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Over semi-arid agricultural regions such as the U.S. Southern High Plains (SHP)

producers of dryland crops need to know which management practices increase

yields and decrease production risk. Here, a modeling approach is used to explore

management options (MO) that increase dryland cotton yields and estimate those

practice’s yield risk effects under current SHP climate conditions. To simulate current

dryland yield variability, dense distributions of lint yield outcomes were generated using

the CROPGRO-Cotton crop model driven by weather inputs from 21 SHP weather

stations during 2005–2016. Management effects were explored by repeating simulations

over 32 MOs defined by 4 planting dates, 4 planting densities, and applying or not

applying nitrogen. Both earlier planting date and decreased plant density increased

median simulated yields, with earlier planting having the greatest positive yield effects.

The simulated MO that produced the highest median lint yields planted on the earliest

planting date (May 15), at the lowest density (3 plants m−1), and applied no nitrogen.

Recent SHP field studies generally confirm the earlier planting date effect, but suggest

insignificant yield effects for different seeding rates. Even so, negligible yield effects and

lower input costs favor lower seeding densities from a profit standpoint. These crop

simulations demonstrate a modeling-based method for climate-related agricultural risk

management, and suggest mid-May planting dates and low plant densities as part of

management practices that increase yields and profits in dryland SHP cotton production.

Keywords: managing to climatology, U.S. southern high plains, crop models, DSSAT CROPGRO-cotton,

agricultural risk management, cotton production

INTRODUCTION

Although the Southern High Plains (SHP) of west Texas are home to some of the United States
most concentrated upland cotton (Gossypium hirsutum L.) production, the region’s environment
is not ideally suited to growing cotton. Without irrigation, SHP summers are generally dry
relative to conditions that maximize yield. During 1974–2005, the region’s median May–Sept.
rainfall was 29.2 cm (Mauget et al., 2013), which is less than half of the 74.0 cm estimated by

https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org/journals/sustainable-food-systems#editorial-board
https://www.frontiersin.org/journals/sustainable-food-systems#editorial-board
https://www.frontiersin.org/journals/sustainable-food-systems#editorial-board
https://www.frontiersin.org/journals/sustainable-food-systems#editorial-board
https://doi.org/10.3389/fsufs.2019.00120
http://crossmark.crossref.org/dialog/?doi=10.3389/fsufs.2019.00120&domain=pdf&date_stamp=2020-01-23
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org
https://www.frontiersin.org/journals/sustainable-food-systems#articles
https://creativecommons.org/licenses/by/4.0/
mailto:steven.mauget@.ars.usda.gov
https://doi.org/10.3389/fsufs.2019.00120
https://www.frontiersin.org/articles/10.3389/fsufs.2019.00120/full
http://loop.frontiersin.org/people/765820/overview
http://loop.frontiersin.org/people/849321/overview
http://loop.frontiersin.org/people/793035/overview


Mauget et al. Optimizing SHP Dryland Cotton Production

Wanjura et al. (2002) to achieve maximum SHP lint yield. In
addition, summer temperatures are generally considered to be
cool relative to the requirements for cotton growth (Morrow
and Kreig, 1990; Howell et al., 2004; Tolk and Howell, 2010).
With enough soil moisture, SHP cotton lint yields are positively
correlated with the cumulative exposure to daily average
temperatures exceeding a base temperature during the summer
growing season (Peng et al., 1989; Wanjura et al., 2002). For
cotton, this threshold is typically 15.6◦C (60.0 ◦F), and the
resulting seasonal accumulations are referred to as growing
degree days (GDD). Relative to the Rolling Plains region to the
east, SHP cotton production areas are cooler due to the effects of
higher elevation. As a result, the SHP accumulates fewer summer
GDD, has generally later spring planting dates due to cooler soil
temperatures, and has shorter summer growing seasons (Mauget
et al., 2017; hereafter M17).

Cool growing conditions can reduce SHP cotton yields, but
themost limiting factor in dryland production is summer rainfall.
In addition, as in many other semi-arid agricultural regions,
the unpredictable variation of growing season rainfall makes it
difficult to manage SHP dryland crops. Although forecasts of
growing season conditions issued before planting might allow
producers to exploit wet summers or to insure against drought,
there is currently little forecast skill for predicting U.S. summer
precipitation (Livezey and Timofeyeva, 2008; Peng et al., 2012).
Given the inability to forecast summer rainfall, Mauget et al.
(2009) proposed the principle of “managing to climatology”
(MtC), i.e., identifying and applying management practices for
dryland crops that are adapted to a region’s current climate
conditions. In the context of the genetics X environment X
management research framework (Hammer et al., 2014; Hatfield
and Walthall, 2015) MtC might be understood as a simulation-
based approach for optimizing crop management to a region’s
climate environment.

