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Introduction: The rapid adoption of electric vehicles in China is a key strategy for
decarbonizing the transportation sector, facilitating the transition to sustainable
energy, and meeting the country’s net-zero emissions goals. Notwithstanding
this, limited research has explored how technological advancement influences
electric vehicle adoption in the context of achieving sustainable electricity.

Methods: This study addresses this gap by integrating vehicle range, smart
charging infrastructure, and battery electric vehicles into an econometric count
framework utilizing countrywide data-driven insights.

Results: The findings demonstrate that technological advancements-specifically
in vehicle range and the expansion of charging infrastructure-are vital solutions
in driving battery electric vehicles acceptance. These advancements are essential
for revolutionizing the transportation industry and contributing to the country’s
emissions reduction targets.

Discussion: However, this presents a dual challenge: balancing increased
electricity demand while capitalizing on these technologies to meet net-
zero goals. The study highlights critical policy implications, particularly the
need to advance electric vehicle material technologies through the use of
critical minerals including aluminum and lithium. By prioritizing these materials,
producers can improve electric vehicles’ e�ciency and support the integration
of renewable energy sources. The study concludes that incorporating renewable
energy solutions, like solar-powered charging stations, is crucial for ensuring
sustainable electricity. Policies encouraging public-private partnerships and
investments in research onmaterials and smart charging technologies are crucial
for reducing charging times and improving vehicle range. Additionally, fostering
public-private collaborations to install smart charging infrastructure equipped
with Internet-of-Things technology at parking slots can create a synergistic
e�ect, significantly boosting electric vehicle adoption in China.
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1 Introduction

The urgent global need to combat climate change has

intensified the focus on energy transition and industrial

decarbonization. Therefore, several studies (Franzò and Nasca,

2021; Haidar and Rojas, 2022; Xu and Lin, 2024) emphasize that

achieving net-zero emissions and carbon neutrality heavily depends

on the decarbonization of the transport and energy industries.

In this regard, China has demonstrated a strong commitment

to meeting the goals of environmental sustainability through

ambitious energy transition strategies aimed at achieving net-zero

emissions. As the world’s largest carbon emitter, China has made

a pivotal shift in its energy policies by pledging to peak emissions

by 2030 and achieve carbon neutrality through decarbonization

by 2060 (Li et al., 2018, 2019). Central to this transition is a

large-scale adoption of renewable energy sources (Lin and Abudu,

2020; Zou et al., 2024), such as solar, wind, and hydropower,

as well as promoting electric vehicles (EVs) to decarbonize the

transportation sector (Tao, 2024). China’s commitment to these

initiatives is reflected in its aggressive investments in clean energy

technologies, energy-efficiency programs, and carbon capture and

storage (CCS) systems (Li et al., 2022; Liu et al., 2023). China’s

adoption of EVs as early as 2010 marked a significant step toward

industrial decarbonization and sustainable transportation (Li et al.,

2018; Tao, 2024).

Despite significant attention to electric vehicle adoption (EVA)

in China, research gaps remain in understanding the role of

technological advancements in driving this transition (Tao, 2024).

Existing studies have largely focused on socioeconomic factors,

including consumer choices, initial costs, and incentive programs

(Li et al., 2019; Guo et al., 2021). However, this focus leaves a

gap in research on critical technological factors, such as vehicle

range (VR), charging infrastructure (CI), and battery electric

vehicles (BEVs; Franzò and Nasca, 2021; Squalli, 2024; Li et al.,

2022). Although research has examined battery materials and EV

durability, challenges around CI and city readiness for widespread

EV integration remain, particularly in developing countries

(Gohlke et al., 2022; Li et al., 2018). For instance, underdeveloped

e-mobility infrastructure in Poland’s Górnoślasko-Zagłebiowska

Metropolis underscores the need for expanded networks to meet

increasing demand (Kowalski et al., 2020). Similarly, many cities

worldwide struggle with inadequate urban planning, complicating

the integration of charging stations into existing transportation

systems (Kaminski and Szczepaniak, 2021). Even with incentive

programs, inconsistent implementation and low public awareness

hinder EVA in many regions (Lewicki and Nowak, 2021).

Other persistent barriers, such as high costs, limited battery

lifespans, and slow charging speeds, further complicate global

EV promotion efforts (Jurczak and Kowalski, 2021). Addressing

these challenges demands coordinated efforts in infrastructure

development, innovative policy, and technological advancements.

