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The biorefining of biowaste is an upcoming novel strategy, but is mostly still in its

conceptual phase. Biowaste biorefineries would allow (rural) communities to convert

their biowaste into value-added biofuels, biochemical compounds, and fertilizers. Several

different types of biowaste biorefineries have already been developed, but little to none

of these designs are already commercially exploited. Their further development and

commercial implementation is hampered by the high investment costs and risks, little

trusts in its novel technologies, expected yields and profits, and operating reliability.

Modeling these integrated processes, together with their supply chains, would allow

for optimizing the considered biorefinery designs and coincidently speeding up the

R&D-process. The optimized biorefinery designs and supply chains would additionally

embed an increased amount of trust in potential investors in terms of the economic

sustainability of the considered novel processes. Therefore, in this publication, a summary

of existing biorefinery models is presented, together with supply chain network models.

The discussed biorefinery models are categorized according to the conversion platform

they use, being thermochemical, biological, or hybrid ones. Furthermore, the overall

inherent advantages and disadvantages of all conversion platforms are summarized and

a scope of further research needs is presented.

Keywords: thermochemical conversion platform, biological conversion platform, hybrid conversion platform,

network modeling, process modeling, optimization

1. INTRODUCTION

Major cities in Europe have recently been flooded several times with an ever increasing number of
climate protesters. These climate protests and marches have been partially triggered by the 2018
United Nations Climate Report (IPCC, 2018). The report clearly states that immediate and grand
actions are required if the increase in global temperature should be limited to the still manageable
scenario of +1.5◦C. In general, the public support for a more sustainable production and energy
industry has drastically increased since the first effects of climate change are becoming more
prevalent and visible. Fossil resources are becoming more controversial and are to be replaced with
bio-resources in the future. However, in order to fully exploit the potential of these bio-resources,
and additionally safeguarding arable land for food production, the use of waste streams as feed
stocks for the production of energy and chemical compounds will have to be intensified. Just like
fossil resources are converted into energy and chemical compounds in a refinery, bio-resources are
converted in useful compounds in a biorefinery (Naik et al., 2010).

First generation biorefineries use general crops as feedstock (Cherubini et al., 2009). Most
noticeable are rapeseeds and corn. This generation of biorefineries is already economically
exploited but its use of general crops as feedstock raises ethical questions. The production of these
crops takes up arable land, which can no longer be used for food. Additionally, while the growing
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of crops for energy is more profitable for farmers than the
production of food, the diversity of crops is heavily reduced.
Mono-crop farmlands and -areas are more prone for crop
diseases and plagues, jeopardizing the energy supply, the food
supply, and livelihood of farmers (Mohr and Raman, 2013).

The acknowledgment of the shortcomings of the first
generation biorefineries led to the development of second
generation biorefineries which use residual and waste streams
as feedstock. These streams include lignocellulosic materials,
green fertilizers and other farm residues (e.g., corn stover),
kitchen waste, industrial waste, and forestry wastes (Cherubini
et al., 2009; Naik et al., 2010; Mohr and Raman, 2013). These
so-called biowaste biorefineries will be the main focus of this
review. The economical exploitation of this type of biorefineries
is still limited, mainly because of the inherent fluctuations in
the feedstock supply, and therefore also in the expected yield.
Waste streams are subjected to seasonal fluctuations in size
and/or composition and are often difficult to preserve. To
obtain an economically viable biorefinery, these fluctuations need
to be taken into account in the designing phase. To speed
up the designing (and eventually implementation) of biowaste
biorefineries, whilst taking the multitude of possible feedstocks
into account, rigorousmodels are needed (Wang et al., 2015). The
main goal of this contribution is to give the reader an overview
of already existing models, as well as assessing their properties
and extent. An upcoming third generation of biorefineries are
the marine biorefineries which use algae as feedstock. This type
of biorefineries, together with algae technology, is still in its early
development stages and will therefore not be taken into account
in this contribution. The interested reader is referred to Laurens
et al. (2017) and Cesario et al. (2018).

The sustainability of the biowaste biorefinery is additionally
heavily affected by the management of the supply chain network.
Policy makers and designers must also decide where to locate the
biorefinery plant and, based on which feedstocks are abundantly
available in the vicinity of the plant, the supply chain network,
and used biorefining processes will change. To stress the
importance of a convenient and smart supply chain network, a
supply chain network model is included and briefly discussed.

The structure of this review is as follows: section 2 introduces
the overall biorefining concept to give the reader a general
overview of existing technologies and practices. The selected
biowaste biorefinery models are presented in sections 3–5, based

FIGURE 1 | General biorefinery flowsheet, positioning the discussed models.

on which conversion platforms they use. This contribution will
mainly focus on the presentation of process models which can
be translated into algebraic and differential equations. Only in
section 5, flowsheet models are considered. In section 6, a supply
chain network model is presented. The presented models of
sections 3–6 are discussed in section 7. Finally, in sections 8,
9, the overall conclusions and scopes for further research are
presented, respectively.

2. BIOREFINING CONCEPT

A biorefinery is the renewable equivalent of a fossil-based
(petroleum) refinery. A variety of chemical components are
produced starting from a biomass feedstock stream. Biorefineries
can be subdivided in different categories based on four
characteristics: (i) the used platforms or key intermediate
products and processes, (ii) the targeted products (production
of energy or components), (iii) the used feedstock, and (iv)
the used processes (Cherubini et al., 2009). This contribution
will categorize the discussed biorefinery models based on which
conversion platform is used. There has been opted for this
alternative while the other listed categorization techniques often
display overlap, rendering it difficult to present a clear-cut
overview of available models.

The general public still mostly associates biorefineries with
the production of (liquid) biofuels. However, the production
of platform chemicals via biorefining processes is deemed to
be more sustainable than the production of biofuels (Mohr
and Raman, 2013; Isikgor and Becer, 2015). Platform chemicals
are not a final product on themselves but are used in
subsequent processes to produce plastics, fibers, additives,
etc. (Cherubini et al., 2009). Figure 1 represents the general
layout of biorefinery plant (Cherubini et al., 2009). A biomass
feedstock is, successively, submitted to pretreatment, conversion,
and downstream processing steps. Depending on the selected
feedstock and processes, different products are obtained. The
pretreatment step is one of the most important steps in the
entire process while both the efficiency of the conversion and
downstream processing steps depend on it. The overall goal
of the pretreatment is reducing the crystallinity of the raw
feedstock and making the C5-, C6-sugars, and other structural
components more accessible for the conversion steps. The
fraction of biomass that is eventually not converted in one of the
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TABLE 1 | Further reading on DSP steps.

DSP step References Remarks

Drying Mezhericher et al., 2012 Three-dimensional spray-drying

model

Redman et al., 2017 Vacuum-drying model applied to

hardwoods

Milling Auroux and Groza, 2017 Abrasive waterjet milling model

Mateos-Salvador et al.,

2011

Wheat roller milling model

Filtration and

membrane

technology

Tien et al., 2014 Blocking model for membrane

filtration

Ashraf et al., 2017 Semi-empirical pervaporation flux

model

Vane, 2005 Review of pervaporation for product

recovery

Morthensen et al., 2018 Membrane separation of

enzyme-converted biomass

Díaz-Reinoso et al.,

2017

Recovery of concentrated phenolic

product via membrane process

targeted products has to be separated from the product stream
and decreases the process’ carbon efficiency. Commonly used
pretreatment steps include ammonia conditioning, (diluted) acid
pretreatments, mechanic pretreatments (milling, i.a.), and steam
reforming/explosion (Cherubini et al., 2009).

2.1. Conversion Platforms
Conversion platforms can be subdivided in three major
categories (Cherubini et al., 2009): biochemical or biological,
thermochemical, and hybrid conversion platforms.
Biochemical and biological conversion platforms convert
the pretreated biomass stream in the desired products with
the use of micro-organisms, enzymatic, and fermentation
processes, while thermochemical conversion platforms
use general chemical processes. Recently developed
hybrid conversion platforms combine the strengths of
both previous options and are often characterized by a
thermochemical pretreatment step and a biological conversion
step (Michailos, 2018; Michailos et al., 2019).

The targeted products have to eventually be separated from
each other, by-products, and/or the fermentation media using
columns and/or evaporation units. The efficiency and energy
requirements of the downstream processing (DSP) steps heavily
depend on the efficiency of all the previous steps. Remaining
solids in the process stream can be removed via filtrations,
centrifuges, and membrane technology. Crystallization, drying,
and milling units can be added to the downstream processing
train if the product has to be delivered in a certain form.
The main focus of this contribution however will be on the
pretreatment and conversion steps. The DSP steps are already
extensively investigated and treated in literature. Table 1 lists
several interesting sources on the commonly used DSP steps for
the interested reader.

