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In the western highlands of Guatemala, the indigenous population is one of the

most marginalized communities. The food security of subsistence and infrasubsistence

smallholders within this population still relies on domestic agricultural production as the

principal livelihood activity and the main source of food. Smallholder production systems

in the region are complex, with multiple interacting subsystems functioning at different

integration levels and with different temporal dynamics. Previous results, based on a

data set of nearly 5,000 farm households using a robust food availability indicator (that

quantifies agricultural production, consumption, transformation, and commercialization

of produce), have shown large differences in food security between farmers in the western

highlands of Guatemala. Another important finding was that more than half of the farm

households do not have the means to produce enough energy for home consumption

from their agricultural activities. Identifying the constraints, patterns, and underlying

processes driving food security could give rise to a set of easy-to-measure variables

that quickly and reliably assess household food security status; such a tool would be

helpful for decision and policy makers trying to focus on actions more likely to succeed

in improving food security in the region. In this study, we developed a predictive model of

food security, through the application of machine learning techniques, to identify the most

important factors, and their interactions, which account for variability in food security. The

resulting “artificial neural network” model performed well, explaining nearly 85% of the

variance in food security status. By applying different sensitivity analysis methods, we

were able to detect highly non-linear interactions between the different factors driving

food security. Land availability per person is detected as the main constraint for attaining

food security. The median value of land availability per person in the region is 0.085

ha, explaining why 52% of the farm household population does not produce enough

food energy from agriculture. Many other interactions were found between crop land

allocation, diversity, yields, and food security, which can help to target interventions to

improve the food security status in the region.
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INTRODUCTION

Food Security in the Western Highlands of
Guatemala
Guatemala is the country with the fourth highest level of
children with undernutrition in the world [WFP (World Food
Programme), 2018]. Poverty is widespread, and ∼70% of the
poor live in rural areas, where traditional agricultural production
is the main source of food and income. Poverty and malnutrition
are especially predominant among indigenous population, where
only 19% of its inhabitants are food-secure (Gobierno de
Guatemala, 2012).

Traditional campesino systems, in which landless and small-
scale subsistence farmers are the least food-secure (Taylor et al.,
2006), predominate in large areas of Guatemala. Food insecurity
in the country is caused by a lack of food access that is, in turn,
rooted in structural problems such as inequality (Guardiola et al.,
2006; Gobierno de Guatemala, 2012). Inequality in Guatemala
is characterized by a stratified society based on ethnicity, land
ownership, health, education, gender, and age (Bruni et al., 2009).

The western highlands of Guatemala (WHGs) concentrate the
most marginalized communities in Guatemala, where indigenous
communities, implementing traditional agroecological practices
(such as milpa), predominate. This region has also historically
suffered exclusion, social inequality, and violence (Steinberg
and Taylor, 2008). As in many rural areas of the world,
food security in the WHGs is a complex phenomenon, as its
inhabitants are simultaneously producers and consumers of food,
and their livelihoods depend on agricultural as well as non-
agricultural activities. This complexity is compounded in the
WHGs by a high population density and limited land availability.
The Ministry of Agriculture of Guatemala states that 62% of
households in the region have <0.7 ha of arable land and
85% <1.4 ha [MAGA (Ministerio de Agricultura, Ganadería y
Alimentación de la República de Guatemala), 2011]. With such
limitations on land availability, the rural population of theWHGs
has developed alternative sources of food and income (wages,
migration, handcrafting, etc.). However, agriculture is still the
most important livelihood for most of the population and the
main contributor to local food security [IFAD (International
Fund for Agricultural Development), 2011].

Food security is defined as “everyone having continued access
to a sufficient quantity and quality of food” (FAO, 2003). Four
dimensions of food security have been defined: availability,
access, utilization, and stability (FAO, 2016). Recently, Lopez-
Ridaura et al. (2019) conducted an analysis to assess one of
these, food availability, among farm households (FHHs) in the
WHGs, based on a data set of nearly 5,000 households and
a simple indicator of food security, that is, potential food
availability (PFA) measured in kcal/male adult equivalent per
day. It was found that in the WHGs the most important
agricultural production systems consist of maize and coffee as
main crops and that there exist six types of contrasting FHHs
in terms of the crops they produce and their food output
level. These types also contrast in how many households attain
food security. Three farm types [i.e., (a) diversified maize-based,
(b) coffee-based, and (c) specialized coffee FHHs] had higher

percentages of food-secure households, with values of 60, 83,
and 74%, respectively. Farm households specialized in maize
production and resource-constrained households were the types
with the lowest percentage of food-secure households. According
to Lopez-Ridaura et al. (2019), the contribution of agriculture
to the Potential Food Availability (PFA) for the FHHs in the
WHGs varies from almost zero to up to 10 times the kcal
needs of the household members, and agricultural activities do
not meet the needs of the habitants in more than half of the
households (52%).

The Complexity of Food Security in the
WHGs
Food security in the WHGs can be considered an intricate
multiscale complex process in which a multitude of interacting
subsystems within smallholder FHHs play a very important
role. Smallholder systems are very diverse, in terms of both the
configuration of their structural components and the dynamics
of crop production, consumption, and commercialization
(Camacho-Villa et al., 2019). How crop production affects
food security in the region has been studied for many years
since the 1990s. These studies, for example, showed that when
farmers shift from traditional maize to only potato they are
more likely to get less income, lower food security, and lower
nutritional status. Other farmers growing wheat, vegetables, and
potato in farms with large land sizes have increased household
incomes. However, these increased incomes were not associated
with significant improvements in their food security status
(Immink and Alarcon, 1991). Commercial FHHs have also
been shown to become more dependent on market access for
adequate availability of food, with cash crops even further
displacing food crops. In these commercial households, the
consumption of own-produced staple foods is reduced, and
this reduction has resulted in a nutritionally diminished diet
(Immink and Alarcon, 1993).