Because cotton yield variation is traceable in large part to
water stress (Loka et al., 2011; Ullah et al., 2017; Khan et al.,
2018), the timing and amount of growing season rainfall is
the leading driver of yields in semi-arid dryland agriculture.
As a result, identifying a climate-optimal management practice
from a range of possible practices requires a broad sampling of
seasonal rainfall outcomes and the resulting yields under each
practice. If an additional goal is to estimate a practice’s climate-
associated risk with reasonable certainty, the sampling of rainfall
variation and yield outcomes should be large and independent.
Such yield ensembles could be produced through field trials,
but generating large samples of dryland yields from multiple-
year field experiments over a range of management options
would require extensive labor, land, and financial resources.
An alternative approach is to simulate dryland production with
crop models. As in M17 and earlier work (Mauget et al.,
2009, 2013), driving a crop model with weather inputs from
numerous weather stations and then aggregating the resulting
yields into distributions is a central feature of theMtC simulation

Abbreviations: WTM, West Texas Mesonet; SHP, Southern High Plains;

MtC, Managing to Climatology; DSSAT, Decision Support System for

Agrotechnology Transfer.

approach used here. To broadly sample current summer rainfall
outcomes over the SHP production region (Figure 1), weather
inputs to the DSSAT CROPGRO-Cotton model were derived
from 21 stations within Texas Tech University’s West Texas
Mesonet (WTM) network (Schroeder et al., 2005). Because of the
spatial randomness of the SHP region’s summer rainfall patterns,
modeled yield outcomes derived from the weather inputs from
this station network are roughly independent. Combining yields
from summer growing seasons during 2005–2016 ensures that
the resulting yield distributions are densely populated, but also
representative of current SHP climate conditions. These yield
distributions can be used to estimate the probability of dryland
yield outcomes, and, if the corresponding profit for each yield is
calculated, profit risk.

Although crop modeling can be a useful tool for testing
management options and estimating risk, agricultural production
simulated by models is idealized. The simulated yields here, for
example, are not affected by disease pressure, insect pressure,
and the hail and wind events that frequently accompany spring
rainfall in west Texas. Also, the CROPGRO-Cotton model does
not simulate fiber quality characteristics that can determine lint
value (Bradow and Davidonis, 2000; Delhom et al., 2018). On the
other hand, crop simulation can expose management effects and
climate-related risk that might not be apparent in field studies
conducted over a limited number of years and/or locations. For
example, past SHP field studies suggest that delayed planting
in the region’s cool growing environment can lead to reduced
yields (Sansone et al., 2002; Woodward et al., 2013; Mauget
et al., 2019). However, because these studies plant different
cultivars on arbitrarily selected dates and produce small samples
of yield outcomes, their results cannot provide controlled and
accurate estimates of the risk associated with delayed planting.
Although the goal of the M17 simulations was to isolate
the effects of elevation on yield, they did not focus on the
effects of management on yield over the important SHP cotton
production region. The goal here is simulate higher elevation
SHP dryland cotton production under conditions that are strictly
controlled for non-climatic influences, e.g., yield variation due to
management, cultivar, and soil type. Also, by conducting parallel
simulations under identical initial soil moisture and weather
conditions but different management practices, the simulated
yields generated here can be used to estimate differential yield
effects due to management (1Y).

As a major U.S. agricultural area with substantial dryland
production, limited summer rainfall, and dwindling ground
water resources (Sophocleous, 2010; Steward et al., 2013;
Haacker et al., 2016), the SHP might be considered a working
laboratory for developing and applying methods in climate-
related agricultural risk management. As in other semi-arid
production regions there is a need to estimate the yield
performance of dryland crops, define best management practices
for those crops, and compare their profitability and production
risk. To those ends, this paper is the first of two that
explore climate-optimal practices in SHP dryland agriculture
using the MtC modeling approach. This paper simulates
dryland cotton production under a range of management
practices, while a companion paper in this issue models dryland
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FIGURE 1 | Locations of the 21 mesonet weather stations used to provide weather input data for the CROPGRO-Cotton model during 2005-2016.

sorghum production. These two papers attempt to achieve
three main goals: first, to describe and demonstrate a yield
modeling framework for estimating climate-related risk in
dryland agriculture; second, to define management practices
for both crops that increase dryland yields in the current SHP
environment; third, to generate databases of simulated dryland
cotton and sorghum yields for subsequent work comparing the
profitability of both crops.