2.2. Feedstocks
2.2.1. Lignocellulosic Biomass
Lignocellulosic biorefineries are the most commonly investigated
biorefinery type (regardless of what conversion platform
they use), mainly due to the abundant occurrence of its
feedstock (Piccolo and Bezzo, 2009). The main components of
lignocellulosic biomass are lignin (L), hemicellulose (HC), and
cellulose (C) (see Figure 2). The ratio of these main components
will differ based on the source. Table 2 gives an overview of
the composition of several lignocellulosic materials (Qian, 2014;
Isikgor and Becer, 2015).

Cellulose is made up of linked cellobiose (CB) chains, or linked
β(1 → 4)-D-glucose (G) units (see Figure 2). It is the primary
component of the cell walls of plants and is the most abundantly
available organic carbon source on the planet (Isikgor and Becer,
2015). While cellulose is made up of linked glucose-units, it is
a source of fermentable C6-sugars. Hemicellulose on the other
hand is made up of both C6- and C5-sugars (see Figure 2). It acts
as glue in the cell wall, interlinking cellulose fibers with each other
and with lignin. The predominant structure of hemicellulose
additionally differs between soft and hard wood.While soft wood
hemicellulose is mostly made up of glucomannans, hard wood
hemicellulose predominantly consists out of xylans (HX). The
occurring C5-sugars in hemicellulose are xylose (X) an arabinose,
and the occurring C6-sugars are mannose, glucose, and galactose.
Lignin (L) is a polyphenolic polymer and is the third main
component of lignocellulosic biomass. Its high polyphenolic
content makes it the ideal natural source of aromatic compounds
and (poly-)phenols. The threemain reoccurringmonolignons are
paracoumaryl alcohol, coniferyl alcohol, and sinapyl alcohol (see
Figure 2) (Carroll and Sommerville, 2009; Qian, 2014; Isikgor
and Becer, 2015).

2.2.2. Green Biomass
Green biomass streams consists of living, herbaceous, and wet
biomass like grasses and clover (Bedoic et al., 2019). Grasses
can be sourced from, i.a., pasture lands, roadside cuttings, and
(private) gardens and parks. Clover is a so-called cover crop
and green manure. The soil is protected from erosion and run-
off by the root system of the clovers during, what otherwise
would be, fallow periods. Clovers are additionally part of the
Leguminosae family which are characterized by containing the
symbiotic Rhizobia bacteria in their root nodules. Rhizobia are
capable of fixating atmospheric nitrogen, and thus fertilizing the
soil. Harvested grasses and clovers can be used as fodder but
a large fraction remains underused (Kamm et al., 2016; Bedoic
et al., 2019).

2.2.3. Biowaste
The interest in waste biorefineries has steadily increased over the
past decade. This type of biorefineries have a double advantage
while, next to their biorefining capacities, they also act as waste
processors. Biomass waste can be obtained from several different
sources and industries. The main sources are agricultural waste
streams (food), industry waste streams, and urban municipal
waste. Most components of the agricultural waste streams can,
however, also be subdivided into either lignocellulosic (e.g., corn
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FIGURE 2 | Composition of lignocellulosic biomass (Isikgor and Becer, 2015).

TABLE 2 | Composition of different lignocellulosic biomass species (Carroll and

Sommerville, 2009; Qian, 2014; Biswas et al., 2015; Isikgor and Becer, 2015).

Species Cellulose [%] Hemicellulose [%] Lignin [%]

Hard wood Poplar 50.8–53.3 26.2–28.7 15.5–16.3

Oak 40.0–55.0 24.0–40.0 18.0–25.0

Soft wood Spruce 45.5–49.5 22.9–33.0 27.9–32.0

Pine 45.0–50.0 25.0–35.0 25.0–35.0

Agricultural

waste

Corn stover 35.0–39.6 16.8–35.0 7.0–18.4

Wheat straw 31.0–44.0 22.0–24.0 16.0–24.0

Barley straw 33.0–40.0 20.0–35.0 8.0–17.0

Sugar cane

bagasse 26.0–50.0 24.0–34.0 10.0–26.0

Energy crops Switchgrass 35.0–40.0 25.0–30.0 15.0–20.0

stover) or green biomass (e.g., clovers and other grasses and
herbaceous plants). The food industry is another major source
of biomass waste streams: spent grains and filter cakes from
breweries, bagasse and molasses from the sugar industry, etc. The
final customers of the produced foods and agricultural products,
i.e., urban municipalities, are on their turn also major producers
of biomass waste streams. The composition of this waste is the
most diverse one of all the feedstocks that are discussed in
research. Fluctuations in feedstock size and composition are two

major challenges that any waste-based, or even any, biorefinery
must tackle. The efficiency of the biorefinery supply chain and
overall logistic network plays a crucial role in guaranteeing the
success of these biorefineries (Fava et al., 2015; Vea et al., 2018).

3. BIOCHEMICAL AND BIOLOGICAL
CONVERSION PLATFORMS

As mentioned in section 2.1, biorefineries using a biochemical
or biological conversion platform employ enzymes and
microorganisms to convert biomass into valuable products and
energy. Generally, the overall structure of the biomass is broken
down via enzymatic hydrolysis and the obtained hydrolysate
stream is subsequently fermented using (genetically modified)
microorganisms. Enzymatic reactions are characterized by an
extremely high product selectivity, making this conversion
platform the ideal platform to produce very specific products.
Additionally, the used fermentation processes display high
similarities to other, established, bioproduction processes. A
multitude of techniques are therefore already available and
the overall processes themselves have already been studied
extensively (Michailos et al., 2019).

However, the particular biomass feedstocks (most commonly
lignocellulosic biomass) have proven to introduce problems
and challenges in the context of the otherwise straightforward
biological conversion platform. The dense crystalline structure of
lignocellulosic biomassmakes it difficult for enzymes to penetrate
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FIGURE 3 | Modeled reaction scheme of the enzymatic hydrolysis of cellulose.

Dashed lines indicated inhibition reactions (Kadam et al., 2004).

and access the glycosidic bonds they are meant to hydrolyse. The
yield of fermentable sugars in the hydrolysate streams can be so
insufficient that the overall process is no longer profitable. It is
therefore of crucial importance that the dense biomass feedstock
is accordingly pretreated, allowing the enzymes to penetrate the
structure more easily.

3.1. Enzymatic Hydrolysis
The enzymatic hydrolysis of lignocellulosic biomass is a highly
specific process, rendering fermentable C5- and C6-sugars,
oligomers, and polymers. The hydrolysis process is catalyzed by
cellulase enzymes which decompose the cellulosic material in its
structural compounds. The lignin fraction of the lignocellulosic
material, however, is not decomposed or hydrolysed and remains
as a solid in the hydrolysate. This inability of processing a major
fraction, and thus carbon source, of the lignocellulosic feedstock
is one of the major disadvantages of this technique (Sun and
Cheng, 2002; Michailos et al., 2019).

Kadam et al. (2004) introduced a validated kinetic model of
the enzymatic hydrolysis of lignocellulosic biomass, but only
considers the hydrolysis of cellulose to cellobiose and glucose.
It was experimentally validated by, amongst others, Hodge
et al. (2008), Sin et al. (2010). The modeled reaction scheme
is presented in Figure 3. Prunescu and Sin (2013) extended
the model of Kadam et al. (2004) and added the enzymatic
decomposition of xylan (the main component of hemicellulose)
into acetic acid and xylose. The model of Kadam et al. (2004)
already considered the inhibition of the cellulose decomposition
reactions by xylose but did not consider its formation. Prunescu
and Sin (2013) additionally takes the inhibitory effect of furfural
(F) into account on the decomposition reactions of cellulose.
Furfural can be formed in pretreatment processes preceding the
enzymatic hydrolysis step. Especially acidic conditioning steps
are prone of forming furfural (Jönsson and Martín, 2016).