The Need for Quick Reliable Methods to
Detect Food Insecurity
Feed the Future (USAID) and the Western Highlands Integrated
Program (WHIP) developed the Global Food Security Strategy
(GFSS) Country Plan for Guatemala to address, among other
issues, food security and nutrition in the country in 2018–
2022. The plan is intended to identify the key drivers of
food insecurity, malnutrition, and poverty. These drivers are
recognized to stem from a complex set of underlying conditions
at the individual, household, community, and system levels.
Notably, the most vulnerable and poor, with limited resources,
skills, and capabilities to participate in market operations, will
need to be supported to improve their food production and
participate in reliable value chains so that agriculture becomes
a viable livelihood option. The need for the identification of
the most vulnerable and poor is a call for quick alternative
methods of food security assessment necessary for targeted policy
interventions (Feed the Future, 2018, GFSS, Guatemala).
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Modeling Approach Through Machine
Learning Methods
Different modeling approaches have been used to assess and
predict agricultural productivity, as well as food security of small-
scale farming systems in different conditions (e.g., Frelat et al.,
2016, Ritzema et al., 2017). Process-based models (usually a set of
differential equations) are powerful tools for prediction for yield
estimation of crops at the field scale, for example, as they simulate
several interactions between the crops and the environment.
These models, however, require intensive data collection and
calibration of each of the processes that are incorporated in
the model. On the other hand, statistical models estimate direct
relationships between predictor variables, without considering
the underlying processes (Jones et al., 2017) and can be applied
easily if enough empirical observations are available.

“Machine learning” is a technique used for finding significant
rules to explain or find patterns in data. We as humans have
always been interested in finding rules that allow us to better
understand a given system and accurately predict its future
behavior. Historically, finding such rules has not been an easy
task, but as data availability and computing power increase, it gets
easier to try various rules and see which ones more accurately
represent a process or phenomenon. Machine learning is a term
used to describe a broad collection of pattern-finding algorithms
designed for finding system rules empirically, the use of which
has grown dramatically (Watt et al., 2020).

The models resulting from machine learning algorithms are
sometimes referred to as black boxes: data go in, and outputs
come out, but the relationships between input and output remain
obscure (Zhang et al., 2018). An extensive literature attests to
the superiority of machine learning in minimizing predictive
error compared to traditional statistics model fitting as simple
interpretable functions may not always make the most accurate
predictions. Increasing accuracy of prediction in many cases
requires methods that are able to deal with more complex
interactions between the model inputs. This can be achieved
by machine learning algorithms; however, what we may gain in
predictive power we may lose in interpretability of the complex
interactions (Goldstein et al., 2015).

The use of machine learning algorithms has a great potential
to discover patterns and in consequence explore alternatives to
fight poverty and also help in decision-making processes aiming
to alleviate it (Blumenstock, 2016; Jean et al., 2016); particularly,
it has been applied for predicting famine or food security aspects
in sub-Saharan Africa. Artificial neural networks (ANNs) were
used in Frelat et al. (2016) for an across-Africa study and in
Egypt for predicting country-level future crop production needs
(Khedr et al., 2015), whereas support vector machine algorithms
were used in Uganda and Brazil for detecting famine-prone
households (Okori and Obua, 2011; Barbosa and Nelson, 2016).
A worldwide initiative to fight hunger with big data and artificial
intelligence is also being developed (Worldbank, 2018).

The food security status indicator developed by Lopez-
Ridaura et al. (2019) managed to capture the complex dynamics
of the inputs and outputs of household nutritional energy
through consumption, transformation, and commercialization of
farm products.We hypothesize that a small set of simple variables

can be found to capture the complexities of food production
at the plot level and predict the food security status of the
smallholders’ FHHs ofWHGs. In this study, (i) we develop, train,
and test a model to predict the food security status of WHGs
FHHs and (ii) explore the complex interactions between the input
variables of this model, to better understand the relationships
between agricultural production, land use, and food security.

METHODS

Study Area and Data
The USAID’s WHIP aims at fighting poverty and malnutrition
and augmenting access to health services, access to markets,
and improved agricultural production in the region. In
2013, as part of the impact evaluation of the program, a
baseline survey targeting 6,301 households in the WHGs was
conducted in 55 municipalities in five departments (Figure 1)
(Ángeles et al., 2014).

The survey, Encuesta de Monitoreo y Evaluación del
Programa del Altiplano Occidental, was developed to measure
the program’s impact and followed rigorous randomized
sampling methods, considering the influence zone regarding
two components: the rural value chains (RVCs) and the
health program. The program directs its actions to different
population sectors divided in three domains: those members
to an association related to RVCs and health program
beneficiaries, those with no direct participation in the RVCs,
and those that are beneficiaries of the health program. Two
other domains were profiled for comparison and evaluation.
The survey includes detailed information on households
members and characteristics, food security status, expenses,
and consumption levels, empowerment, women reproductive
dynamics, communities’ basic infrastructure characteristics, and
health services (see full details in Ángeles et al., 2014).We did
not consider households reporting no agricultural activity or with
inconsistent data (e.g., more land reported on a crop than the
total area, or areas on crops with no production data). In total,
we selected 4,790 households for analysis.