In the following section Materials and Methods describes

the CROPGRO-Cotton model and its calibration, the SHP

weather records used to run the model, the procedure

for assigning initial soil moisture in the model runs, and

how the simulations were conducted. That section concludes

by comparing CROPGRO-Cotton output statistics vs. recent
regional dryland lint yield production statistics. Section Results
presents the lint yield distributions of management options that
result from all 32 possible combinations of 4 planting dates,
4 planting densities, and applying or not applying nitrogen.
Section Discussion and Conclusions’ discussion compares the
section Results with that found in past field studies, and,

given the simulated yield-increasing effects of mid-May planting,
describes environmental conditions that might restrict SHP
cotton planting.

MATERIALS AND METHODS

The CROPGRO-Cotton Model
The cotton production model used here is CROPGRO-Cotton
version 4.6.1.0 (Pathak et al., 2007, 2012), which is the
cotton growth module of the Decision Support System for
Agrotechnology Transfer (DSSAT) cropping system model
(CSM: Jones et al., 2003; Hoogenboom et al., 2017). The
DSSAT CSM consists of a group of software components
that include growth modules that simulate the development
of individual crops, and additional modules common to
the growth simulation of a variety of crops. The latter
include a main program, management module, soil module,
weather module, and a soil-plant-atmosphere module. The
management module controls operational conditions such
as planting and harvesting date, irrigation scheduling when
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irrigation is simulated, the choice of evapotranspiration schemes,
and residue and fertilizer applications. CROPGRO-Cotton
requires inputs of environmental data, genetic information,
and parameters defining crop management. Environmental data
includes weather data, soil and soil profile characteristics, and
potentially variable CO2 levels. Here, CO2 levels during 2005–
2016 are assigned by DSSAT according to the monthly levels
provided by Keeling et al. (2001). Although crop photosynthesis
can be optionally calculated on an hourly basis, the model runs
over daily time steps and requires daily weather data. For each
plant growth module, cultivar, ecotype, and species coefficients
are set in corresponding CUL, ECO, and SPE suffixed files that
define genetic information. CROPGRO-Cotton calculates boll
number, boll mass, seed cotton yield, and canopy height and
width. The focus here is on lint yields derived from the model’s
seed cotton yield output. The model has been used to simulate
cotton production over the SHP and nearby Texas Rolling Plains
regions by Modala et al. (2015), Adhikari et al. (2016), and
Mauget et al. (2017), and by Rahman et al. (2019) in Pakistan
to simulate planting date and cultivar effects. A more in-depth
overview of the DSSAT CSM and CROPGRO-Cotton can be
found in Jones et al. (2003) and Thorp et al. (2014).

Model Calibration
The CROPGRO-Cotton cultivar and ecotype parameters used
here were those estimated by Adhikari et al. (2016) based
on 4 years of irrigated field trials (Bordovsky and Mustain,
2013) conducted at the Texas A&M AgriLife Research Center
at Halfway (hereafter, “Halfway”). These trials were conducted
using the FiberMax 9680B2RF cultivar, and during each year
of 2010–2013 were repeated in 27 irrigation treatments defined
by the application of low, medium, and high irrigation levels
during three cotton growth periods. In Adhikari et al.’s (2016)
calibration scheme the resulting 108 treatment outcomes over
the 4-year period were divided into 16 calibration yields and
92 validation yields. CROPGRO-Cotton ecotype and cultivar
parameters were adjusted to optimize the model’s ability to
reproduce the 16 calibration seed cotton yields, then the resulting
FiberMax cultivar parameters were used in simulations to test
the model’s ability to independently predict the validation yields.
That parameter set produced validation r2 and average prediction
error values of 0.94 and 6.5%, respectively, which indicates a
reasonably high level of skill in predicting yield based on varying
irrigation levels and a year’s weather data inputs.

Weather Data Inputs
To generate distributions of seed cotton yield consistent
with current SHP climate conditions, the CROPGRO-Cotton
model was driven with daily weather inputs from 21 weather
stations maintained by Texas Tech University’s WTM network
(Schroeder et al., 2005). Thirteen stations are located in the
U.S. National Agricultural Statistics Service (NASS) District
12 production region, with the remaining 8 located in the
neighboring NASS District 11 region to the north (Figure 1).
These stations were selected from the WTM network based on
their location in the two major west Texas cotton producing

districts and their near-continuous meteorological records
during Jan. 1 2005–Dec. 31 2016.

