain,
particularly in the Northern Lake States, would come at the cost
of clearing forest to expose areas of favorable climate and soils.
Many areas could support more diverse agricultural systems if
they were irrigated.

DISCUSSION

Analyses of crop diversity in the county-scale agricultural census
data have found similar regional patterns (Aguilar et al., 2015;
Hijmans et al., 2016), although these studies did not then go on
to identify important driving variables. At the scale of LRRs, both
temperature andwater availability were important, although both
the magnitude and shape of the relationship, and the relative
importance of specific variables, varied considerably. When
considering continental-scale ecological patterns, it is crucial to
employ methods that can identify regional differences.

Increasing crop diversity may provide immediate benefits,
such as the reduction of pathogen transmission and pest
outbreaks, or more amorphous benefits by buffering climate
variability (Lin, 2011). Potential crop effective richness is
higher than the current level in nearly all of the coterminous
US. However, irrigation is needed to achieve that potential,
and both climate change and declines in aquifer levels make

increasing irrigation, or even maintaining current levels, a
difficult proposition. Instead, it may be necessary to evaluate the
effect of transitioning to rainfed agriculture on crop diversity.
For instance, the diverse agricultural systems in the California
LRR are strongly dependent on irrigation (Matios and Burney,
2017). A transition to rainfed would result in change of crops
and loss of overall diversity, unless new agricultural systems can
be developed through alterations in policy, infrastructure, and
breeding or selection of crops and varieties that are productive
without irrigation.

These models do not include other constraints on agricultural
usage: both topography (e.g., mountains) and current land use
(development) render a site unsuitable for agriculture, as does
certain ownership patterns, such as state and national forests and
reserves. Clearing forests for agriculture would not be an overall
benefit, regardless of potential agricultural diversity. The coarsest
dataset included had a 4 km resolution. In some regions of the
US, that is very large relative to local agricultural patterns, while
in others it is rather small. No attempt to quantify landscape
configuration within that grid cell was done for this study,
although crop diversity was much less important for diversity of
multiple taxa than compositional factors such as field size and
overall agricultural area (Fahrig et al., 2015; Duflot et al., 2017).

The CDL does not capture sub-field heterogeneity, and does

not identify either within-crop genetic diversity or within-field
diversity in pasture andHarland, both of whichmay be important

for ecosystem services (Jackson et al., 2007; Sanderson et al., 2007;
Finger and Buchmann, 2015; Reiss and Drinkwater, 2018). This
study does not explicitly include temporal diversity due to the use

of cover crops or rotations, substituting instead the maximum
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CER in any of the 11 years. Pooling all years to create a multiyear
maximum diversity, instead of a spatial-only maximum diversity,
might instead better capture temporal diversity created by
complex rotations, which has been shown to be environmentally
beneficial (Davis et al., 2012; McDaniel et al., 2014).

Decision support tools are being developed to assess tradeoffs
in ecosystem services associated with different cropping systems
(e.g., Tayyebi et al., 2016), but not enough information is available
on the role of crop diversity within these systems to adequately
quantify outcomes. Decisions on diversification are made at the
farm- and field-scales, but have consequences for both ecosystem
services and food security at much broader spatial extents. Tools
such as crop models may provide linkages between agricultural
management and fine-scale patterning and ecosystem services
(Lin, 2011), within the broader biophysical context.

Agricultural field management practices such as tillage and
pesticide application have very strong implications for ecosystem
service provision. Future research will explore methods for
including this information in regional and national analyses,
as well as incorporating spatial and temporal components of
agricultural diversity, and a more nuanced consideration of
functional and structural crop diversity. Functional diversity
may be more important for agroecosystems functioning than
taxonomic diversity, as used here, although taxonomic diversity
provides provisioning and insurance services (Jackson et al.,
2007; Martin and Isaac, 2018).

Variables related to temperature and water availability were
effective at modeling current maximum agricultural diversity,
but not as good at modeling change in agricultural diversity.
Economic and policy incentives often benefit monoculture
systems more than diverse systems (Lin, 2011). Weigel et al.
(2018) found lower agricultural diversity on higher-quality soils,
where agriculture can be concentrated on themost valuable crops
with the least risk. That appears to be the case in the most
heavily-agricultural and most productive regions of the US as
well. The importance of water availability suggests that other
relevant management practices, such as the installation of tile
drains, could be a major driver in some areas. No comprehensive
dataset on this practice is currently available, but would be
highly useful.

As for any statistical method, Random Forest models can only
be used to predict within the bounds of the training data. In
this context, RF models can identify areas that are like currently-
diverse areas, but they cannot predict the role of entirely new
systems. This limitation is clearly visible in the small potential
increase in diversity predicted in the Central Grains region: the
current agricultural system for that combination of climate and
soils is so heavily dominated by monoculture grain and soybeans
that the RF models cannot predict anything else. Within that
limitation, these models can be used to predict potential changes
in diversity due to addition or removal of irrigation, and due
to changes in temperature and precipitation. Most studies of
climate change effects on agriculture concentrate on crop yield,
rather than area or diversity (e.g., Kang et al., 2009). The models
developed in this study are based on standard climatic indices,
and can be used with climate projections to model potential
future outcomes if the same agricultural systems continue to
be employed.

CONCLUSIONS

Agricultural ecosystems are maintained at a lower rate of
biodiversity than the natural ecosystems found in comparable
regions (Altieri, 1999); increasing agricultural diversity may
improve ecosystem services such as nutrient cycling, pest
and pathogen control, and even the provision of high-
quality foodstuffs. Crop diversity as currently constituted in
the United States is heavily reliant on irrigation. To achieve
greater ecosystem service benefits from increased crop diversity,
alternative agricultural systems must be developed. The spatial
and temporal scale of the analysis here focused on structural and
systemic aspects of crop diversity, rather than on individual crop
selection, but clearly there will be a role for crop species and
varieties that are productive under these alternative systems, as
long as the use of one or a few varieties only does not reduce
system diversity rather than enhance it.

The biophysical constraints on diversity imposed by
temperature and water availability explain much of the broad
pattern of diversity in the US, although the pattern of change in
diversity is less clearly explained. Variable importance, and even
the shape of the relationship between particular variables and
crop effective richness, differs by region.

Management-based control of potential diversity through
irrigation is the primary control on agricultural diversity. In the
western US, climate change and declining water supply may
require the transition of irrigated agriculture to rainfed by the
end of this century; the eastern US may be able to support an
increase in irrigated area with development of infrastructure
(Elliott et al., 2014).

It may not be possible to optimize both agricultural diversity
and food production everywhere (Holt et al., 2016). Nonetheless,
a spatial understanding of the potential crop diversity offered
by current agricultural systems aids in planning regional and
national policies, and in evaluating the effects of novel practices
that increase spatial and temporal agricultural diversity.
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