Figure 4 represents the general enzymatic reaction scheme
that is modeled by both Kadam et al. (2004) and Prunescu
and Sin (2013). The inhibitory effect of glucose, cellobiose,
xylose, and furfural on the hydrolysis of cellulose is considered
to be competitive. This implies that the inhibitors bind on

FIGURE 4 | General enzymatic reaction scheme with competitive inhibition

(E = enzyme, I = inhibitor, S = substrate, P = product).

the active site of the enzyme and thus compete with the
substrate for this spot. Competitive inhibition is reversible and is
deemed to be mechanistically more realistic than the irreversible
noncompetitive inhibition (Kadam et al., 2004). Product is
formed after the substrate adsorbs to the active site of the enzyme
(E) and the enzyme-substrate complex (ES) is formed. This
adsorption is reversible and is modeled via a Langmuir isotherm
(see Equation 1). The formation and desorption of product (P)
is considered to be irreversible. The reactions with cellulose as
substrate are assumed to be first-order reactions and occur on the
cellulose surface (see Equation 2). The formation of glucose from
cellobiose occurs in the liquid reactor medium and is assumed to
follow Michaelis-Menten kinetics (see Equation 3) (Kadam et al.,
2004; Prunescu and Sin, 2013).

[EC] =
ECmaxKEC,ad[EF][C]

1+ KEC,ad[EF]
(1)

with EC the enzyme-cellulose complex, ECmax the maximum
mass of enzyme that can adsorb on one mass unit of cellulose,
and [EF] the concentration of free enzymes.

ri =
kiηi(T, pH)

(

∑i
j=1[EiC]

)

1+ [CB]
KCB
I,i

+
[X]
KX
I,i
+

[G]
KG
I,i
+

[F]
KF
I,i

i = 1, 2 (2)

r3 =
k3[E3,F][CB]η3(T, pH)

1+ [X]
KX
I,3

+
[G]
KG
I,3

+
[F]
KF
I,3

+ [CB]
(3)

The xylan to xylose reaction rate r4 is modeled similarly to the
cellulose to cellobiose and glucose reaction rates (Prunescu and
Sin, 2013):

r4 =
k4[E4 HX][HX]η4(T, pH)

1+ [CB]
KCB
I,4

+
[X]
KX
I,4

+
[G]
KG
I,4

+
[F]
KF
I,4

(4)

with ki the specific reaction rate constant of the i-th reaction,
ηi(T, pH) the influence factor of T and pH on the i-th reaction,
and Ka

I,i the inhibitory constant of component a on the i-th
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reaction. The mass balances of cellulose, cellobiose, and glucose
are given by (Kadam et al., 2004):

d[C]

dt
= −r1 − r2 (5)

d[CB]

dt
= 1.056 r1 − r3 (6)

d[G]

dt
= 1.111 r1 + 1.053 r3 (7)

Flores-Sánchez et al. (2013) successfully adapted their model-
based optimal experimental design framework to estimate the
values of the kinetic parameters of the proposed enzymatic
hydrolysis model in Equations (1) to (4). While enzymes
display a (narrow) optimal temperature range, the reactor
temperature T was found to have a major affect on the reaction
rates and other kinetic parameters. Prunescu and Sin (2013)
included this influence, together with the pH influence in the
ηi(T, pH) factor. Flores-Sánchez et al. (2013) also included this
influence by dynamically designing an optimal experimental
design framework. By doing so, they include the inherent non-
linearity of the reaction system, allowing for the attainment
of good estimations for the kinetic parameters. The models
presented by Kadam et al. (2004) and Prunescu and Sin (2013)
have been implemented in several case studies. Amongst others
are the kinetic modeling of the enzymatic hydrolysis of pretreated
sugarcane straw, as presented by Angarita et al. (2015), and
the model-based optimization of a large-scale bioethanol plant,
presented by Prunescu et al. (2017).

More recently, Liang et al. (2019) developed a long-
term Holtzapple-Caram-Humphrey-1 (HCH-1) model for the
enzymatic hydrolysis of cellulose (C) by adapting the original
HCH-1model developed by Holtzapple et al. (1984). The original
model only accounted for the initial reaction rates, making it
invalid for long-term predictions, while the hydrolysis products
have an influence on the reaction rates. The modified HCH-1
accounts for this influence on the cellulose conversion rate and
enzyme stability over longer periods. Its main features are its
use of the product binding constant β and the quantification of
the number of active sites that are covered by enzymes (E) with
the parameter ε (Holtzapple et al., 1984; Liang et al., 2019). The
modified long-term HCH-1 model is given by Equation (8):

d[G]

dt
=

κ[C][E]i

α + φ[C]+ ǫ[E]
(8)

with

i =
1

1+ β[G]
(9)

φ =
[C]− α − ε[E]+

√

([C]− α − ε[E])2 + 4α[C]

2[C]
(10)

α =
a1[G]

[E](1+ exp(−a2x+ a3))
(11)

−d[E]

dt
= k1[E]− k2([E0]− [E])[E0] (12)

κ =
k3

(1+ xk4 )k5
+ k6 (13)

with κ the kinetic constant of the lumped enzyme, ki, i =

1, . . . , 6, aj, j = 1, . . . , 3, ǫ, and β are the 11 model parameters.
x is the cellulose conversion. The estimation of the model
parameters is described in Liang et al. (2019) but is not included
in this contribution.

While the models developed by Kadam et al. (2004) and
extended by Prunescu and Sin (2013) use a combination of
both adsorption mechanisms and Michaelis-Menten kinetics,
the HCH-1 model is purely based on adsorption mechanics. It
additionally assumes non-competitive inhibition of the enzyme
activity by the obtained hydrolysis products, in comparison
with the competitive inhibition as used in the Kadam et al.
(2004) model. The modified HCH-1 model further distinguishes
itself from the original model by considering a lumped enzyme
mixture (κ is the kinetic constant of the lumped enzyme), making
it more closely aligned with reality (Liang et al., 2019).

3.2. Simultaneous Saccharification and
Fermentation
All enzymatic hydrolysis models presented in section 3.1 strongly
focus on the inhibitory effect of the hydrolysis products on the
enzyme activity. This is one of the major disadvantages of the
enzymatic hydrolysis process. To circumvent this, the produced
sugars are immediately fermented after their formation. The
hydrolysis (or saccharification) and fermentation process occur
simultaneously in the same vessel. The reasoning of the
simultaneous saccharification and fermentation (SSF) process is
based on the Le Chatelier’s principle, which states that a system
in equilibrium will shift to a new equilibrium if a change in the
system occurs, in order to neutralize the imposed change. Thus,
if the product of the hydrolysis process is removed, new product
will be formed, pushing the hydrolysis to the product side of
the equation. SSF processes, however, are very complex and their
performance is highly dependent on the operating conditions and
used feedstock (Shadbahr et al., 2017; Singh et al., 2018).

Early mathematical models of the SSF process were developed
by Philippidis et al. (1992, 1993). In its essence, the proposed
SSF model is a coupling of the enzymatic hydrolysis of cellulose
and the fermentation of glucose to ethanol by microorganisms.
More recent contributions are made by Shadbahr et al. (2017),
Sakimoto et al. (2017), and Singh et al. (2018). While Shadbahr
et al. (2017) consider the SSF of cellulose, Singh et al. (2018)
consider the SSF of starch. The latter model can therefore be
applied to model SSF processes of starchy biowaste, like kitchen
waste and agricultural residues containing a, relatively, little
amount of lignocellulose. Hou and Bao (2018) modeled the SSF
of cellulose to citric acid but this model will not be discussed in
this contribution.

The kinetic SSF model of Shadbahr et al. (2017) is a
modification of the mathematical SSF models presented by
Philippidis et al. (1992, 1993) and Pettersson et al. (2002).
The enzymatic hydrolysis step of cellulose by cellulases is
modeled as the degradation of cellulose to cellobiose. The
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FIGURE 5 | Reaction flowsheet of the SSF of cellulose to ethanol and

biomass (Philippidis et al., 1992; Shadbahr et al., 2017).

amount of glucose that is formed by the exo- and endo-
glucanases is considered to be negligible. Cellobiose is eventually
converted to glucose by β−glucosidase (see Figure 5). The
formed glucose is subsequently fermented to ethanol (Et) and
is used for biomass (B) accumulation. Shadbahr et al. (2017)
additionally consider the fermentation of mannose to ethanol
(and biomass) while this C6-sugar is common in softwood and
other lignocellulosic material.