Potential Food Availability Indicator
The availability dimension of food security (FAO, 1996)
quantified for WHGs smallholders by Lopez-Ridaura et al.
(2019) consisted of calculating an indicator (Figure 2) that
approximates the PFA at household level. This indicator is based
on the transformation into kilocalories of all products derived
from the farm (Frelat et al., 2016), regardless of whether those
products are consumed directly inside the household or sold. The
energy intake due to the consumption of each product (maize
grain, beans, meat, etc.) can be calculated based on their caloric
content and the number of kilograms consumed on a yearly basis.
The potential energy intake generated from selling farm products
is obtained by transforming all income from the sales into
whatever quantity of staple food grain (maize) could potentially
be bought with it and then converting this amount of “virtual
grain” into energy as well. The total food energy potentially
available to a farm family is thus obtained by adding the energy
due to consuming some products, which is directly available, and
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FIGURE 1 | Municipalities in the WHGs surveyed in the “Encuesta de Monitoreo y Evaluación del Programa del Altiplano Occidental (EMEPAO)”.

FIGURE 2 | Representation of household food provisioning process expressed as potential food availability in kcal.
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the energy derived from selling others, which is indirect. The
yearly energy requirement for the household is calculated based
on the total number of household members (transformed to male
adult equivalents), and an energy need of 2,500 kcal/day for each
male adult equivalent. The indicator quantifies howmuch energy
(expressed in kcals) is potentially available daily per male adult
equivalent. When PFA is ≥2,500 kcal/day, the household has
enough or more food than needed per day per family member
and is, in consequence, food-secure. If PFA is <2,500 kcal/day,
the household energy requirement is larger than what is available,
and thus, the household is not food-secure.

The data underpinning the PFA indicator can be complex as it
is composed of inputs from a wide variety of sources. Different
farm products might be directly consumed or might be sold
for cash raw or converted, and the diversity of farm produce
is described next. Livestock production involves several species,
including horses, goats, sheep, chicken, turkey, pigs, cows, and
even fish or bees. These animals can be commercialized either
through live sales, or as their products, for example, honey,
meat, eggs, milk, cheese, cream, fat, wool, or even sausages.
The crop diversity of the Western Guatemalan systems includes
maize, beans, coffee, fava, pea, potato, and, to a lesser extent,
green beans, carrots, and Brussels sprouts. The average price of
each product or crop included in the analysis is included in the
Appendix 1, as well as the average amount of its production,
consumption, and income generation. Household size, expressed
in male adult equivalents, had a median value of 4.1 MAE and a
mean value of 4.38 [standard deviation (SD)= 1.97], with a range
(max. – min.) of 13.1 MAE.

Potential Food Availability Prediction
Modeling Approach
Several methods for forecasting and prediction have been
developed, and machine learning algorithms have proved
particularly to be able to provide raw material for sensitivity
analyses, which allow the disentanglement of coupled
effects between predictors and pickup signals in massive
amounts of data, something that becomes more time and
resource consuming with traditional statistics methods
(Kantardzic, 2020).

We fitted and compared several methods of supervised
learning to find the best one for PFA prediction. Besides
a multiple linear regression, we assessed machine learning
classifiers random forest (Breiman, 2001) and ANN (Rosenblatt,
1958), ANN performed best in terms of prediction accuracy, and
the results are presented in this study.

Data Selection for Food Security Prediction
Many factors are related to food production, quantity, quality,
and diversity in the WHGs, and we selected variables to allow
for a comprehensive representation of the FHHs, regarding
land availability and its management. Another consideration for
selecting variables was that they should be easy to capture or
measure. We selected as predictor variables those related to land
size, land allocation to crops, and crop diversity, as well as crop
production levels. More specifically, we selected 14 variables for
the 4,970 households analyzed: total land, land availability per

person, total number of crops grown, land allocated to maize,
land allocated to coffee, land allocated to potato, land allocated
to other crops, livestock holdings [expressed in tropical livestock
units (TLUs)], and the yield of each of the following crops: maize,
coffee, bean, fava bean, pea, and potato.

Exploratory Data Analysis of Predictors vs.

Target Variable
First, the data were screened to detect variables with zero
or near-zero variance. These numerical variables may have a
unique constant value or have very few unique values relative
to the number of samples and thus are not useful for modeling
approaches as they show no variation when other predictors
change. Land under potato, fava bean, pea, and potato yield
proved to possess zero or near-zero variance and therefore
excluded at this point. Also, outliers were removed using a cutoff
of the above 99% quantile and the below 1% quantile. This
resulted in a data set of 4,499 FHHs for analyses.

To detect collinearity between the predictors, as well as
their correlation with the target variable, we followed a
pairwise Pearson product–moment correlation analysis and
constructed scatterplots (seeAppendix 2 for the results). We also
quantified the descriptive statistics of the target variable (PFA)
and predictors.