While studies in Spain, France, the United States, and Germany

have explored EV integration (Buhmann and Criado, 2023;

Haidar and Rojas, 2022; Squalli, 2024), fewer studies examine

the impacts of these factors on EVA in China. This gap presents

an opportunity to investigate how technological advancements

specifically influence EVA in China, a country with a long-standing

commitment to EV market growth. Research on VR, smart CI, and

BEVs in EVA remains limited, as does analysis on how EVA affects

electricity demand (ED) and contributes to net-zero emissions

goals, particularly using national data-driven insights (Pirmana

et al., 2023; Tao, 2024). The objectives of this study are to fill these

gaps by addressing the following research questions: (1) how doVR,

CI, and BEV technologies impact EVA? and (2) How do EVA, ED,

and oil displacement (OD) interact to support net-zero emissions in

China? This study uniquely models the synergistic effects of VR and

CI, particularly focusing on smart-charging solutions (Buhmann

and Criado, 2023). By incorporating socioeconomic factors as

control variables, it contributes to the literature through a count

model framework that deepens understanding of technological

impacts on EVA (Yang et al., 2017; Khan et al., 2022). The

study provides insights for policymakers and researchers on EVA

trends, Internet of Things (IoT)–enabled CI deployment, OD,

and electricity consumption from 2010 to 2022. Furthermore,

it formulates hypotheses linking technological factors to EVA,

thereby enhancing research design and scientific replicability.

Leveraging nationwide data-driven insights, this research expands

the literature on EV integration (Li et al., 2018; Buhmann and

Criado, 2023) and offers valuable applications for sustainable

transportation and net-zero policy development (Haidar and Rojas,

2022; Tao, 2024).

2 Literature review and hypothesis
development strategy

2.1 Nexus between EVA, ED, and OD

Studies indicate that the widespread adoption of EVs has the

potential to significantly reduce the consumption of fossil fuels

in the transportation sector (Axsen et al., 2020). In this regard,

scholars have analyzed the growth of the EV market and its impact

on the substitution of fossil fuels with electricity, and the findings

highlight substantial reductions in greenhouse gas emissions in

other countries (Li et al., 2018; Bakhtyar et al., 2023). The literature

shows that the shift toward environmentally friendly transportation

in China may have far-reaching implications on relying on

imported oil and making China a pioneer in the EV industry

(Fuinhas et al., 2021; Gohlke et al., 2022; Li et al., 2018). Also,

studies have emphasized the environmental benefits (Vaishnav,

2023) of EVs in terms of reduced emissions and the cost savings

associated with using electricity instead of gasoline or diesel fuel.

Researchers have explored the impact of electric buses and other

forms of electric public transportation on fossil fuel displacement

and air quality improvements in urban areas (Pirmana et al., 2023).

Similarly, the literature indicates that the widespread adoption of

EVs significantly may increase ED and has shown that the extent of

this impact depends on factors such as charging patterns, battery

technology, and the overall growth rate of EVs (Li et al., 2018).

Researchers have examined regional variations in the impact of EVs

on ED, emphasizing the role of government policies and incentives

in shaping adoption rates (Buhmann and Criado, 2023) and

charging behavior (Ge and MacKenzie, 2022). So, investigations

have highlighted the importance of smart CI and grid integration to
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optimize the use of renewable energy sources (Amuakwa-Mensah

and Näsström, 2023) on the impact of EVs on the grid. The

literature findings suggest that scholars have explored the role of

time-of-use pricing in managing the impact of EVs on ED and

suggest that this dynamic pricing strategies encourage off-peak

charging, thereby reducing stress on the grid during peak hours

(Ge and MacKenzie, 2022). In conclusion, integrating EVs into

China’s transportation sector is a promising avenue for addressing

the Sustainability Development Goals (SDGs), particularly, 7 and

11–13 (Abudu et al., 2023). However, only a few empirical studies

have focused on the ramifications of widespread EVA in China

concerning ED and OD data-driving experiences, which are central

to achieving net-zero carbon emissions and neutrality (Ge and

MacKenzie, 2022; Squalli, 2024). Literature suggests the adoption

of EVs, particularly BEVs, over plug-in hybrid electric vehicles

(PHEVs) and internal combustion engine vehicles (ICEVs; Franzò

and Nasca, 2021; Buhmann and Criado, 2023) directly influences

ED dynamics. The question arises of whether China’s electricity

generation mix aligns with the sustainability goals of reducing

carbon emissions (Xu and Lin, 2024). Also, the extent to which EVA

may lead to cleaner energy sources as a crucial determinant in the

carbon footprint of electricity consumption remains unexplored.

Moreover, theoretical literature shows (Franzò and Nasca, 2021;

Buhmann and Criado, 2023) that EVA holds the potential to reduce

oil displacement. Therefore, this study aims to explore the research

gap in understanding the holistic impact of EVA in the context

of China.