The conversion rate r1 of cellulose to cellobiose by the
exo- and endo-glucanases is given by (Prunescu and Sin, 2013;
Sakimoto et al., 2017; Shadbahr et al., 2017):

r1 =
κ[C] exp(−λt)

1+ [CB]/KCB
I,1 + [G]/KG

I,1

(

KEt
I,1

KEt
I,1 + [Et]

)

(14)

with κ the lumped specific rate constant of the exo- and
endoglucanases, and λ the rate of cellulose surface decrease
due to enzymatic activity. KEt

I is the inhibition constant of the
cellulases by ethanol. Bezerra andDias (2005) however found that
the inhibitory effect of ethanol on the enzymatic hydrolysis of
cellulose is very limited. The conversion rate r2 of cellobiose to
glucose by β−glucosidase is given by (Prunescu and Sin, 2013;
Shadbahr et al., 2017):

r2 =
k2[Et][CB]

KS,E(1+ [G]/KG
I,2)+ [CB]

(1− KEL,ad[L]) (15)

While the lignin-fraction of the lignocellulosic biomass is not
metabolized, its inhibitory effect on the enzymatic reactions
must also be accounted for. β−glucosidase is prone to adsorb
to lignin (L), resulting in a loss of free enzymes and thus
enzymatic activity (Philippidis et al., 1992; Shadbahr et al., 2017).
KEL,ad is the specific adsorption rate constant of the adsorption
of β-glucosidase enzyme to lignin. KS,E is the cellobiose
saturation constant for β-glucosidase. Michaelis-Menten kinetics
are assumed for the enzymatic processes and the adsorption
of the enzymes to the cellulose is modeled according to the
Langmuir isotherm (see Equation 1).

The volumetric consumption rates r3 and r4 by the
microorganism of glucose and mannose, respectively, are given
by (Philippidis et al., 1992; Sakimoto et al., 2017; Shadbahr et al.,
2017):

r3 =
[G]

[G]+ [M]

(

rB

YB,G
+ms[B]

)

(16)

r4 =
[M]

[G]+ [M]

(

rB

YB,M
+ms[B]

)

(17)

with rB the volumetric rate of biomass production and YBG the
yield coefficient of biomass frommetabolizing glucose. rB is given
by (Philippidis et al., 1992; Shadbahr et al., 2017):

rB = µm[B]

(

[G]+ [M]

KG + [G]+ [M]

)

(

KEt
I,B

KEt
I,B + [Et]

)

(18)

with µm the maximum specific growth rate of the used
microorganism and KEt

I,B the inhibitory effect of ethanol on
(the growth of) the microorganism. The mass balances of the
considered system components are given by (Philippidis et al.,
1992; Prunescu and Sin, 2013; Shadbahr et al., 2017):

d[C]

dt
= −r1 (19)

d[CB]

dt
= 1.056 r1 − r2 (20)

d[G]

dt
= 1.053 r2 − r3 (21)

d[M]

dt
= −r4 (22)

d[B]

dt
= rB (23)

d[Et]

dt
= 0.511 (r3 + r4) (24)

The SSF model presented by Singh et al. (2018) considers the
degradation of starch into glucose with the use of amylase.
The formed glucose is subsequently fermented into ethanol and
CO2 with the use of Saccharomyces cerevisiae. The enzymatic
saccharification of starch (St) into glucose (G) was modeled with
Michaelis-Menten kinetics (Singh et al., 2018):

rS = Vmax
[St]

KMM,S + [St]
(25)

with rS the rate of glucose formation from starch, Vmax the
maximum rate of glucose formation, and KMM,S the Michaelis-
Menten constant for the considered enzymatic reaction.
The mass balance of glucose in the system is given by
(Singh et al., 2018):

d[G]

dt
= rS − ru (26)

with ru the uptake rate of glucose by S. cerevisiae. The magnitude
of ru is defined by the amount of glucose that is used for ethanol
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production, the accumulation of biomass, and cell maintenance.
The specific growth rate µ of S. cerevisiae is modeled according
to Monod kinetics and is defined by (Singh et al., 2018):

µ = µm
[G]

KS + [G]
(27)

with µm the maximum specific growth rate of S. cerevisiae and
KS the saturation constant. Accordingly (Singh et al., 2018):

d[B]

dt
= µ[B] = µm

[G]

KS + [G]
[B] (28)

The mass balances of the system’s key components are defined by
(Singh et al., 2018):

d[St]

dt
= −rS = −Vmax

[St]

KMM + [St]
(29)

d[B]

dt
= µm

[G]

Ks + [G]
[B] (30)

d[Et]

dt
= qm

[G]

Ks + [G]
[B] (31)

d[G]

dt
= 1.11 rS − ru = 1.11 Vmax

[St]

KMM + [St]

−

(

1

YP,St

d[Et]

dt
+

1

YB,St

d[B]

dt
+mS[B]

)

(32)

Per 1.11 unit of hydrolysed cellulose, 1 unit of glucose is formed.
YP,St , YB,St are the product and biomass yield coefficients, linking
the observed production and growth rates to the substrate uptake
rate. mS is a similar coefficient, linking the consumption of
substrate to the rate of cell maintenance. The proposed model
was validated for the SSF of algal starch (i.e., starch produced by
algae) and was able to accurately predicted the considered key
system components (Singh et al., 2018).

Note that while Philippidis et al. (1992) and Shadbahr
et al. (2017) did consider the inhibitory effect of glucose on
the microbial growth rate, Singh et al. (2018) did not, by
assuming that the glucose accumulation in the reactor medium is
negligible. They additionally did not consider product inhibition
by the produced ethanol, assuming that the produced amount
is equally negligible. The model proposed by Singh et al. (2018)
can however by easily converted to match the outlay of the more
detailed SSF model proposed by Shadbahr et al. (2017) by adding
the appropriate inhibitory factors.

Both presented models mainly focus on the hydrolysis of
cellulose and the fermentation of glucose, or other C6-sugars.
However, as indicated by the SSF model developed by Prunescu
and Sin (2013), C5-sugars are also present in the system. In an
SSF process, these C5-sugars, like xylose, are not metabolized
during the fermentation step. The full potential of the hydrolysate
stream is thus not fully exploited. To circumvent this deficiency,
the simultaneous saccharification and co-fermentation process
was introduced.

3.3. Simultaneous Saccharification and
Co-fermentation
The main goal of a simultaneous saccharification and co-
fermentation (SSCF) process is the simultaneous, or co-
fermentation, of both C5- and C6-sugars. Most microorganisms,
however, either metabolize either C5- or C6-sugars, or display
a very distinct preference for one of the two. Advances in the
genetic modification of microorganisms, however, has allowed
for the development of microorganism strains that are capable
of processing both C5- and C6-sugars, without displaying a
preference for one of the two. Morales-Rodriguez et al. (2011),
for instance, consider the modified Escherichia coli ATCC-
55124 strain in their SSCF model, while Krishnan et al. (1999)
consider the modified S. cerevisiae 1400(pLNH33) strain. Chen
et al. (2018) on the other hand modeled a co-fermentation
process based on the co-culture of several genetically modified
S. cerevisiae strains, each one specialized in metabolizing one
particular type of substrate.

The SSCF model as proposed by Morales-Rodriguez et al.
(2011) is a combination of the enzymatic hydrolysis of cellulose as
presented by Kadam et al. (2004) and the co-fermentation model
as presented by Krishnan et al. (1999). While the enzymatic
hydrolysis of cellulose has already been extensively discussed in
the previous sections (see sections 3.1 and 3.2), this part of the
model will not be discussed in the context of SSCF processes.
The enzymatic hydrolysis process of hemicellulose with the use
of xylanases was extensively analyzed and modeled by Dutta
and Chakraborty (2015). This enzymatic process is, just like the
enzymatic hydrolysis of cellulose, a two-phase process during
which the insoluble solid, being (hemi-)cellulose, is decomposed
into smaller components that immediately dissolve in the reactor
medium. Dutta and Chakraborty (2015) model the adsorption of
the enzymes from the liquid phase on the solid phase according
to the Langmuir isotherm (see Equation 1).