Algorithm for Model Fitting
Artificial neural network models could be considered as
frameworks that represent non-linear mappings between
multidimensional spaces, avoiding rigorous assumptions on data
distribution. The use of these algorithms is gaining popularity
in research areas not only where large amounts of data are
available but also when the relationships between the variables
are unknown or expected to present high-non-linear behavior
(Jiang et al., 2017). The structure of an ANN is represented by
layers, each composed of nodes. Normally, at least three layers
(the input, hidden and output layers) are required for building an
ANN model. The nodes are connected, layer by layer, by arrows
that represent the strength of their interrelationship. The nodes
of the input layer represent the input variables or predictors,
whereas the nodes of the output layer represent the output
variables. This structure is inspired on the neural processes in
the brain, as information is shared across the network of neurons
(nodes or processors). The network as a whole learns patterns by
observing inputs (perceiving the environment) and outputs by
adjusting the relationship between the variables and the internal
nodes (by changing the weight of each connection connection) in
the network. This so-called shallow neural network architecture
is actually already quite old and has been around since 1960s
(Rosenblatt, 1958; Schmidhuber, 2015). Other methods may
overlook non-linear relationships, which ANNs can approximate
through this flexible layer, node, and connection weighting setup
(Landi et al., 2010; Dalatu et al., 2017).

The input and output layers correspond to input and output
variables, respectively. In our case, the output layer is a single
node, the PFA values, whereas the input layer consists of
the set of predictor variables. As the model is trained, the
weighted connections are adjusted using backpropagation, a
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gradient descent method (Schmidhuber, 2015). Each single node
receives information from the nodes from the previous layer and
calculates the weighted sum from these inputs as follows:

ti =

n
∑

j=1

wijxj

where t represents the weighted value to which a function is
applied to calculate the node output, w represents the weight of
the connection between nodes i and j, whereas x represents the
input from node j, and n is the number of inputs. To generate the
output node values, a transfer function is applied to t:

oi = f (ti)

We used the most common transfer functions: these are a logistic
transfer function for the output layer nodes and a linear transfer
function for the hidden layer nodes. The number of connections
between inputs and outputs is determined by the number of
nodes in the hidden layer. The appropriate number of hidden
nodesmay vary depending on the complexity of the relationships.
If too many nodes are used, this can lead to overtraining during
the calibration exercise, resulting in poor prediction (Garro and
Vázquez, 2015). To control for this, a data set is normally split
into two parts: one for the calibration and one for testing.
When using a small number of hidden nodes, normally the
model performance for both the calibration and testing data
sets increases when adding extra hidden nodes. However, at a
certain moment, the model performance for the testing set does
not improve anymore by adding more hidden nodes and can
actually start to decline. The latter indicates overtraining and
means that the number of hidden nodes is getting too large (Chai
and Draxler, 2014).

Data Transformation, Data Splitting, Model Training,

and Performance Testing
Input data were preprocessed for the ANN. To control for
different ranges of input variables, all values were standardized
[0, 1] intervals using

zi =
xi −min(x)

max (x) −min(x)

where xi = (x1 . . . ..xn), x is the set of points of the variable to be
transformed, and zi is the transformed data point.

To properly assess and compare model performance, data
were split into training and testing sets in a proportion of 0.75
(n= 3,375 FHHs) and 0.25 (n= 1,124 FHHs), respectively.

We used the package nnet combined with caret in R. The two
packages combined allow for tuning the weight decay during the
training and the number of nodes in the hidden layer. We tried
several numbers of iterations to check the minimum length of
training that would allow for a converged result. Then, several
combinations of weight decay and number of nodes were tested
to find the most accurate model. A 10-fold cross-validation was
performed on each training procedure, using the root mean
square error (RMSE with kcal/day per MAE unit) and R2 of

observed vs. predicted values as metrics. The testing data set
was used to validate the ANN model performance. Also, for the
testing data, RMSE and R2 of observed vs. predicted values were
computed from the predicted PFA vs. the food security indicator
PFA to determine the precision and bias of the predictions,
respectively. RMSE is computed as follows:

RMSE =

√

∑n
i=1

(

Xobs,i − Xmodel,i
)2

n

where n is the number of observations in the data set, and Xobs,i

are the values of the target variable from the testing or training
data set, and Xmodel,i are the values predicted by the model. Also,
a scatterplot of predicted vs. observed values was constructed to
assess visually the model’s accuracy, linear model, and regression
equation line, and 1:1 line was added for ease of interpretation.

Model Interpretation
We used three methods for interpretation of the ANN model.
First, we determined variable importance to identify the most
significant explanatory variables and their influence on the
output variable (PFA). For this, we used Garson’s (1991) (Goh,
1995) and Olden et al.’s (2004) algorithms. Garson’s algorithm
is based on partitioning neural network connection weights and
uses them to define relationships between variables. Garson’s
algorithm reports relative importance of each input variable
expressed as a percentage. The value of connection weight
indicates the influence of the input variables on the output
variable, and the higher the value of connection, the stronger
importance of corresponding input variable. Olden’s method,
contrary to Garson’s, uses raw connection weight values instead
of absolute values, and therefore it accounts for negative and
positive effects of the variables. Negative values account for a
negative effect of the input variable over the output. Using both
algorithms helps to confirm the absolute influence of input over
output variables.

Partial dependence plots (PDPs) were developed by Friedman
(2001) to help visualize the relationship between a subset of
predictors and the response variable while considering the
average effect of other predictors in the model. This could
mask important interactions and heterogeneities that the model
captures. Individual conditional expectation plots (ICEplots)
extend on PDPs and disaggregate the average effect by displaying
for each observation the estimated functional relationship that
exists with the output when the predictor variable changes. The
resulting curve for each observation helps to identify possible
interactions of the predictor with other variables in the model,
as well as to detect extrapolations in predictor space. We
constructed ICEplots for each variable included in the model to
detect such interactions. Partial dependency plots were used for
visualizing the simultaneous interactions between 3 variables.