2.2 Technological factors influencing EVA

The move toward sustainable transportation and

decarbonization of industry, particularly in the context of

EVs, marks a significant turning point in the global automotive

sector. Notably, China, renowned as the world’s largest automotive

market, stands as a leader in spearheading this transformative

journey (Xu et al., 2020). As China embraces EVA, various

technological factors have come to the forefront, shaping the

trajectory of this shift (Li et al., 2022; Mastoi et al., 2022). One of

the primary factors influencing EVA in China and globally is VR

and battery technology. Research by Li et al. (2018) emphasizes

the critical role of increasing the driving range of EVs in

consumer acceptance. Moreover, the domain of battery technology

innovations, which include extended VR and accelerated charging

capabilities, is primed to exert a significant impact on EVA, thereby

bringing the world closer to meeting sustainable transportation

(Haidar et al., 2020). Studies have explored how advancements

in battery technology, particularly in extending VR, influence the

adoption of EVs. The literature has examined the relationship

between increasing VR and EVA rates, by providing insights into

consumer preferences (Oliveira et al., 2019; Barkenbus, 2020).

This study employs a stated choice experiment to investigate

how varying VR affects consumers’ preferences and choices

when it comes to EVs (Barkenbus, 2020). Also, technological

factors through governments’ initiatives to invest in CI have

been critical in addressing the VR anxiety of potential EV buyers

where studies have shown that the availability of charging stations

significantly influences the willingness of consumers to switch

to EVs (Sovacool et al., 2018; Xue et al., 2021). Also, CI is

another significant technological factor, Hardman et al. (2018)

conducted a study on CI deployment, highlighting the importance

of accessible charging stations. Literature shows that BEVs have

gained prominence in China’s EV landscape. Barkenbus (2020)

explored the growth of BEVs, emphasizing that as they become

more affordable and widely available, adoption rates increase,

underscoring the role of technological advancements in battery

technology. Smart-charging systems are revolutionizing the EV

industry. Xu et al. (2020) investigated the impact of smart charging

systems on EVA in China, indicating that such systems enhance

consumer confidence by making charging more convenient and

efficient. Battery-swapping technology and renewable charging

stations are other areas of innovation (Barkenbus, 2020). These

technologies address range anxiety by allowing quick and efficient

battery replacement, further promoting EVA. Literature showed

that policy support for advanced EV technologies accelerates

adoption rates, providing a clear link between government

actions and technological progress. Challenges related to charging

tariffs may influence adoption rates (Liu et al., 2023). Finally,

emerging EV technologies, such as solid-state batteries and

wireless charging or the IoT, are discussed by Xue et al. (2021).

These innovations are expected to shape the future of EVA in

China (Xue et al., 2021). Similarly, the presence of charging

stations, particularly the availability of smart chargers, renewable

charging stations, and their correlation with EVA rates have not

yet received ample scholarly attention (Xue et al., 2021; Squalli,

2024).

In conclusion, the literature underscores the need for EVA

on ED and oil displacement, with China emerging as a key

player in this transition. Studies highlight that EVA may

contribute to reducing greenhouse gas emissions, displacing fossil

fuel consumption, and enhancing urban air quality. However,

challenges remain in aligning China’s electricity generation mix

with sustainability goals, and there is a gap in understanding

the precise effects of EVA on ED. Technological advancements,

particularly in battery technology, extended VR, and CI, have been

crucial in driving EVA, and hereafter, further research is needed

to explore the holistic effects of these innovations. Finally, while

advancements in battery swapping, smart-charging systems, and

renewable energy integration are promising, there is a lack of

comprehensive databases to conduct empirical studies on EVA

in China, which is essential for achieving carbon neutrality and

net-zero goals.

2.3 Hypotheses development

In contributing to the literature, this study developed the

following logical hypotheses, aligned with the literature (Buhmann

and Criado, 2023) to strengthen the empirical analysis:

Hypothesis 1: The availability and accessibility of CI may

significantly enhance EVA in China.

Hypothesis 2: VR anxiety negatively impacts BEV adoption in

the Chinese EV market.
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Hypothesis 3: BEVs have a greater impact on ED relative to

PHEVs, HEVs, and other EV types in China.

Hypothesis 4: Optimizing both smart CI and VR has a positive

synergistic effect in EVA.

Hypothesis 5: Increased adoption of EVs in China is expected to

significantly increase the country’s overall electricity consumption.

Hypothesis 6: The adoption of EVs in China will lead to

a substantial displaced oil consumption and a corresponding

reduction in emissions.

3 Model design and data strategy

This study employs a comprehensive data modeling approach

in analyzing China’s EVA and its implications for sustainable

electricity, transportation, and net-zero emissions. Using data from

the International Energy Agency (IEA) covering the period from

2010 to 2022, the analysis focuses on key factors such as ED,

electricity prices (EPX), EV prices (PX), government subsidies

(SD), EV stock shares (ST), charging infrastructure (CI), and oil

displaced (OD). A Poisson regression model (PRM) is used to

estimate the count of EVs in China and assess the relationship

between EVA and these variables, particularly focusing on BEVs,

VR, and CI density. The charging stations are classified into fast and

slow chargers, allowing the study to investigate the influence of fast

charging on EV uptake. Themodel also incorporates autoregressive

terms to capture temporal growth patterns in China’s EV market.