Chen et al. (2018) modeled the subsequent co-fermentation
of cellobiose and xylose via a mixed culture of recombinant
S. cerevisiae species. The proposed model assumes that the
fermentation process follows Monod kinetics. The model
includes substrate competition and the inhibitory effect of both
substrates and products on the growth of the recombinant
S. cerevisiae. The model considers two simultaneously grown
S. cerevisiae strains, EJ2 and SR8, that metabolize cellobiose
and xylose, respectively. For the EJ2-strain, it was found that
the initial cellobiose concentration has a major impact on the
ethanol production by the recombinant S. cerevisiae strain.
Therefore, a S0 factor was included in the expression for the
ethanol production growth rate ν, rendering the following (semi-
empirical) correlation (Chen et al., 2018):

ν = exp(0.011[S0])
νm[S]

KM + [S]+ [S]2/KI

(

1−

(

[Et]

[Etm]

)γ)

(33)
with [S0] the initial cellobiose concentration, KM the Monod
constant, KI the inhibition constant, νm the maximum ethanol
production rate, [S] the current glucose and xylose concentration,
[Et] the ethanol concentration, [Etm] the lethal ethanol
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FIGURE 6 | Anaerobic digestion reaction system. With Fi the flow [m3
· d−1], Si the concentration of a dissolved component i in the liquid phase, and Xi the

concentration of a particle i in the liquid phase, both in [kg COD ·m−3], pi the pressure of component i [bar], Vi the volume of component i [m3], and ρj,T the rate of

reaction j at temperature T (Batstone et al., 2002).

concentration (above which the cells cease to grow), and γ a
constant linking ν and [Et].

Chen et al. (2018) noticed that the SR8 strain was unable to
uptake xylose when it was only in a small concentration present
in the medium. Additionally, when xylose levels were low and
xylose consumption had ceased, the consumption of ethanol
by the SR8 strain became prevalent. Both phenomena caused
the experimentally acquired data to differ from the predictions
made by the model. To rectify the discrepancy, the ethanol
consumption was accounted for in the model via curve fitting
and the introduction of two additional fermentation constants
b1 and b2. The inhibitory effect of xylose was neglected, as its
effect was much smaller as that of the produced ethanol. The
modified kinetic model of the substrate consumption is given by
the following correlation (Chen et al., 2018):

−
d[S]

dt
=

1

b1YEt,S

d[Et]

dt
+

1

b2YB,S

d[B]

dt
+ms (34)

with YEt,S the product yield constant, YB,S the cell mass
yield constant, [B] the cell concentration, and ms the
maintenance coefficient.

Another co-fermentation model was developed by
Sreemahadevan et al. (2018) and considers the co-culture
of S. cerevisiae and Scheffersomyces stipitis instead. The growth
kinetics were also derived from the Monod equation, which
was altered accordingly to account for product and substrate
inhibitory effects. The model proposed by Sreemahadevan et al.
(2018) displays high similarities with the model proposed by
Chen et al. (2018) and is therefore not further discussed.

3.4. Anaerobic Digestion
The anaerobic digestion of waste water treatment sludge, and
(solid) biowaste is being applied more and more often. The
main products obtained from an anaerobic digestion process
are biogas, compost, and fertilizers (Pastor-Poquet et al., 2018).
The most commonly used process model is the IWA Anaerobic
Digestion Model No 1 (ADM1), compiled by Batstone et al.
(2002). Both biochemical and physico-chemical processes are
considered. The anaerobic digester is modeled as a CSTR with
a fixed volume (Fout = Fin) (see Figure 6). In the context of
biochemical reactions, only the biodegradable substrate COD
(Chemical OxygenDemand) input is considered. All intracellular
reaction are modeled via Monod-kinetics. The physico-chemical
reactions in the liquid phase can be mathematically formulated
both using algebraic or differential equations. If it is opted for the
latter option, themodel is more prone to become stiffer due to the
large number of differential equations. The ADM1 as presented
by Batstone et al. (2002) considers 24 components, 19 reactions,
and the time unit is days (d). The mass balance of a component i,
in the liquid phase, is defined by:

dSl,i

dt
=

FinSin,i

Vl
−

FoutSout,i

Vl
+

19
∑

j=1

ρjνi,j (35)

with ρj kinetic rate coefficients and νi,j the biochemical rate
coefficient of process j for the formation of component i.

The ADM1 as presented by Batstone et al. (2002) has
already been applied (and adapted) to a multitude of processes.
Biernacki et al. (2013) applied the ADM1-model to the anaerobic
digestion of grass, maize, silage, and industrial glycerine. Arnell
et al. (2016) modeled the co-digestion of multiple feedstock
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by including co-digestion in the ADM1-model. A hydrogen-
production model was developed by Ntaikou et al. (2010) based
on the ADM1-model, while Zhao et al. (2019) adapted the
ADM1-model for the production of bio-methane from food
waste. The structural and practical identifiability of the ADM1-
model was assessed by Nimmegeers et al. (2017).While structural
identifiability refers to whether or not the model’s structure
allows for the unique estimation of the underlying model
parameters, practical identifiability refers to the problem of
finding accurate parameter estimates considering the (practical)
limitations of the model input and measuring conditions. Several
more examples of the application, adaptation, and extension
of the ADM1-model are available in literature, but are not
included in this review for the sake of clarity. The interested
reader is referred to, i.a., García-Diéguez et al. (2013) and
Song et al. (2018).

4. THERMOCHEMICAL CONVERSION
PLATFORMS

One of the major disadvantages of the previously discussed
biochemical conversion platforms are their inability to process
the lignin fraction of (lignocellulosic) biomass. The lignin
fraction even displayed an inhibitory effect on the conversion of
cellulose and hemicellulose. Removing lignin from the feedstock
prior to its conversion is costly and additionally inherently results
in an unwanted loss of carbon (Li et al., 2018). Biorefineries which
employ a thermochemical conversion platform decompose the
entire biomass feedstock in its basic structural elements or
components, which are subsequently converted to the desired
products via tubular flow reactors and catalytic synthesis (Baliban
et al., 2013; Michailos et al., 2017). This results in a more efficient
usage of the biomass feedstock in comparison to the biochemical
conversion platforms.

Two main thermochemical conversion techniques will be
discussed in this section, with a focus on two thermochemical
pretreatment steps: fast pyrolysis and gasification. Both
techniques are based on the breakdown of the biomass with
the use of added heat. The different process conditions of
pyrolysis and gasification processes result in the formation
of different intermediate products. A (fast) pyrolysis process
transforms the biomass, in the absence of oxygen, into non-
condensable gases (like CO, CO2, and H2), tar or bio-oil, and
biochar or solid carbon. (Fast) pyrolysis processes occur at
relatively low temperatures (between 300 and 600 ◦C) and are
characterized by a high liquid fuel yield, i.e., bio-oil (Anca-
Couce and Scharler, 2017; Goyal and Pepiot, 2017). Bio-oil
is considered to be a suitable replacement for fossil fuels and
displays many advantageous properties, like its ease of storing
and transportation (Cai et al., 2018). Gasification processes
are in their essence pyrolysis processes, but occur at higher
temperatures (800–1,200 ◦C) and mostly in the presence of
oxygen (Goyal and Pepiot, 2017; Jin et al., 2017). Because of
the higher process temperatures, the yield of gaseous products
is higher than in the case of pyrolysis processes. The produced
syngas mainly consists of H2, CO, CO2, and CH4.

4.1. Fast Pyrolysis
During a pyrolysis process, the biomass feedstock is
depolymerized in the absence of oxygen. The pyrolysis of
(lignocellulosic) biomass is a heterogeneous endothermic
reaction, with increasing reaction rate with temperature
(Papari and Hawboldt, 2015; Dhyani and Bhaskar, 2018).
Four types of pyrolysis processes can be distinguished: (i)
Fast pyrolysis, (ii) Slow pyrolysis, (iii) Intermediate pyrolysis,
and (iv) hydropyrolysis. The first three processes occur in
an inert nitrogen environment, while the latter occurs in a
reductive hydrogen environment. The adjectives fast, slow, and
intermediate relate to the heating rate used during the process.
The faster the heating rate of the biomass is, the more liquid
bio-oil is produced. Slower heating rates enable the occurrence
of more unwanted secondary reactions and the formation
of non-condensable compounds from the primary pyrolysis
products (Dhyani and Bhaskar, 2018). Fast pyrolysis processes
are characterized by high heating rates, as the biomass is rapidly
heated to high temperatures. While this pyrolysis process type
yields the most bio-oil, it will be the main focus of this section.

Commonly used pyrolysis reactors include fixed-, bubbling,
and boiling bed reactors (Isahak et al., 2012; Dhyani and
Bhaskar, 2018). These reactor types have already been extensively
analyzed and modeled in the context of the pyrolysis of coal.
Due to the high resemblance of coal and lignocellulosic biomass,
early (lignocellulosic) biomass models are unsurprisingly
heavily influenced by and based on the already available
coal pyrolysis models. For instance, Michailos et al. (2017)
modeled and compared the fast pyrolysis of bagasse followed
by hydroprocessing, and the gasification of bagasse followed by
Fischer-Tropsch synthesis. Both processes have already been
previously successfully applied for the production of liquid fuels
from coal.