All analyses were done with R (R version 3.4.1; R Core
Team, 2017) with the IDE Rstudio (version 1.1.423), caret
(6.0–80, Kuhn et al., 2018) and nnet (7.3–12, Venables and
Ripley, 2002) for ANN training and parameter tuning, ICEbox
(Goldstein et al., 2015) for individual conditional expectation
plots, NeuralNetTools (1.5.2, Beck, 2018) for Lek’s profile and
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TABLE 1 | Descriptive statistics of the predictors and target variable.

Variable Acronym Units Unique Mean SD Min. q.25% q.50% q.75% Max

Potential food availability PFA kcal/day per MAE 4,426 4,761 7,368 0 1,084 2,324 4,915 69,135

Land availability per person HaPerPerson ha/person 823 0.127 0.131 0.004 0.043 0.085 0.166 0.977

Maize yield MaizeYield ton/ha 749 2.25 2.01 0 0.91 1.98 3.16 11.69

Coffee yield CoffeeYield ton/ha 564 0.374 0.619 0 0 0 0.593 4.218

Land allocated to other crops LandUnderOtherCrops Percent 441 8.63 18.93 0 0 0 4.55 100

Land allocated to maize cultivation LandUnderMaize Percent 486 52.84 35.19 0 26.67 50 85.71 100

Land allocated to coffee cultivation LandUnderCoffee Percent 421 23.32 35.09 0 0 0 43.48 100

Total number of crops cultivated CropsNumber Number 6 2.49 1.38 1 1 2 3 6

Tropical livestock units TLU Index 296 0.474 0.661 0 0.04 0.2 0.7 3.79

Olden’s and Garson’s variable importance analysis, and pdp
(0.7.0, Greenwell, 2017) for visualization of PDPs.

RESULTS AND DISCUSSION

Exploratory Data Analysis
The data showed high variation in PFA intermediate variation
in land availability, yields and land allocation, and low variation
in TLU and number of crops (Table 1). Land availability is very
low, and plot sizes are small with a mean of 0.127 (SD = 0.131)
and a median of 0.085 ha per person. Maize yield is on average
low but highly variable: average yield was 2.25 ton/ha with an
SD of 2 ton/ha. For coffee, the average yield is 0.374 ton/ha and
a SD = 0.6, which is close to double of the average, so high
variation in yield is found in the region. Most of the land is
allocated to maize with an average value of 53%, although the
variation between farms is large with an SD of 35%. Coffee is the
second most important crop in terms of land allocation with an
average value of 23%. But variation is also large for coffee, and
the SD of 35% indicates that some farmers may allocate more
than 50% of their land to coffee or have no land under coffee
at all. Area under other crops is, on average, 8.6%, meaning that
maize and coffee are indeed by far the two most important crops.
On average, smallholders cultivate 2.5, but with an SD of 1.4,
this value does mask quite a range of different crop diversity
strategies. In general, the farms possess few livestock, with an
average holding of 0.47 TLU and an SD of 0.66.

This large diversity of farming systems in the WHGs region
also manifests as large differences in their PFA. From the
sample, 52% of FHHs in the region do not attain enough energy
production from their farms (Lopez-Ridaura et al., 2019). It has
been estimated that approximately 50% of children younger than
5 years in the western highlands are stunted because of chronic
food insecurity. Also, indigenous people are concentrated in
this region, and it is reported that the prevalence of chronically
malnourished population may reach nearly 70% (USAID, 2018).

Algorithms Tuning and Performance
Despite the large data variability typical for household survey
data (e.g., Fraval et al., 2019), we have been able to provide
an accurate prediction of the food security status (i.e., food
availability) of FHHs in the WHGs. A model that predicts PFA
with a high level of precision was constructed using only a small

FIGURE 3 | Artificial neutral network model performance with the testing data

set. A red line represents the 1:1 relationship, whereas the green line

represents the linear regression of observed vs. predicted PFA.

set of input variables and the application of ANNs. We chose
to keep the ANN because of its superior performance predicting
PFA with the testing data set as compared to the other methods:
the linear regression resulted in an RMSE = 4,766 kcal/day per
MAE and an R2 = 0.52, and the random forest algorithm gave an
RMSE= 3,490 kcal/day perMAE and anR2 = 0.78. For the ANN,
after trying several maximum numbers of iterations by trial and
error, 1,500 iterations allowed the model to converge in all the
training rounds, while computing times were reasonable. Using
this setting and evaluating different weight decay and number of
hidden units using 10-fold cross-validation, the best-performing
neural network was one with eight hidden nodes and a weight
decay of 0.0009. This ANN setup resulted in an R2 = 0.80 (RMSE
= 3,410 kcal/day per MAE) in cross-validation. When validating
with testing data set, the observed vs. predicted values yield an R2

= 0.85 (RMSE of 2,891 kcal/day per MAE), meaning this simple
response model can account for nearly 85% of variation of PFA,
as seen in Figure 3.
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FIGURE 4 | Variable importance for food security prediction in the ANN model according to two different algorithms: (A) the Garson algorithm, which orders variables

by their explanatory power, and (B) the Olden algorithm, which orders the variables by their explanatory power and also shows the positive or negative effect on the

predicted PFA.