Although CROPGRO-Cotton requires daily weather inputs,
WTM meteorological data is collected and reported every
5min. Here, archived sub-daily records of minimum (Tmin) and
maximum temperature (Tmax) at 2.0m, dew point temperature
(Tdew), precipitation (P), solar radiation (RS), and 2.0m wind
speed (U2) were averaged (Tmin,Tmax,Tdew), accumulated (P, RS),
or converted to a daily wind run value (U2) over each day’s
24 h. Soil temperatures (ST) at 10 cm depth are provided at 15-
min intervals, and are averaged into daily values to estimate the
probability of suitable spring planting conditions in section 5.
The quality control (QC) procedures applied to the archived 5-
and 15-min data records are described in Schroeder et al. (2005),
while additional QC tests applied to the daily values calculated
here are described in M17.

Initial Soil Moisture Conditions
Any attempt to model dryland cotton production in a semi-
arid environment should account for all water sources, including
initial soil moisture conditions. The procedure for assigning
soil moisture content on each model run’s first simulation day
(Mar. 17) was based on neutron probe volumetric soil water
content (SWC) measurements conducted at the ARS-Bushland
weighing lysimeter facility (Evett et al., 2015). The Bushland
large weighing lysimeters contain a Pullman Silty Clay Loam
(Fine, mixed, superactive, thermic Torrertic Paleustoll) similar
to the Pullman Clay Loam in which the Halfway 2010–2013
irrigated cotton trials were conducted. A Pullman Silty Clay
Loam with soil water capacity, bulk density, and conductivity
characteristics defined at 7 levels by the DSSAT SBuild utility
was assumed in the CROPGRO-Cotton simulations. During 68
March, April, and May days in 1990, 1992, 1993, and 1997 the
depth-weighted average percent of field capacity (%FC) in the
Bushland lysimeters ranged between 64.6 and 101.2%. Based
on that range of spring soil moisture variability, the initial
SWC over the depth of the model’s soil profile was randomly
assigned to be between 65 and 100% of field capacity. To
ensure that simulations for each year and WTM station began
with the same initial soil moisture conditions under various
management options, initial SWC values for each station-year’s
crop simulation were defined with a unique random number
generator seed equal to the sum of the station elevation and
simulation year (2005–2016).

Dryland Cotton Simulations
Cotton simulations were repeated under 32 management options
resulting from all possible combinations of 4 planting dates,
2N applications, and 4 planting densities (Table 1). The latest
planting date (June 5) is the last date that producers can plant
and maintain eligibility for crop insurance in most District 12
counties. The earlier 3 dates were defined at 7-day intervals based
on a sensitivity study described in Section 4. The background
soil nitrogen level in the simulations was set equal to the
regional average of 96 kg ha−1 estimated from the soil N surveys
conducted by Bronson et al. (2009). Given the typically low N
levels applied in dryland cotton production and the high levels
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TABLE 1 | The 32 management options modeled in the CROPGRO-Cotton simulations.

found in some SHP soils, simulations were repeated with no
applied N, and 30 kg ha−1 evenly divided between applications
at planting and 50 days after planting. The simulations assumed
a 76 cm row separation with 3,7,10, and 13 plants m−1 plant
separations, which approximately span those of the Stapper et al.
(2011) field experiment (5.4, 10.1, and 12.9 plants m−1).

For each of the 32management options (MO), distributions of
cotton lint yield were generated by CROPGRO-Cotton driven by
theWTMmesonet weather inputs. Each distribution was formed
by running the model with daily weather inputs from Figure 1’s
WTM mesonet weather stations during 2005–2016, and then
aggregating the yields resulting from the 21 station’s model
runs. Additional description of the process whereby DSSAT
models generate yield outcomes based on weather data and
other soil-plant-atmosphere interactions can be found in Jones
et al. (2003). The unprecedented hot and dry conditions of 2011
over west Texas (Hoerling et al., 2013) resulted in essentially
no SHP dryland cotton production (Dever et al., 2012), thus
the model was not run based on that year’s weather inputs. As
a result, for each MO, the model was run based on each of
the 21 station’s weather inputs during 2005–2010 and 2012–
2016, resulting in 21∗11 = 231 simulated seed cotton yields.
Lint yields were calculated from the CROPGRO-Cotton model’s
seed cotton output assuming a fixed seed to lint ratio. This ratio
was set to 1.559, which is the average of the ratios of seven
FiberMax cultivars reported during the 2016 Halfway cotton
performance tests (Dever et al., 2017). Thus, each kilogram of the
model’s seed cotton yield is assumed to consist of 60.9% seed and
39.1% lint. The resulting 231 lint yields for a MO were ranked
into percentiles to form densely sampled lint yield distributions
consistent with current SHP dryland production conditions.