Other earlier model contributions include the mathematical
models of the fast pyrolysis of a single wood particle by
Rabinovich et al. (2009) and the fast pyrolysis of biomass in
circulating fluidized bed reactors by Van de Velden et al. (2008).
Anca-Couce et al. (2013) introduced a multi-scale model of the
pyrolysis of biomass in a fixed-bed reactor. Lerkkasemsan and
Achenie (2014) introduced a fuzzy modeling framework and
applied it to the pyrolysis of biomass.

The fast pyrolysis model proposed by Rabinovich et al. (2009)
consists of three submodels: (i) A kinetic model of the pyrolysis of
the different components [cellulose (C), hemicellulose (HC), and
lignin (L)] of the biomass, (ii) A thermal model for the heating of
one biomass particle in the boiling bed reactor, and (iii) A model
of the biomass particle motion in the free reactor space. The
diameter of the biomass particle is assumed to be smaller than
1 mm because the goal of the biomass pyrolysis is the production
of liquid bio-oil. Therefore, the heating rate of the biomass should
be high. Figure 7 represents the reaction flowsheet considered by
Rabinovich et al. (2009). The kinetic parameters ki are assumed
to obey Arrhenius law:

ki = Ai exp

(

−Ea,i

RT

)

(36)
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FIGURE 7 | Reaction flowsheet of the biomass pyrolysis process (adapted

from Rabinovich et al., 2009).

with Ai the pre-exponential factor, Ea,i the activation energy
of the i-th reaction, and R the universal gas constant. k1–k4
are separately determined for each biomass component. Nunes
(2015) and Wang et al. (2017) extended the Arrhenius law to the
fast pyrolysis of lignocellulosic biomass via the introduction the
biomass conversion magnitude α, which is also a function of the
reactor temperature T (Nunes, 2015; Wang et al., 2017):

dα

dt
= k(T)f (α) (37)

= A exp

(

−Ea

RT

)

f (α) (38)

with k(T) the reaction rate, according to the Arrhenius law
as presented in Equation (36). Equation (37) is valid for an
isothermal reaction. In the case of a non-isothermal reaction with
a linear heating rate dT/dt = β , Equation (37) is replaced by
(Nunes, 2015; Wang et al., 2017):

dα

dT
=

dα

dt

dt

dT
=

1

β
A exp

(

−Ea

RT

)

f (α) (39)

f (α) models the biomass pyrolysis reaction. The most commonly
used model is the first-order reaction model (Cai et al., 2013;
Wang et al., 2017): f (α) = (1 − α)n (with n = 1). The
thermogravimetric analyses performed by Van de Velden et al.
(2008) confirm this assumption. The reaction flowsheet as
modeled by Van de Velden et al. (2008) is represented in Figure 8.
The mass balances of the biomass (BM), non-condensable gases
(G), bio-oil (BO), and char (C) are given by (Van de Velden et al.,
2008):

dmBM(t)

dt
= −(k1 + k2 + k3)mBM(t) = −k mBM(t) (40)

dmG(t)

dt
= k1 mBM(t)+ k4 mBO(t) (41)

dmBO(t)

dt
= k2 mBM(t)− k4 mBO(t) (42)

dmC(t)

dt
= k3 mBM(t) (43)

More recent contributions in the field of (fast) pyrolysis modeling
include the Aspen Plus model for the pyrolysis of municipal
green waste by Kabir et al. (2015), the kinetic model of the
fast pyrolysis of bagasse in a fluidized bed reactor by Michailos
(2018), and the mathematical model of the bio-oil production
via the fast pyrolysis of bagasse in a circulating fluidized bed

FIGURE 8 | Reaction flowsheet of the biomass pyrolysis process (adapted

from Van de Velden et al., 2008).

reactor by Treedet et al. (2017). Ciesielski et al. (2018) presented
a multi-scale model of the catalytic fast pyrolysis of biomass.
The considered process scales by Ciesielski et al. (2018) range
from the atomistic scale to the reactor scale. Other contributions
include Matta et al. (2017) and Ranzi et al. (2017a,b). Several
comprehensive review papers have already been published on
the subject biomass pyrolysis. The interested reader is referred to
Isahak et al. (2012), Sharma et al. (2015), Papari and Hawboldt
(2015), and Dhyani and Bhaskar (2018). Additionally, SriBala
et al. (2019) recently presented a review on the state of the
art in measuring fast pyrolysis kinetics. This comprehensive
review is especially useful in the context of further extending
the already available pyrolysis model collection, and validating
existing models with experimental data.

4.2. Gasification
Gasification processes are thermochemical conversion processes
that occur at higher temperatures (800–1,200◦C) than pyrolysis
processes and in the presence of oxygen. The main product
obtained during gasification processes is syngas, mainly
consisting of H2, CO, CO2, CH4, and other lightweight
hydrocarbons. Syngas can be directly used as a gaseous fuel, but
can also be transformed into other products, like alcohols and
acids, using (bio-)chemical processes (Goyal and Pepiot, 2017;
Hejazi et al., 2017a).

While the gasification process is in its essence a rigorous
pyrolysis process, both processes display a high level of
resemblance. The developed kinetic models describing the
gasification of biomass are therefore often very, to entirely,
similar to those describing the (fast) pyrolysis of the same
biomass feedstock. The kinetic biomass gasification model
developed by Hejazi et al. (2017a), for instance, considers a
two-step gasification mechanism which is very similar to the
reaction flowsheet displayed in Figure 8. The second step in the
gasification process as modeled by Hejazi et al. (2017a) converts
the bio-oil fraction entirely into non-condensable gases. This so-
called thermal bio-oil cracking during the secondary pyrolysis
reactions is one of the main differences between pyrolysis and
gasification processes. The stoichiometry of the bio-oil (BO)
cracking process is given by (Hejazi et al., 2017a):

Frontiers in Sustainable Food Systems | www.frontiersin.org 11 February 2020 | Volume 4 | Article 11

https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org
https://www.frontiersin.org/journals/sustainable-food-systems#articles


De Buck et al. Modeling Biowaste Biorefineries

FIGURE 9 | Syngas fermentation process flowsheet (adapted from Pardo-Planas et al., 2017).

BO → λCOCO+λCO2CO2+λH2H2+λCH4CH4+λBOBO (44)

with λi the corresponding stoichiometric coefficients. The
operating conditions, like residence time in the reactor and
temperature, have an influence on the stoichiometric coefficients.
Depending on these operating conditions, the remaining bio-
oil fraction can fluctuate between 22 and 0% (Hejazi et al.,
2017a). The cracking process is modeled as a first-order process,
following the Arrhenius law. The primary reactions, which
convert the biomass stream into char, non-condensable gases,
and bio-oil, are also modeled as first-order reaction (Van de
Velden et al., 2008; Hejazi et al., 2017a). The model presented
by Hejazi et al. (2017a) considers a dual fluidized bed reactor
and is compared and validated based on the experimental results
obtained from a pilot set-up (Hejazi et al., 2017b).

Other contributions include the kinetic-compartmental
model for the gasification of potassium-containing cellulose
(Egedy et al., 2018), the compact kinetic biomass gasification
model (Goyal and Pepiot, 2017), and the multi-scale model of
biomass gasification in a steam-air blown bubbling fluidized bed
reactor (Bates et al., 2017). Due to their high resemblance to the
already discussed kinetic models in section 4.1, these models will
not be further discussed.

5. HYBRID CONVERSION PLATFORMS

The main disadvantage of biochemical degradation and
conversion processes is their inability to process the lignin
fraction of the biomass feedstock. This inherently results
in a loss of carbon and thus an inefficient feedstock usage.
Purely thermochemical conversion processes, on the other
hand, are characterized by their low product selectivity and
thus relatively low yields. Hybrid biorefineries employ both
previously introduced bioconversion platforms, i.e., biological
and thermochemical conversion platforms, simultaneously.

By using a thermochemical degradation step (like pyrolysis or
gasification), followed by a biochemical conversion step, the
usage of the biomass feedstock, and the production of the desired
products, is significantly increased. These characteristics make
the two-platform biorefinery perhaps the most integrated design
(Pardo-Planas et al., 2017; Michailos et al., 2019).