In ensuring the study’s robustness, a negative binomial model

(NBM) is employed to address potential over dispersion in the data,

providing a reliable basis for evaluating the impact of EVA on this

topic on China’s transition toward net-zero emissions.

3.1 Data modeling strategy

In responding to the research questions and hypotheses, the

study utilizes various socioeconomic factors as control variables,

data sourced from the IEA covering the period from 2010 to

2022 in China. This data set provides a comprehensive, data-

driven perspective on EVA in China. The key socioeconomic

control variables include ED, EPX, and PX, which are based on

the framework presented in the literature (Haidar et al., 2020).

These variables are crucial in understanding the broader context of

EVA as they directly influence consumer costs and infrastructure

demands. In addition to these factors, the study incorporates

data on EV stock share and government rebates or SD. EV stock

shares refer to the stocks of companies involved in the production

and supply of EVs. Including this variable is important because

investments in the EV sector expose stakeholders to a rapidly

growing market driven by the increasing demand for eco-friendly

transportation and advancing technology (Haidar et al., 2020).

Government subsidies and rebates are another critical factor, as

the Chinese government has implemented a wide range of policies

to incentivize the EVA, including subsidies, tax benefits, rebates,

and preferential regulations, such as license plate policies. These

policies aim to encourage both consumers and manufacturers to

transition toward EV uptake (Pirmana et al., 2023). The primary

model centers on the count of EVA, which is a key variable in

this analysis. The adoption of EVs is particularly focused on BEVs,

which is coded as 1 in the data set if there is a positive growth

rate from 2010 to 2022 and 0 otherwise. This coding also applies

a dummy effect (Long and Freese, 2014) for PHEVs and ICEVs,

reflecting the distinct technological andmarket conditions for these

vehicle types.

Furthermore, the variable VR is included, with BEVs being

coded at an average range of 300 miles and PHEVs being coded

as having a range of 300-plus miles, including ICEVs. The study

also distinguishes between different types of CI, coding 1 for

smart/fast-charging stations and 0 for slower charging stations,

which significantly impacts EVA rates and usage patterns. This

classification of CI enables the study to investigate the role of fast-

charging technology in the EV ecosystem. Another unique feature

of the study is its focus on four key vehicle categories—buses,

vans, cars, and trucks—which are significant due to their substantial

energy consumption and frequent use. These vehicle categories are

essential to understanding the broader impact of EVA on energy

consumption and emissions (Barkenbus, 2020; Li et al., 2018). By

incorporating these factors, the study provides a broader view of

the dynamics driving the transition to EVs in China and offers

insights into how different types of vehicles contribute to the overall

impact on energy infrastructure and environmental outcomes.

Consequently, this study is unique because it incorporates a wide

range of control variables while focusing on the diverse factors

that influence EVA, including market forces, government policies,

technological advancements, and vehicle-specific characteristics.

By coding these variables effectively, the study provides a robust

framework for econometric analysis, which is used to evaluate the

impacts of BEVs, CI, and government incentives on the growing EV

uptake in China. Also, in contributing to the literature with novelty

to the research, the authors employed advanced Stata techniques

for coding and analyzing the data set (Long and Freese, 2014). By

leveraging Stata, the authors ensured accuracy in data processing

and hypothesis testing, using modern data analytics to understand

EVA in China. The Stata code used in this study is available upon

request from the corresponding author, allowing for reproducibility

and further exploration of the data set.

3.2 Basic statistics and summary

Table 1 provides a detailed breakdown of EVA from 2010 to

2022, categorized by vehicle type (bus, car, truck, and van) and

powertrain type (BEV and PHEV).

As of 2022, the data in Table 1 reveals that China has sold

a total of 11,937,980 BEVs and 3,138,850 PHEVs, bringing the

total number of EVs to 15,076,830. According to Table 2, this

widespread adoption of EVs has displaced approximately 59.6

million barrels of oil, measured in liquefied gas equivalent. This

significant reduction in oil consumption highlights China’s growing

commitment to reducing reliance on fossil fuels, curbing carbon

emissions, and advancing its transition to a more sustainable and

energy-efficient transportation system. The large-scale integration

of EVs in China also sets an important precedent for industrial

decarbonization in the transportation sector, promoting cleaner

air, lowering greenhouse gas emissions, and encouraging global
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TABLE 1 Total type of electric vehicle adoption in China.