Model Validation vs. NASS Production
Records
Figure 2 compares lint yield distributions of recent SHP dryland
cotton production with the distribution of CROPGRO-Cotton

modeled yields simulated over the same period based on the
Adhikari et al. (2016) genetic parameters. Figure 2A show
the percentiles of dryland upland cotton lint yields (kg ha−1)
derived from NASS District 11 yield surveys during 2012–
2016. Figure 2B shows the same period’s yield percentiles for
NASS District 12. Although, NASS does not release survey yield
counts, each district’s survey during those 5 years is based on
between 100 and 600 yield reports (Lindsay Drunasky, personal
communication). To generate a concurrently modeled yield
distribution for a range of management practices, CROPGRO-
Cotton yields were aggregated over all 21 stations and all 32
management options in the 2012–2016 simulations (Figure 2C).

The median of Figure 2C’s 3,360 simulated lint yields
(479.9 kg ha−1) is 96.9 kg ha−1 higher than the District 12

median (383.0 kg ha−1), and 10.7 kg ha−1 below the District
11 median (490.6 kg ha−1). The simulated yield’s 407.3 kg ha−1

inter-quartile range (IQR), i.e., the 75th minus 25th percentile

span, is only slightly greater than that of District 11 (395.4 kg
ha−1) but exceeds the District 12 IQR (268.8 kg ha−1). The

tails of both NASS yield distributions, as measured by the
5th and 95th percentiles, are shifted slightly above the 2012–
2016 simulated yields. The lower District 12 median yield
relative to that of District 11 might be attributed to the more
southern region’s generally sandier soils (Holliday, 1990) and
higher evapotranspiration. Otherwise, the location and scale
of Figure 2C’s modeled yield distribution is closely consistent
with the NASS District 11 distribution. This shows that, when
initialized with realistic soil moisture conditions and driven
by the WTM weather inputs, the calibrated CROPGRO-Cotton
model can generate dryland lint yields that are representative
of more northern SHP production areas under current summer
climate conditions. When CROPGRO-Cotton lint yields for all
32management options are aggregated over the 11 years of 2005–
2010 and 2012–2016 (Figure 2D), the resulting yield percentiles
are, apart from a greater maximum lint yield, generally similar to
those of 2012–2016 in Figure 2C.
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FIGURE 2 | (A) Percentiles of lint yields derived from NASS District 11 un-irrigated yield reports during the 2012–2016 cropping years. (B) As in (A) for NASS District

12 yield reports. (C) Percentiles of modeled lint yields aggregated from CROPGRO-Cotton simulations conducted at 21 locations and 32 management options during

2012–2016 (21*32*5 = 3,360 yields). (D) As in (C) for modeled yields aggregated over the 11 years of 2005–2010 and 2012–2016 (21*32*11 = 7,392 yields).

RESULTS

Figure 3 shows themodeled lint yield percentiles that result when
the Figure 2D distribution’s yields are separated by management
option, and each option’s 231 yields are then ranked into
percentiles. The clearest yield variation is that of a “descending
sawtooth” effect, with later planting dates and higher plant
densities producing generally lower median yields. Figure 4

shows the Figure 3 distributions ordered by median yield. This
ordering is consistent with the Figure 3 planting date effect, with
the earliest planting date producing 6 of the 7 highest medians
and the latest date producing the 5 lowest medians. In addition,
there is a somewhat weaker plant density effect, with 3 of the 4
highest median yields generated by simulations with the lowest
planting density. The distribution with the highest median yield
(MO 1) occurs with the May 15 planting date, the lowest the
lowest plant density (3 plants per m−1), and no applied N. By
contrast, the MO32 option with the latest planting date (June
5), the highest plant density (13 plants m−1), and 30 kg ha−1 of
applied N produces the lowest median yield.