Pardo-Planas et al. (2017) presented an Aspen Plus model
of the production of ethanol and acetic acid with the use
of syngas fermentation. The considered biomass feedstock is
switchgrass (see Table 2). The process flowsheet is represented
in Figure 9. The modeled process consists of a gasification unit,
a fermentation unit, and a downstream processing unit. The
model for the gasification unit was based on an Auger gasifier
(see Isahak et al., 2012; Jahirul et al., 2012; Sharma et al., 2015;
Dhyani and Bhaskar, 2018). Auger gasifiers have distinguished
drying, pyrolysis, and combustion zones. This allows for a tight
control of how much feedstock carbon is converted into char.
The fermentation module was modeled in Aspen Plus with
the use of a stoichiometric reactor. The reactor operates at
ambient pressure and 37◦C. Acetogenic bacteria, like Clostridium
ljungdahlii, Clostridium carboxidivorans, Alkalibaculum bacchi,
were present in the reactor and catalyzed the following reactions
(Pardo-Planas et al., 2017):

4CO+ 2H2O → CH3COOH + 2CO2 (45)

2CO2 + 4H2 → CH3COOH + 2H2O (46)

6CO+ 3H2O → C2H5OH + 4CO2 (47)

2CO2 + 6H2 → C2H5OH + 3H2O (48)

Michailos et al. (2019) developed another Aspen Plus model of
a syngas fermentation process, but modeled the gasifier as a
circulating fluidized bed reactor and used a CSTR reactor for the
fermentation process. The considered acetogenic bacterium was
C. ljungdahlii, which converts, respectively, 70 and 50% of theCO
and H2 present in the syngas to ethanol (see Equations 45–48).
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6. SUPPLY CHAIN NETWORK MODELS

In order to accurately predict the economic feasibility of any
biorefinery design, comprehensive process models do not suffice.
The sustainability and economic feasibility of the supply of the
required feedstock to the biorefinery is additionally of crucial
essence when designing and operating a biorefinery. Several
biorefinery supply chain models have already been published.
The most recent ones include, amongst others, the contributions
of Wang et al. (2015), Cambero et al. (2016), Martinkus et al.
(2018), and Jonkman et al. (2019).

Jonkman et al. (2019), for instance, presented a decision
support tool for the sustainable design of a biorefinery
supply chain network, taking local actors and their individual
objectives into account. Jonkman et al. (2019) additionally states
that previous biomass supply chain design did not take the
competition in cultivation between different types of feedstocks
into account, but rather the competition in usage (or the other
way around). Both options are however simultaneously available
to the farmers producing the biomass feedstocks and must
therefore be taken into account. Thus, a competition exists
between what is most beneficial for the biomass producers and
the biorefinery itself. When designing a biorefinery, it is therefore
of crucial importance that possible future suppliers are persuaded
to produce the biomass the biorefinery requires by assuring that
this scenario would also be the most beneficial one for them.
The biomass supply chain modeling approach as presented by
Jonkman et al. (2019) is based on allocating the benefits of the
biorefinery supply chain as fairly as possible over all actors, based
on collaborative game theory. Jonkman et al. (2019) applied their
developed modeling framework and decision support tool to the
supply chain design of biorefinery using sugars beets as feedstock,
located in the Netherlands.

Wang et al. (2015) on the other hand provided a mathematical
model for the growth of energy crops. For the sake of simplicity,
Wang et al. (2015) does not consider temperature, fertilizers, and
water as potential limiting factors. The potential growth rate of
energy crops (EC) is then defined by (Wang et al., 2015):

GEC = ǫφfPR(1− exp(−k− LAI))HI (49)

with GEC the energy crop growth index, ǫ the crop radiation
utilization factor, φ the solar radiation, fPR the amount of
radiation that is used in photosynthetic processes, k the leaf
canopy extinction coefficient, LAI the leaf area index, and HI the
harvest index (Wang et al., 2015).

Another possibility of estimating the expected annually
biomass harvest, is to incorporate Geographic Information
Systems (GIS) into the strategic planning and supply chain
developing process. Schröder et al. (2019) presented an integrated
strategic planning model which takes the configuration, scaling,
and siting of a multi-product lignocellulosic biorefinery
simultaneously into account. A combined evolutionary
strategy/Non-Linear-Programming (NLP) algorithm is
presented which is used to generate a set of optimal feasible
solutions for the siting, configuration, and scale of the
biorefinery plant. The return on investment (ROI) is used
as the optimization objective:

maxROI =
profit

investment
=

rev− ic− oc− irc

inv
(50)

The revenue rev is dependent on the capacity of the facility,
and thus the amount of product that can be produced, the
types of products that are produced, and their market sales
prices. ic represents the cost of the biomass purchase and the
transportation costs from a supply point to the biorefinery
facility. Generally, a fixed average transportation cost is used
per amount of biomass transported and distance traveled. The
distance between a supply point and the biorefinery facility
is calculated using the Minkowski distance. The operating
costs oc are dependent on the amount of energy that is used
(and produced) by the plant, and the materials that are used
during the production process. Investment related costs irc are,
maintenance, insurance, and overhead costs. They represent a
certain percentage of the total investment cost inv. Finally, the
investment cost inv is scaled from a standardized investment cost
for 1 ton of biomass. The facility size and capacity needed for 1
ton biomass is scaled up to the required facility size with the use
of an up-scaling coefficient which takes the so-called economy of
scale into account (Schröder et al., 2019).

7. DISCUSSION

Of the biological conversion platforms, anaerobic digestion
processes are a well-known and -exploited technology but its
development varies across the European countries. Germany,
Switzerland, Czech Republic, Luxembourg, and Austria are at
the forefront of the exploitation of anaerobic digestion process
(or biogas plants), with 136–48 biogas plants per 1 million
inhabitants (EBA, 2018). The economic application of other
biological conversion platform processes are in most cases still
confined to pilot-scale set-ups. Thermochemical techniques,
however, are already applied in commercial-scale biorefinery
plants. This application gap is also visible in the availability of
comprehensive process models. While the models presented in
section 3 are highly based on assumptions, and ideal Michaelis-
Menten and Monod kinetics, the models presented in section 4
are more accurate, based on experimental data, and a relatively
thorough process knowledge. Additionally, in the context of the
thermochemical conversion of biomass, it was possible to adapt
the already available gasification and pyrolysis models for coal to
suit the biomass feedstock, due to its high similarity. The already
available (Computational Fluid Dynamics) gasification and
pyrolysis reactor models only benefit the accelerated commercial
exploitation of gasification and pyrolysis processes. These
models, amongst others, allow for accurate temperature control
in the reactors. The few disadvantages of the thermochemical
conversion platform include the low product selectivity of
the subsequent conversion processes (not discussed in this
contribution) and the relatively high energy consumption.

Although the biological conversion platform uses familiar
fermentation-based conversion processes and displays
exceptionally high product selectivity in comparison to the
catalytic driven conventional conversion processes used in
purely thermochemical conversion platforms, its economic
exploitation is still hampered by its multiple disadvantages. Its
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inability to process the lignin fraction of the feedstock introduces
a significant inherent feedstock usage inefficiency and the lack
of comprehensive mechanistic knowledge and data on the
occurring processes, delays the development of extensive process
models. The absence of thorough predictive models puts possible
investors off due to the unavailability of return on investment
assurance. The additional high initial investment cost does not
contribute to the already reticent behavior of investors.

The hybrid conversion platform seems to be the perfect
combination of both platforms, but is still in its initial
development phase. Hybrid conversion platform models are still
limited and are often restricted to only Aspen Plus simulations.
The commercial exploitation of the hybrid conversion platform,
or any other one, can only benefit from increased modeling
efforts and the collection and communication of experimental
data, obtained from pilot set-ups. Comprehensive processmodels
with a high predictive ability will only aid in increasing the
confidence of investors in these processes, and thus the further
expansion and application of biorefinery processes.