Year 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 Total

BUS BEV 1,900 450 1,400 2,000 4,100 94,000 90,000 90,000 94,000 75,000 62,000 48,000 52,000 614,850

BUS PHEV 0 330 1,000 3,500 12,000 26,000 15,000 530 2,400 2,600 3,600 1,700 2,300 70,960

CAR BEV 0 0 9,600 15,000 49,000 150,000 260,000 470,000 820,000 830,000 920,000 2,700,000 4,400,000 10,623,600

CAR PHEV 0 0 0 0 24,000 61,000 79,000 110,000 270,000 230,000 220,000 550,000 1,500,000 3,044,000

TRUCK BEV 0 0 430 860 340 17,000 15,000 67,000 54,000 35,000 33,000 36,000 50,000 308,630

TRUCK PHEV 0 0 0 0 0 0 0 14,000 3,600 2,400 420 1,000 1,500 22,920

VAN BEV 0 0 670 750 480 15,000 11,000 68,000 54,000 27,000 26,000 58,000 130,000 390,900

VAN PHEV 0 0 0 0 0 0 0 0 0 0 0 0 1,500 1,500

Total BEV 1,900 450 12,100 18,610 53,920 276,000 376,000 695,000 1,022,000 967,000 1,041,000 2,842,000 4,632,000 11,937,980

Total PHEV 0 330 1,000 3,500 36,000 87,000 94,000 124,000 276,000 235,000 224,020 552,700 1,505,300 3,138,850

Data Source: https://www.iea.org/data-and-statistics/data-tools/global-ev-data-explorer and https://ourworldindata.org/electric-car-sales. BEV, battery electric vehicle; PHEV, plug-in hybrid electric vehicle. Table 2 presents the total amount of oil displaced (in

millions of barrels) by each EV category from 2010 to 2022.

TABLE 2 Total oil displaced by electric vehicle types in China.

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 Total

BUS 0 1.5 5.8 14 73 230 450 840 1,600 2,300 2,800 5,300 11,000 24,614.3

CAR 68 67 91 120 190 1,700 2,700 3,400 4,300 4,100 3,900 4,100 4,700 29,436

TRUCK 0.088 0.67 3.1 8 8.9 93 150 430 640 630 620 730 860 4,173.758

VAN 0.59 0.76 1.7 2.8 3.2 27 39 130 200 210 200 270 310 1,395.05

Total 68.678 69.93 101.6 144.8 275.1 2,050 3,339 4,800 6,740 7,240 7,520 10,400 16,870 59,619.11

Data Source: https://www.iea.org/data-and-statistics/data-tools/global-ev-data-explorer and https://ourworldindata.org/electric-car-sales.
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efforts toward eco-friendly mobility solutions, which are essential

for long-term climate and net-zero goals.

Table 3 presents a summary of descriptive data statistics and

variables used in the study. The variables include EVA, ST, CI,

fast charging (FC), and BEV measured in millions of count unit;

PX, SD, and EPX measured in millions of dollars; ED measured

in kilowatt-hours (kWh); VR measured in kilometers; vehicle

range∗charging Infrastructure (VRCI) measured in charging

station density; and ODmeasured in million barrels of oil/liquefied

gas equivalent.

Before we integrated the data into the empirical model,

we processed and standardized data using Stata Software. This

involved converting the data from yearly to quarterly frequency,

as the entire data set usually included count indicators typically

recorded quarterly. This standardization process effectively shifted

the data from a higher frequency to a lower one. This technique

expanded the observations for each EV type (BEV and PHEV) to

four quarters, resulting in 52 total data observations (Liu et al.,

2023; Shao et al., 2023) shown in Table 3.

3.3 Model design strategy

3.3.1 Poisson regression model estimation
Literature suggests that selecting the best model equation for

estimating count data depends on several key factors, including

the data’s characteristics, the nature of the count process, and the

assumptions about the data distribution. Based on the time-series

data for 2010–2022 on China’s EVA and ED (Fache and Bhat, 2024),

the authors have employed a PRM framework (Yang et al., 2017;

Khan et al., 2022) to analyze the count of EVAs in China, with

the predictor variables outlined in Table 3. The PRM is commonly

used for count data, where the discrete outcome of interest is the

frequency of events occurring within a specific time period. In this

study, the authors extended the basic PRM to incorporate temporal

dependence by including autoregressive terms, reflecting the data’s

time-series nature. As recommended in the literature, the PRM is

suitable for count data as it handles non-negative integer values and

follows a Poisson distribution, where the mean and the variance

of the counts are assumed to be approximately equal (Khan et al.,

2022). The Poisson model is expressed as follows: Let EVA follow a

Poisson distribution with the parameter lambda (λ). That is, EVAt

∼ Poisson (λt). Therefore, we express:

P (EVAt = evat) =
e−λ∗λevat

evat!
(1)

For eva= 0, 1, 2, . . . . . . and λ > 0, where

E (evat) = λt=eevatβ . (2)

From Equations 1, 2, λ is the number of events (count), t is the

length of the time interval, and the λ is the average rate (intensity)

of the events per unit time. Also, P(EVAt = evat) represents the

probability of observing the λ events in the interval (0, t). The e is

the base of the natural logarithm, and the evat! denotes the factorial

of λ, which is the product of all positive integers from 1 to λ. To

model the relationship between the EVA and the main independent

variables (BEV, VR, CI, VRCI, and FC). Literature shows that the

PRM is appropriate for count data, such as the number of EVs sold,

where the dependent variable is a count of events (EVA) and the

independent variables are used to explain the variation in the count

(Coxe et al., 2009; Khan et al., 2022).

log (λt) = α + β1VRt + β2CIt + β3VRCIt

+β4BEVt + β5FCt + β6BZt + logβ7evat−1 + εt , (3)

where the dependent variable, λ (lambda), is the Poisson

parameter of the expected count sales of EVs at time t. The

independent variables are those explained in Section 3.1 at time

t. Also, β1-β5 are the parameter coefficients associated with the

main independent variables to be estimated. Also, β6 denotes

the included controlled variables to be determined including the

intercept, α. Note that from Equation 3, the authors have extended

the general Poisson model by including temporal dependence: The

β7 parameter introduces the temporal dependence, capturing the

effect of past EVA on current adoptions (offset), and εt is the error

term. Expressing this model equation allows the authors to explain

the relationship between EVA and the given independent variables

while accounting for potential temporal dependencies through the

autoregressive terms. Also, to determine the total ED (Fache and

Bhat, 2024) and fossil fuels displaced by the EVs, we apply the same

PRM estimated in Equations 1, 2 as shown in Equations 4, 5. For

the objectives of this study, using the PRM, the authors employed

an incidence rate ratio (IRR = eβ1 ) reporting technique to explain

the impact of VR, CI, VRCI, FC, and BEV under sustainable

transportation. The authors employed the IRR reporting analysis to

test hypotheses about the EVA based on whether the introduction

of VRCI technology may increase EVA rates. Also, apply the IRR

in this study provides interpretable results relevant to policymakers

without necessarily using the predicted log count. So, Equations 4,

5 present electricity and oil displaced by adoption of EVs.

Let EDt ∼ Poisson (λt); then,

log (λt) = α + β1VRt + β2CIt + β3VRCIt

+β4BEVt + β5BZt + logβ6edt−1)+ εt . (4)

Let ODt ∼ Poisson (λt); then,

log (λt) = α + β1VRt + β2CIt

+β3VRCIt + β4BEVt + β5BZt + logβ6odt−1)+ εt . (5)

Finally, the authors conducted the PRM analysis using Stata

Software, employing the following commands “poisson eva vr

ci vrci bev + control variables, vce(robust) irr” to estimate

the variable parameter adoption. To analyze ED and OD, the

dependent variables were replaced, and the outcomes are detailed

in Tables 3–5.

3.3.2 Robustness, sensitivity tests, and study
limitations

In empirical research, each model may exhibit limitations that

can lead to biased parameter estimates and potentially affect the

validity of conclusions. To enhance the validity of this study,

a robustness test was conducted by employing the NBM to
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TABLE 3 Data statistics.

Variables Obs. Mean Std. Dev. Min Max

EVA 52 289,939 428,558.1 195 1,534,325

BEV 52 0.7692308 0.4254356 0 1

PX 52 353,361.6 241,360.1 148,390 751,043.3

ST 52 786,864.6 1,137,348 1,064 3,957,925

SD 52 4.69e+09 4.06e+09 8.55e+08 1.18e+10

CI 52 95,057.69 132,830.2 0 440,000

EPX 52 0.7661538 0.086004 0.65 0.98

ED 52 9,017.173 4,766.649 2,290 16,555

VR 52 346.1538 85.08713 0 1

VRCI 52 3.05e+07 4.09e+07 0 1.32e+08

FC 52 0.692308 0.466041 0 1

OD 52 1,146.521 1,237.174 17.1695 4,217.5

Data Source: https://www.iea.org/data-and-statistics/data-tools/global-ev-data-explorer and https://ourworldindata.org/electric-car-sales. EVA, electric vehicle adoption; BEV, battery electric

vehicle; PX, EV price; ST, EV stock shares; SD, government subsidies; CI, charging infrastructure; EPX, electricity prices; VR, vehicle range; VRCI, vehicle range∗charging Infrastructure; FC,

fast charging; OD, oil displacement.

authenticate the findings of the PRM, mainly in the context of

overdispersion. The NBM was utilized to assess overdispersion

within the data, ensuring that the conclusions regarding the

variables and the model are unbiased. The main model PRM,

together with NBM as a robustness test, is presented in Tables 3–

5 (Coxe et al., 2009; Payne et al., 2017). Furthermore, a sensitivity

analysis was conducted by omitting the VRCI interaction term

in investigating whether the synergistic effects of these variables

significantly impact EVA (Barman et al., 2023). Finally, this study

has few limitations and could be addressed by future studies.