The Figure 5A MO 1–MO 32 distribution shows the
percentiles of lint yield effects (1Y) resulting from choosing the
MO 1 option over theMO 32 option. Thus for each of the 231 lint
yields in the MO 1 distribution, a potential management effect,
i.e., a “best minus worst” 1Y effect, is calculated by subtracting
the corresponding MO 32 yield generated by the weather data
from the same WTM station and the same year. The Figure 5B
1Y distribution estimates the exclusive effect of planting date
(“PDATE-Only”) on the MO 1-MO 32 yield effects. As the MO
4 management option is effectively the MO 1 option with the
MO 32 planting date (Table 1), these yield effects are calculated
by subtracting MO 4 yields from the same station-year’s yield
outcomes in the MO 1 distribution, i.e., MO 1-MO 4. Similarly,
the Figure 5C MO 1-MO 25 distribution estimates the effect of

planting at a 3 vs. 13 plants per m−1 plant density (“PDENS-
Only”). Finally, the Figure 5D MO 1-MO 5 1Y distribution
estimates the impact of the two applied N levels on the MO 1-
MO 32 lint yield differences (“APPN-Only”). Thus, 1Y values
reflecting only N-based effects were calculated by subtracting
modeled yields resulting from theMO 5 simulations (30 kg ha−1)
from the same station-year’s MO 1 yields (0 kg ha−1).

Figure 5’s four 1Y distributions show that planting date
and plant density are the leading factors in the MO1-MO32
yield effects. The median MO 1-MO 32 1Y value is 354.4 kg
ha−1, while the medians of the PDATE-Only, PDENS-Only, and
APPN-Only distributions are 211.0, 107.1, and 42.2 kg ha−1,
respectively. The median PDATE-Only effect is 43% of the NASS
district 11 median lint yield in Figure 2B (490.6 kg ha−1), which
suggests that delaying planting from mid-May to early-June can
have a substantial negative effect on SHP dryland cotton yields.
However, although 205 PDATE-Only 1Y values in Figure 5B are
positive, 26 are negative, with yield effects as large as −290.3 kg
ha−1. Thus, while these simulations indicate a general yield
advantages with mid-May planting, they also estimate an 11.3%
probability that a June 5, rather than a May 15, planting date may
produce higher yields under current SHP climate conditions.

DISCUSSION AND CONCLUSIONS

Although the highest median lint yields simulated here tend
to occur at the lowest plant density (Figure 4), and lower
density produced higher yields in more than 90% of Figure 5C’s
MO 1-MO 25 comparisons, past SHP field studies that test
for plant density effects on yield are either inconclusive or
suggest insignificant effects. A 2-year field study conducted by
Bednarz et al. (2000) found that seed cotton yields were not
influenced by population density. Their literature review, and
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FIGURE 3 | Percentiles of simulated lint yields for each of the 32 management options, each aggregated over the 21 station’s simulations during the 11 years of

2005–2010 and 2012–2016 (21*11 = 231 yields).

that of Musunuru (2003), also notes a number of previous field
trials indicating that cotton yields appear relatively stable over a
range of plant densities. Woodward et al.’s (2013) focus was on
disease incidence and fiber quality effects, and yield impacts due
to seeding density were not reported. The Stapper et al. (2011)
dryland trials found statistically insignificant yield outcomes
with three seeding densities. During 2016 and 2017 Kimura and
Ramirez (2018) planted at four seeding rates in irrigated and
dryland Rolling Plains field trials, but also found no significant
differences in lint yield. However, given effectively equivalent
yield outcomes and the lower input costs of lower seeding rates,
their lowest seeding density (54.9 K seeds ha−1) did result in a
positive and statistically significant profit effect.

The MO 1–MO 5 yield effects in Figure 5D showed that
applying no N led to minor positive median yield effect relative to
amanagement option that applied 30 kg ha−1. Although counter-
intuitive, this response may be due to the background soil N
levels assumed here, which are high relative to the requirements
of dryland cotton. The Hons et al. (2004) field trials found a
significant response to additional applied N in only 8 of 39
trials during 1998–2002, which was attributed to already high
residual soil N levels. A general rule of thumb in SHP production
is to apply 28 kg ha−1 (25 lbs acre−1) of N for every 269 kg
ha−1 of anticipated lint yield (Hons et al., 2004). Current NASS

production statistics show that 75% of dryland District 11 yields
are under 667 kg ha−1 (Figure 2B), which would require 69 kg
ha−1 of total soil and applied N. This dryland N requirement is
well under of the 96 kg ha−1 soil N level assumed here based on
the Bronson et al. (2009) soil survey. As increasing total available
N beyond that level in the simulations reduces yields, this, and
the results of the Hons et al. (2004) trials, suggests that residual
SHP soil N levels may be enough to achieve realistic dryland lint
yield targets.