The resulting ANN model can then be used as an analytical
tool to assess the effect of the single variables as well as their
interactions, the thresholds and frontiers affecting the food
security of smallholders generated through the decisions on
agricultural activities, especially land allocation (i.e., to coffee or
maize) and their yield levels.

Model Interpretation
The Variables Importance Based on Garson’s and

Olden’s Algorithms
The most important variables for the prediction of households’
PFA according to Garson’s algorithm (Figure 4A) are, in
diminishing importance, as follows: coffee yield > land under
coffee > hectares per person > maize yield > land under maize
> crops number > land under other crops > TLU.

According to Olden’s algorithm (Figure 4B), the most
important variables are hectares per person, with a positive
effect on PFA (increasing land availability increases PFA); and
land under coffee, with a negative impact on PFA. Other,
less important, variables, such as land under maize, crops
number, and land under other crops, have a negative effect
on PFA. According to Olden’s method, maize and coffee
yields affect PFA positively, although not in a great manner,
whereas Garson’s algorithm identifies coffee and maize yields as
highly important.

We can conclude that both algorithms find that the altogether
least important variables, in terms of accounting for PFA
variation, are livestock holdings, land on other crops, and crops
number, and the most important are hectares per person and
land under coffee. We found that land availability (hectares
per person) and land under coffee (or inversely land under
maize) are the variables with the highest predictive value (i.e.,
the ones sharing a larger proportion of the weights in the
neural networks).

Non-linear Trends Detection in Single Variables for

PFA Prediction
The ICEplots (individual conditional expectation plots) allowed
us to identify how large is the effect of each predictor on PFA
and if non-linear relationships between the predictors and PFA
exist (Figure 5). The ICEplots show that, in general, the effect
of single predictors on PFA is non-linear. For land availability,
maize and coffee yield land under other crops, land under
maize, and land under coffee, contrasting behaviors between
households are evident; PFA either increases or decreases. The
fact that there exists a contrasting behavior is indicative of the
interaction with other variables; also, the PFA growth curves may
present different growth rates (slopes) with either a positive or
negative sign.

The land availability variable, hectares per person, has a
positive relation with PFA, but this relation shows large variation;
that is, the same value of hectares per person can yield a
large range of PFA values- possibly driven by the non-linear
relationships with other variables. Small increases in hectares per
person, especially below the value of 0.25 ha per person, result in
a substantial increase of PFA, but further increases in farm size
enhance PFA only in modest amounts.

That PFA curves reach a saturation point as land availability
increases agrees with other studies, such as that of Frelat
et al. (2016), where they postulate that this saturation could be
explained by a decline in productivity per unit land (kcal/ha),
when land availability increases. This pattern of inverse land
size productivity is also found in many studies of smallholder
farmers (Larson et al., 2013; Ali and Deininger, 2014), showing
that medium-sized farmers are more efficient per unit area
(Muyanga and Jayne, 2014). The main concern here is that the
minimum amount of ha per person needed to achieve 2,500
kcal/day per MAE is around 0.06 ha; land availability of the
sample is on average 0.13 ha with a median of 0.08 ha, which
means that only nearly half of the households’ population may
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FIGURE 5 | Individual conditional expectation plots (ICEplots) for variables (A) hectares per person, (B) maize yield, (C) coffee yield, (D) land on maize, (E) land on

coffee, (F) land on other crops, (G) crops number, (H) tropical livestock units. The x axis is scaled to 0–1, and the y-axis is scaled and centered in 0. The red line

represents the partial dependency plot (average). Each curve in gray shows the projection of each sample along the predictor’s variation interval.

possess enough land to achieve 2,500 kcal/day per MAE, and
possibly the other half might be not reaching even the 0.06 ha
per person value. Even with excellent crops yields, PFA does not
reach high values in situations in which land availability is very
limited, so just trying to increase productivity might not be a
useful intervention for households that lack a critical amount
of land.

Given this information, increasing crops yield might be
not the proper intervention for all FHHs because attaining
high yield, with still very limited land availability, PFA would
not reach high values. On the other hand, some farmers that
possess enough land (e.g., 0.19 ha per person) but still present
low food security may benefit from agroecological options for
intensification and diversification.

This type of saturation effect is seen in other plots in Figure 5.
Maize yield, coffee yield, and land on coffee individual curves
present a growing trend but stabilize after certain point, although
the average response curve for these variables is a relatively
straight line. Land under maize shows a negative relation with
PFA, again with a clear saturation signal, indicating that although
maize is an important food security crop, there are other crops
that generate more value on the same amount of land. The
response curves of the other variables are all straight lines and
close to zero value, indicating that they not have such a large effect
on PFA as the variables already discussed.

Three-Way Interactions and Their Effects on PFA
While Figure 5 showed the single variable effects, we are also
interested in the interactions between the drivers of PFA. We
used contour partial dependency plots of three variables to
analyze how they simultaneously affect PFA. Figure 6 presents
the non-linear relationships between some of the variables with
highest explanatory power for PFA prediction. Figure 6A shows
the relationship between hectares per person, yield of coffee,
and yield of maize (the latter divided in ranges pertaining each
quartile in each panel). The most important limiting factor for
attaining high values of PFA is, again, land availability (hectares
per person). Even when coffee and maize yields are low, more
land availability increases PFA substantially. Again, even when
maize yields and coffee yields are high, it is difficult to reach PFA
values that represent a food-secure household at low values of
land availability. The area of PFA values representing food-secure
households logically increases with higher yields of both crops.
This allows us to identify under which levels of land availability
and productivity household can be food-secure using the PFA
indicator, and thereby given the current levels of land availability
and productivity of the different household, we can identify land
and productivity “gaps.”