First, the applied model framework did not account for regional

disparities in charging infrastructure and economic conditions

because regional data for the variables were not available at the

time of the study, meaning that these findings are not applicable

to rural or less developed areas in China. Second, the research did

not get real-time data integration, limiting its ability to capture

dynamic changes in ED, charging behavior, and EVA trends. Third,

the study’s focus on BEVs may overlook the transitional role

that PHEVs and other EVs play in meeting net-zero emissions.

Finally, while the research emphasizes OD and net-zero emissions,

the study could not account for broader environmental impacts,

such as life-cycle effects of battery production and recycling.

Consequently, addressing these limitations in future studies may

broaden the literature for understanding EVA in China.

4 Results presentation and analysis

4.1 Model estimation and EVA result
analysis

Table 4 presents EVA estimation results using two distinct

techniques, PRM and NBM. The two techniques, PRM and NBM,

are applied in Model 1 and Model 2, respectively, to estimate the

EVA results. These same techniques are then applied in Model

3 and Model 4 for sensitivity analysis, ensuring the robustness

of the findings. The comparison between Models 1 and 3 (for

PRM) and between Models 2 and 4 (for NBM) allows for an

evaluation of how sensitive the EVA results are to changes in

model specifications and estimation approaches (Franzò andNasca,

2021; Ge and MacKenzie, 2022). The model results indicate that

the likelihood ratio chi-squared test confirms that the full models

are a significant improvement over the null (no predictors) model

(p < 0.001). First, the results show that the lag EVA (lagEVA) is

not statistically significant, meaning that past adoption rates do

not influence current uptake. This finding is consistent with the

Poisson distribution assumption, where the occurrence of events is

independent of subsequent events (Khan et al., 2022). Moreover, all

control variables in Model 1 are statistically significant, suggesting

their relevance in explaining EVA. The robustness test in Model 2

confirms that the primary predictors VR and CI and the interaction

term between VRCI, BEV, and FC are significant determinants

of EVA in the Chinese market. Furthermore, the NBM results

indicate that there is no over dispersion in the data, implying

that the variability aligns with theoretical expectations and that

the counts do not exhibit unexpected spread. This supports using

the chosen statistical model PRM, affirms its suitability for the

data, and suggests that the parameter estimates are unbiased due

to data variability. Additionally, the sensitivity analysis in Model 3,

along with the robustness test in Model 4, demonstrates that even

when the interaction term VRCI is excluded, the significance of the

primary predictors remains unchanged. This highlights that EVA

is dominantly driven by factors such as VR, availability of smart

CI, battery storage capacity, and advancements in both range and

charging technologies. As a result, the findings in Model 1 were

utilized in the main analysis. To ensure empirical rigor, Equation 3

is presented in logarithmic form, and consistent with the literature,

we report the IRR as exp (β) rather than the raw coefficients

(Yang et al., 2017). This transformation, as explained in Section 3,

converts logarithmic predictors into a linear scale, facilitating more

transparent reporting and interpretation of results. Reporting only

the log count could obscure the full magnitude of parameter effects,
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TABLE 4 EVA results.

Estimate technique Model 1 Model 2 Model 3 Model 4

Variable PRM NBM PRM NMB

VR 0.982∗∗∗ 0.981∗∗∗ 0.993∗∗∗ 0.988∗∗∗

(0.000) (0.000) (0.000) (0.000)

CI 0.999∗∗∗ 0.999∗∗∗ 0.999∗∗∗ 0.999∗∗∗

(0.000) (0.000) (0.000) (0.000)

VRCI 1.002∗∗∗ 1.004∗∗∗ Sensitivity Robustness

(0.000) (0.000) Test Test

BEV 0.626∗∗∗ 0.500∗∗∗ 0.635∗∗∗ 1.664∗∗

(0.000) (0.000) (0.000) (0.008)

FC 3.376∗∗∗ 4.781∗∗∗ 4.364∗∗∗ 5.480∗∗∗

(0.000) (0.000) (0.000) (0.000)

lagEVA 1.000 0.999 1.000 1.000

(0.182) (0.584) (0.881) (0.896)

PX 1.000∗∗∗ 1.000∗∗∗ 1.000∗∗∗ 1.000∗

(0.000) (0.000) (0.000) (0.033)