Unlike the modeled plant density effect, the leading effect of
planting date on yield found here is consistent with that found
in SHP field studies. To compare the CROPGRO-Cotton lint
yield response to planting date with that found in a recent SHP
field trial, Figure 6A shows distributions of yields generated to
show MO 1 sensitivity to 32 planting dates at two-day intervals
between April 4 and June 5. Thus, apart from planting date, the
simulations were conducted with the MO 1 planting density and
applied N level in Table 1. Simulations with planting dates before
April 22 produce approximately stable yield percentiles, with at
least 5% of the simulations in each failing to produce any yield.
Although 5th percentiles are roughly constant between April 24
and June 5, the distribution’s 95th percentiles decrease, with an
increased rate of decline after mid-May. A similar pattern of
decreased yields with planting dates after late April is seen in the

Frontiers in Sustainable Food Systems | www.frontiersin.org 7 January 2020 | Volume 3 | Article 120

https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org
https://www.frontiersin.org/journals/sustainable-food-systems#articles


Mauget et al. Optimizing SHP Dryland Cotton Production

FIGURE 4 | As in Figure 3, with distributions for each management option plotted in order from the highest to the lowest median lint yield.

FIGURE 5 | (A) Distribution of yield effect (1Y ) values resulting from subtracting lint yields generated via the MO32 management option from the lint yield generated

via the MO1 option using the same station-year’s weather data. (B) As in (A) for 1Y values generated by subtracting MO4 from MO1 yields. (C) As in (A) for 1Y values

generated by subtracting MO25 from MO1 yields. (D) As in (A) for 1Y values generated by subtracting MO5 from MO1 yields.

distribution’s medians, 25th, and 75th percentiles. Between May
14 and June 5 the simulated median lint yields decrease nearly
linearly, with a linear-fit slope dropping 11.76 kg ha−1 with every
day’s delay in planting.

Figure 6B graphs lint yields from 2017 field trials conducted at
the USDA-ARS Plant Stress and Water Conservation Laboratory
in Lubbock (hereafter PSWCL17), which included replications at
four irrigation levels, each repeated at 6 planting dates between
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FIGURE 6 | (A) Percentiles of simulated lint yields for 3 plants met−1 plant density and 0 kg ha−1 applied N, for planting dates between April 4 and June 5 at 2 day

intervals. (B) Lint yields resulting from six planting dates during the PSWCL17 field trials. Dashed line plots linear fit to the May 2, 16, 31, and June 22 planted yields.

Solid line plots a linear fit to the yields from all six dates.

April 5 and June 22. The yields resulting from the May 2, 16,
31, and June 22 plantings generally decrease, with a linear-fitted
slope estimating a 18.95 kg ha−1 drop with every day’s delay in
planting. When yields planted on April 5 and 19 are included
the linear-fit slope decreases to −10.62 kg ha−1. Although the
−18.95 kg ha−1 PSWCL17 irrigated field trial response during
May 2–June 22 is stronger than the −11.76 kg ha−1 dryland
CROPGRO-Cotton response, a stronger irrigated response is
consistent with stronger GDD-related yield effects under lower
water-stress conditions (Peng et al., 1989; Wanjura et al., 2002).

Generally, the PSWCL17 and other SHP field trials confirm
the modeled yield effect of decreasing yields with delayed
planting. Based on a 5-year field trial that planted on five dates
between April 20 and June 30th, Bilbro and Ray (1973) found
that later planting reduced yields, lint percentages, fiber length,
and micronaire units, but increased fiber strength. Sansone et al.
(2002) summarize the results of Lubbock area irrigated planting
date trials during 1960–1966 that found a 24% decrease in average
lint yield as planting was delayed from May 15 to June 10. Lower

yields with April 22, May 12, and June 8 planting dates have
also been found in Woodward et al.’s (2013) field trial exploring
the effects of planting date, seeding density and cultivar. Mauget
et al.’s (2019) analysis of yields in SHP May- and June-planted
irrigated cultivar trials during 2007–2017 also found that May
planting led to a significant positive average yield effect in 8 of
10 years that comparisons could be made.