The modeling of biorefinery supply chain networks is steadily
gaining interest (Martinkus et al., 2018; Sharma et al., 2018). Due
to general concerns regarding the overall sustainability of using
single food crops as biorefinery feedstocks, research focusses
have gradually shifted toward the use of biowaste streams as
biorefinery feedstocks (see section 2.2). Biowaste streams, in
comparison to the uniform single food crop feedstocks, are
unsystematic and flexible by nature. Therefore, it is essential
that biorefinery exploiters are able to predict the availability of a
biowaste feedstock and its overall composition. Predicting both
of these aspects is very challenging since they are dependent
on a multitude of factors. Climate, harvest time, seasonality,
geographical location, and competing buyers for the biowaste
in question have a major influence on the availability and/or
composition of a certain feedstock. Additionally, if the economic
viability of a biorefinery is considered within its local setting,
logistics and the (already) available infrastructure will play a key
role. Coupling supply chain models with conversion models is,
however, challenging. This is oftenmainly due to discrepancies in
supply chain models outputs and the required conversion model
inputs, and significantly different time scales. Conversion models
require fairly detailed feedstock composition input, mostly in
terms of (hemi-)cellulose and lignin content, while supply chain
network models are often limited to only predicting the tonnages
of a more general feedstock (e.g., pruning waste) that can be
expected during a certain time period. These so-called general
feedstocks mostly consist of a mixture of several similar species
which are not necessarily similar in composition. For instance,
the amount of pruning waste sourced from the trees in a certain
area could be estimated based on GIS-information but this
feedstock will not distinguish between different tree species.
Table 2, however, clearly indicates the differences in composition
of several tree species. Other issues that arise when coupling
supply chain network models with conversion models, are due
to the significantly different time scales of both model-types.
While supply chain network models can consider time spans up
to a year (and possibly more), most conversion models consider
time spans from less than a few hours up to a few hundred

hours (with anaerobic digestion processes as an exception,
sometimes reaching residence times up to 100 days) (Batstone
et al., 2002; Pastor-Poquet et al., 2018). Coupling a supply chain
model with conversion models could be beneficial for strategic
planning purposes like designing the process layout and scale
of a to-be-built biorefinery and/or planning process cycles in an
operational biorefinery.

Coupling issues are not only limited to supply chain models
and conversion models. The mutual coupling of different
conversion models can also give rise to similar issues. When
coupling any conversion models, it is essential that the aspects
mentioned above, i.e., time scale and discrepancies in model
outputs and inputs, are considered. The main issues that may
arise when coupling two conversion models will most likely be
the result of the latter. For instance, furfural (F) is a common by-
product of the dilute acid pretreatment of a biomass feedstock.
This pretreatment step can, e.g., precede an enzymatic hydrolysis
process or an SSF process. The inhibitory effect of furfural on the
enzymatic hydrolysis is considered in the enzymatic hydrolysis
model, as proposed by Kadam et al. (2004) and Prunescu and
Sin (2013). However, its inhibitory effect is not considered in
the SSF model, as proposed by Shadbahr et al. (2017) and Singh
et al. (2018), nevertheless the SSF process also encompasses
an enzymatic hydrolysis process. Thus, if a conversion model
describing a dilute acid pretreatment process (not included in this
contribution) would be coupled with the presented SSF-model
(as proposed by Shadbahr et al., 2017; Singh et al., 2018), the
lack of the incorporation of the inhibitory effect of furfural in the
latter, should be addressed accordingly. Moreover, while most of
these models are only validated for a few distinct feedstocks, the
identification and validation of the kinetic model parameters for
other feedstocks may be lacking or insufficient. In these cases,
there will be a need of sufficient experimental data to identify
and/or validate the required kinetic parameters.

8. CONCLUSION

The general support for a more sustainable process industry has
never been this high yet, but the considered processes are leaping
behind. Biorefinery processes convert a biomass feedstock into
liquid fuels and chemical compounds, effectively replacing
fossil fuels. The commercial exploitation of any biorefinery
type however is still very limited. The lack of thorough
process knowledge and the accompanying return on investment
uncertainty causes many investors to withhold. The development
and use of process models to predict the (economic) output of the
considered biorefinery process can aid in guiding investors and
policy makers toward investing more in biorefinery plants.

This contribution gives an overview of the available
biorefinery models, subdivided according to the used conversion
platform (thermochemical, biological, or hybrid). Biological
(or biochemical) conversion platforms use enzymes and
microorganisms to convert a biomass feedstock to liquid fuels
and chemical compounds. These processes display a high product
selectivity and are similar to other already commonly used and
available bioproduction processes. The commercial application of
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the biological conversion platform is however still very limited,
due to the lack of mechanistic knowledge of the enzymatic
and microorganism’s activity and the shortage of experimental
data. The conversion platform’s inability to process the lignin
fraction of the biomass (which even has an inhibitory effect
on the (hemi-)cellulose conversion processes) causes the carbon
efficiency of these processes to be relatively low. Available models
are relatively limited and often assume ideal reaction kinetics like
Michaelis-Menten and Monod kinetics.

Thermochemical conversion processes are based on the
degradation of the biomass feedstock with the use of thermal
energy. The obtained products depend on the severity of the
thermal degradation process and range from char, bio-oil,
and non-condensable gasses to syngas (mainly consisting
of H2, CO, CO2, and CH4). The degradation products are
subsequently converted into the desired biorefinery products
using conventional catalytic conversion processes, like Fischer-
Tropsch synthesis, hydroprocessing, etc. Thermochemical
conversion processes are able to utilize the entire biomass
feedstock, but the conversion processes display a limited
product selectivity. The used process models are often based
on the fossil process analogs, using coal as a feedstock. Due
to the high structural and functional similarities between coal
and lignocellulosic biomass, the already existing gasification
and pyrolysis models for coal could easily be extended to a
lignocellulosic feedstock.

Hybrid conversion processes use thermal energy to degrade
the entire biomass feedstock, but subsequently use fermentation
processes to convert the obtained syngas into liquid fuels
and chemical compounds. The hybrid conversion platform is
a promising conversion platform, displaying a high carbon
efficiency coupled with a high product selectivity. The available
models for this type of conversion platform are however
still limited.

Finally, a supply chain model was presented, stressing the
importance of including the bigger picture when planning
the design of an economically sustainable biorefinery. A solid
feedstock supply is of key essence and the objectives of (local)
biorefinery actors should not be overlooked.

9. FURTHER RESEARCH

While the pyrolysis or gasification of biomass is highly similar
to the thermochemical treatment of coal, a significantly large

amount of accurate mathematical and kinetic models is already
available for the thermochemical conversion platform. Existing
models considering coal were easily adapted to a biomass
feedstock, quickly rendering a wide range of (basic) biomass
gasification and pyrolysis models. Contributors considering
the biological conversion of (lignocellulosic) biomass, however,
did not have the luxury of already possessing a relatively
large amount of basic models. Additionally, the mechanistic
knowledge of the microorganisms and enzymes catalyzing the
biological and biochemical degradation and conversion processes
is still too limited.

While the main knowledge gap is in regard to the biological
conversion platform, future research should mainly focus on
these processes. The increased acquirement of experimental data
and mechanistic knowledge is of key importance if the biological
processes modeling efforts are to be intensified. Additionally,
further expanding and elaborating the hybrid conversion concept
is deemed to be beneficial for the short- and long-term
commercial exploitation of sustainable biorefinery processes.

Finally, the lack of integrated biorefinery models is one
of the most striking gaps in this contribution. All presented
mathematical and kinetic process models are limited to only one
process step. The models presented in the section regarding the
hybrid conversion platforms are quoted to be the most integrated
design modeled thus far. The feedstock usage efficiency of
this conversion platform is indeed the most efficient one in
comparison with the other two conversion platforms, but an
integrated biorefinery also consider the continued processing of
the biorefinery waste streams and the produced (by-)products.
Intensified modeling efforts in the context of integrated
biorefinery design is therefore considered to be highly desirable.
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NOMENCLATURE

Symbol Meaning

[. . .] Concentration

Ai Pre-exponential factor of reaction i

Ea,i Activation energy of reaction i

EiC Enzyme (i) - cellulose complex

Fin Inlet flow

Fout Outlet flow

ki Specific reaction rate of reaction i

Ka
I,i Inhibitory constant of component a on reaction i

KWZ,ad Adsorption equilibrium coefficient of element W on Z

KM,i Monod coefficient of reaction i

KMM,i Michaelis-Menten coefficient of reaction i

KS,W Saturation constant of component W

κ Lumped kinetic coefficient

ms Cell maintenance coefficient

mW Mass of component W

ri Reaction rate of reaction i

R Universal gas constant

[S0] Initial concentration of S

[Sin] Inlet concentration of S

[Sout ] Outlet concentration of S

YW,Z Yield coefficient: amount of W obtained for each amount of Z consumed

Elements Meaning

B Biomass

C Cellulose

CB Cellobiose

E Enzyme

Et Ethanol

F Furfural

G Glucose

HX Xylan

L Lignin

M Mannose

P General product

S General substrate

St Starch

X Xylose
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