A general trend found when three-variable interactions are
analyzed is that PFA grows when land size increases in terms
of land availability per person (Figure 6) and when maize and
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FIGURE 6 | Partial dependency plots of three simultaneous variables. (A) Hectares per person - Coffee Yield - Maize Yield. (B) Hectares per person - Land Under

Other Crops-Maize Yield. Contour curves show the regions of the values of scaled PFA. A second and third variable are represented on bottom and top edges

respectively of each plot, the orange rectangle shows the quartile of the third variable that are plotted on each panel, from left to right. Arrows point to the contour line

that is equivalent to a PFA interval between 2300 and 2740 kcal/day per MAE. Red line represents the average sample land availability (0.13 ha per person) and the

green lines represent the land availability necessary to reach the 2300 and 2740 kcal/day per MAE interval.

coffee crops yields are higher (Figure 6A). Although the results
of Figures 5, 6 show a large variability, results indicate that
there is a typical 0.25 ha per person threshold, under which
land availability is the most constraining factor for achieving
food security. Surprisingly, this threshold seems to be quite
independent of the crop productivity values.

The average value for land availability in the households’
sample in the WHGs is 0.13 ha per person (red line in Figure 6),
for coffee yield 0.37 t/ha, and maize yield 2.25 t/ha. Following
the interpretation of the relationship between these variables
in Figure 6A, reaching a PFA on the limit of 2,500 kcal/day
per MAE is possible only for land availabilities with values in
the range of 0.19–0.3 ha per person that lie above the sample
mean (green lines in Figure 6). Food security could only be
attained for a land availability of 0.19 ha per person (fourth
panel Figure 6A), with the highest yields predicted to be 8.7–
11.6 t/ha for maize and 3.2 to 4.2 t/ha for coffee on the upper
quartile, but these values are rare in the sample. With lower
yields, land availability above the sample mean is mandatory.
Something similar happens in Figure 6B; only the highest yield
on maize in monocrop (i.e., zero land under other crops)
could provide enough kcals, but the land availability necessary

is even higher than when growing maize and coffee, as the
lowest threshold (green line, fourth panel, Figure 6B) is 0.20 ha
per person.

Our three simultaneous variables partial dependency plots
approach allows seeing how important it is increasing yield when
land is limited. Increasing the yield and yield stability of crops
might become transcendent if we consider that land shows to be
the most critical point defining food security of smallholders in
theWHGs. It is important to see that those households that reach
2,500 kcal/MAE per day have, on average, some differences from
those who do not, for example, more land availability, higher
yields of coffee less land under maize, higher lands under coffee,
and less land under other crops (Table 2).

For most FHHs in the WHGs, maize contributes with a high
percentage to the PFA and therefore is critical for food security.
Maize yields in the region have been reported previously to be
in a range from 1 to 2 t/ha (Hellin et al., 2017), and in our
sample, the yields are, on average, 2.25 t/ha. Small-scale farmers
in Guatemala are key actors in maize production–consumption.
Farmers owning <7 ha of land represent 53% of the farmers
growing maize. More than two-thirds of the maize they produce
is for self-consumption, covering ∼8 months of their needs
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TABLE 2 | Differences in the predictor variables between the sampled households

grouped into two, those whose PFA values are below 2500 kcal/day per MAE and

those with PFA equal or above 2500 kcal/day per MAE.

Variable (units) Households PFA level

PFA (Kcal/MAE/day) < 2500 (n = 2373) ≥ 2500 (n = 2126)

Land availability (ha/person) 0.06 0.19

Maize Yield (ton/ha) 2.2 2.3

Coffee Yield (ton/ha) 0.14 0.62

Land Under Maize (Percent) 62.5 42

Land Under Coffee (Percent) 11.5 36.5

Land Under Other

Crops (Percent)

9.9 7.2

Crops Number (Number) 2.2 2.7

Tropical livestock units (TLU) 0.4 0.6

(USAID/Guatemala, 2009). However, these subsistence farmers
have experienced accelerated land fragmentation (Isakson, 2014).
Currently, 55% of the national maize production is produced
by farmers with <3.5 ha (Fuentes-López et al., 2005). This land
fragmentation has been more dramatic in the WHGs. Hellin
et al. (2017) found that, in 2016, farmers from this region owned
an average of 4.3 ha in the 1980s, but currently they have only
0.4 ha. These findings coincide with Bellow et al. (2008) and
Sigüenza Ramírez et al. (2010), who found that the average land
size for a small-scale farmer was 0.34 ha. Hellin et al. (2017) also
found a large variability in maize farmers’ average landholdings,
depending on their location within the five departments that
comprise the western highlands.

For those still growing maize and coffee in different
agroecologies, some alternatives could be explored for increasing
crops yield and stability, for example, participatory breeding
in which adapted maize seeds could be spread in regions with
higher yield potential; also, as most of the farms are located in
mountainous regions with steep slopes, soil could be retained or
its qualities could be restored or improved through soil and water
conservation strategies.