The cause of the SHP planting date effect found here and
in field studies is essentially geographic. Because of the region’s
elevation and cooler temperatures, its summer cotton growing
season tends to be shorter and degree-day limited relative to
neighboring regions at lower elevations (Mauget et al., 2017). As
a result, earlier SHP planting dates tend to result in thermally
longer growing seasons, higher GDD totals, and, given the
positive association between GDD totals and SHP lint yield
(Peng et al., 1989; Wanjura et al., 2002), higher yields. Thus,
consistent modeling and field trial results demonstrate that early
planting in the SHP’s cooler growing environment might increase
accumulated degree-days, crop growth, and yields. Although the
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FIGURE 7 | Diamonds mark the medians of the Figure 6A lint yield distributions. Gray triangles show the probability that minimum daily soil temperatures at 10 cm in

the 3 days before each planting date (ST3−) exceeds 18.3◦C. Black circles show similar probabilities based on a 15.6◦C ST3− threshold. Squares show the probability

that cotton growing degree totals over the 5 day period after each planting date (GDD5+) exceeds 13.9◦C.

focus here was on dryland cotton production, earlier planting
may have an even greater effect on irrigated crops, given the
greater effects of seasonal GDD accumulation on crops with
lower levels of water stress. Mauget et al.’s (2019) analysis of 10
years of irrigated cultivar trials found that May-planted yields
exceeded June-planted yields in 120 of 153 comparisons. The
median yield effect in these comparisons was 371.7 kg ha−1,
which is considerably higher than the 211.0 kg ha−1 median
dryland effect of selecting a mid-May over an early-June planting
date found here (Figure 5B). As a result, the primary conclusion
of this modeling study is that planting date may be a key factor
in adapting management to the SHP environment. Specifically,
planting as early as conditions permit—with the mid-May period
as a general management target—may be a relatively simple
and cost-free management approach to increasing the region’s
dryland and irrigated cotton yields.

But althoughmid-May plantingmay result in thermally longer
growing seasons and higher yields, the same cool conditions that
produce shorter SHP growing seasons can also restrict when
planting can occur. In addition to adequate soil moisture, soil
temperatures before and weather conditions after planting are
two important factors that determine when dryland cotton can be
planted. The Figure 7 diamond-marked trace plots Figure 6A’s
simulated median lint yield values, which show a nearly linear
decrease between May 14 and June 5. Planting on the former
rather than the latter date in the simulations results in a 38%
median yield increase from 430 to 690 kg ha−1. Sansone et al.
(2002) recommend that minimum daily soil temperatures at
seed depth in the 3 day’s before planting (ST3−) exceed 18.3◦C
(65.0 ◦F), and that average forecast daily temperatures result in
a cotton growing degree day total in the 5 days after planting
(GDD5+) >13.9◦C (25.0 ◦F). Figure 7 also shows estimates
of the probabilities of those two conditions being met over
the Figure 1 WTM station network during the April 4–June 5
periods of 2005–2010 and 2012–2016. Thus, for each of the 32
planting dates, ST3− and GDD5+ values were calculated from
the 21 station records during those 11 years. The triangles plot

the percentage of each date’s 231 station-days when ST3− >

18.3◦C, the squares the percentage when GDD5+ > 13.9◦C. If
these percentages are interpreted as the probabilities of these
conditions being met under current SHP climate conditions,
between May 12 andMay 18 the probability that GDD5+ exceeds
13.9◦C rises from 41.6 to 90.0%. However, during this time the
probability of ST3− above 18.3◦C at the 21 mesonet sites was
no higher than 22.0%. Thus, while SHP temperature conditions
above ground might allow for mid-May planting, an 18.3◦C
soil temperature requirement is likely to delay planting. Sansone
et al. (2002) also propose that with a favorable GDD5+ forecast
planting might occur in cooler soils, i.e., the ST3− threshold
might be lowered to 15.6◦C (60.0 ◦F). The probabilities of this
lower soil temperature condition being met generally track those
of GDD5+ > 13.9◦C in Figure 7. In mid-May under current SHP
climate conditions, these GDD5+ and ST3− conditions are met
with an approximate 70% probability. As a result, the mid-May
planting strategy proposed here may be more possible with the
lower 15.6◦C soil temperature threshold. However, planting low-
vigor seed with lower germination rates into cooler soils can delay
emergence, which has been found to reduce yields in SHP field
trials (Wanjura et al., 1969). Thus, an SHP mid-May planting
strategy may also require high vigor seed with higher emergence
rates under cool soil conditions (Smith and Varvil, 1984).
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