Another general trend shows that increasing land on other
crops leads to decreasing PFA and that only with high maize
yields and enough land available the window to diversity
production opens up (Figure 6B). Analyzing the interactions
between land availability, maize yield, and land under other
crops, we again see the effect of increasing land availability on
PFA, but more interestingly, we see a trade-off between more
land under other crops and PFA. This means that the other
crops add less value per unit hectare than maize and coffee
(especially the latter, which is the major cash crop of the region).
So, from a purely PFA perspective, diversifying production does
not make much sense, but we need to take into account the
limitations of the PFA indicator, which is only based on energy
(kcal) production and consumption. Other crops are likely to
have positive effects on other aspects of food security such as
dietary diversity and/or riskmanagement, among other functions
of diversification. This analysis therefore shows the window of
opportunity to bring in these other crops in these production

systems: after satisfying the PFA indicator (basic energetic food
security), it will be important to bring in other crops to improve
dietary diversity. The model shows under which combinations of
land availability and crop productivity such opportunities arise.

The dynamics and the effects of crops diversification in the
WHGs in the past have shown that including commercial crops
in the farming activity of smallholders in the region may affect
their food security, posing risks to their availability dimension
(Immink and Alarcon, 1991, 1993). This is reflected in our results
as we can see that not necessarily having land allocated to fully
commercial crops or to food crops alone has a positive effect
on food security; our results support the need for diversification,
but in an equivalent proportion regarding the land that is shared
between the crops, especially coffee and maize.

When land availability per person is large, higher values of
PFA are possible independently of the crop produced or the
surface cultivated. Nevertheless, increasing crops diversity is to be
considered carefully for these systems as we show that high crops
diversity affects PFA. For some plots with high land availability,
food security might be attained with a high-diversity mix of
crops, but there is a threshold in the number of crops that can be
cultivated in small plots to attain large PFA values. It is possible
also that monocrop cultivation on large plots outputs high values
of PFA.

The analyses’ results show that, along the split into staple
crop–cash crops (i.e., land under maize vs. land under coffee),
roughly an equal share of both crops seems to give the highest
probability of attaining food security. Again, this is possible only
if enough land is available (>0.25 ha per person), and such an
equal mix makes sure both basic calories and cash are available to
the household.

For those FHHs possessing larger land extensions as
diversifying crops seems to be beneficial, exploring alternatives
to improve the systems efficiency could be beneficial, for example,
crops rotations and systems integration of fruit trees which may
add even more nutrients to diets or possibly provide even more
products to commercialize while helping to avoid soil erosion
as well.

For others, greatly limited by land availability, other strategies
would need to be assessed. Previously, life history studies have
revealed that besides growing coffee in small plots, which is
a common practice, off-farm activities are of great importance
for coping with food insecurity when land is limited (Beveridge
et al., 2019) and also describe the way smallholders get involved
in other activities such as selling their labor in nearby big
farms or near big cities, raising chicken in home gardens
as a way for making income, and timber wood production.
Also, some positive factors are is highlighted that would help
in improving food security such as women’s own income
production dependent on home garden activities and even
handicrafts (Feed the Future, 2018).

An additional important analysis that could be performed
would be to identify the effect of market access on increased
PFA. As Frelat et al. (2016) found, access or means of
commercialization are crucial to ensure or improve the
livelihoods of smallholders and might impact more than crop
productivity interventions. As the present study is only a

Frontiers in Sustainable Food Systems | www.frontiersin.org 11 June 2020 | Volume 4 | Article 51

https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org
https://www.frontiersin.org/journals/sustainable-food-systems#articles


Barba-Escoto et al. Machine Learning and Food Security in Guatemala

snapshot of the food security in the region, crossing information
about regional PFA and the access to markets, including how
climatic and price variations would affect smallholders land
allocation decisions and production, could aid in projecting
PFA in the future and profiling the interventions that could
take place.

CONCLUSIONS

Food security in the WHGs is the result of a socioecological
complex dynamic system, with many layers interacting in many
ways, and with bottom-up and top-down effects. However, it
is interesting that through the application of machine learning
algorithms we have been able to construct a tool that predicts
the FHHs’ PFA with an acceptable degree of precision. With a
sample of nearly 5,000 smallholders, we were able to fit a model
with an R2 ∼0.85.

The best-performing model for the prediction of the
continuous PFA values (kcal/male adult equivalents per day)
is an ANN based on a short set of simple variables (i.e.,
land availability, crops yields, land share of crops) than can
be easily obtained with only a few questions to the farmers.
Also, by using model interpretation and visualization techniques,
certain patterns are found on the effects of land availability,
the share of land of commercial and staple food crops, and
their yields on food availability. This analytical framework
represents an opportunity as these approaches could be easily
implemented as quick and (to a certain extent) reliable tools
for screening the food security status of FHHs. That could
be helpful during baselining and evaluation for projects which
objectives would be to improve food security in the WHGs
or regions alike, with high population densities and high
diversity of farming systems and activities. The power to quickly
assess the food security status of a population would be that
interventions would be easily targeted as the population could
be sectorized.

The relationship of some of the predictor variables with PFA,
extracted with the machine learning algorithm, reveals some

non-linear patterns and allows us to extract some conclusions
referring to the main constraints that prevent households from

achieving food security. Large land availability and high yields of
crops seem to ensure food security, but approximately half of the
population does not possess enough land.
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