ST 1.000∗∗∗ 1.000∗∗∗ 1.000∗∗∗ 1.000∗∗∗

(0.000) (0.000) (0.000) (0.000)

EPX 26.175∗∗∗ 0.052∗∗∗ 167.38∗∗∗ 347.821∗∗∗

(0.000) (0.000) (0.000) (0.000)

ED 1.000∗∗∗ 1.000∗∗∗ 1.000∗∗∗ 1.000∗∗∗

(0.000) (0.000) (0.000) (0.000)

Constant 37,124.05∗∗∗ 629,436∗∗∗ 156.669∗∗∗ 370.922∗∗∗

(0.000) (0.000) (0.000) (0.000)

R2 0.9997 0.6077 0.9987 0.613

Values in parentheses are p-values. PRM, Poisson regression model; NBM, negative binomial model; VR, vehicle range; CI, charging infrastructure; VRCI, vehicle range∗charging Infrastructure;

BEV, battery electric vehicle; FC, fast charging; lagEVA, lag EVA; PX, EV price; ST, EV stock shares; EPX, electricity prices; ED, electricity demand. ∗p < 0.1. ∗∗p < 0.05. ∗∗∗p < 0.01.

but using the IRR provides an accurate representation (Abudu et al.,

2023).

The study’s primary finding underscores the crucial role of

VR in shaping EVA decisions and behaviors (Ge and MacKenzie,

2022; Haghani et al., 2023). Specifically, the results indicate that

for each additional percentage increase in the distance drivers

need to cover, the predicted adoption of battery electric vehicles

BEVs decreases by a factor of 0.982, or a 1.8% reduction in

adoption [(0.982 – 1) ∗ 100%]. This result confirms the developed

hypothesis 2 and suggests that as customers anticipate longer

trips or require extended driving ranges, they show a slight 1.8%

preference for PHEVs or ICEVs over BEVs. This consumer shift

is often associated with “range anxiety,” a phenomenon in which

potential EV buyers worry about running out of battery charge

before reaching their destination or the next charging station (Lee

et al., 2020; Haghani et al., 2023). As a result, many consumers

gravitate toward PHEVs, which offer the reassurance of a fossil

fuel backup. However, recognizing that this shift toward PHEVs

may not represent a full transition to sustainable transportation or

net-zero emissions is important, as PHEVs still rely on fossil fuels

(Tao, 2024; Squalli, 2024). To promote widespread EVA and a more

sustainable mode of transportation, technological innovations that

enhance the driving range of both BEVs and PHEVs are urgently

needed (Barman et al., 2023; Squalli, 2024). Additionally, renewable

energy–based recharging technologies, such as battery-swapping

systems along major roads, should be encouraged to alleviate

range anxiety (Lee et al., 2020; Barkenbus, 2020). Addressing

these challenges will help the transportation industry facilitate a

more effective transition to eco-friendly BEVs and contribute to

sustainable mobility solutions. Moreover, the increased adoption of

BEVs can spur the development and use of CCS technologies. By

capturing and storing emissions that would otherwise be released

by individual vehicles, CCS can play a key role in reducing overall

emissions and enhancing environmental sustainability.

The results in Table 4 suggest that improvements in CI have

a negative impact on EVA, raising concerns among potential

EV buyers (Liu et al., 2023; Squalli, 2024). This finding is

counterintuitive, as a 1% improvement in charging accessibility

and availability is associated with a marginal 0.1% reduction in

EVA. While CI is improving, it is currently insufficient to drive
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a proportional increase in EVA within the Chinese market (Shao

et al., 2023). This is evidenced by the nationwide ratio of electric

vehicles to charging stations, which stands at 3.1:1. This imbalance

suggests that the current CI is insufficient to meet the demands of

the growing EV market, leading to a slower adoption rate (Guo

et al., 2021; Li et al., 2022). The relationship between CI and

EVA is complex and influenced by factors such as charging station

tariffs, charging speed, and station distribution. For instance, high

public charging fees may discourage users, reducing EVA, as higher

costs lower demand (Haidar and Rojas, 2022). Consequently, an

increase in public charging stations may not significantly enhance

EVA if consumers prefer the convenience and lower costs of

home charging (Haidar and Rojas, 2022). In effectively promoting

EVA in China, policies should prioritize diversifying charging

technologies (Vaishnav, 2023; Fache and Bhat, 2024). This could

include inductive charging (IoT-enabled), conductive charging, and

battery swapping, supported by multiple charging levels such as

residential Levels 1 and 2, public Level 2, and direct fast-charging

Level 3 (Mastoi et al., 2022). Also, the findings also show a slight

positive effect (0.2%) from the interaction between VR and CI,

as observed in China’s data-driven EV market. This VRCI effect

significantly enhances the convenience of owning and using EVs,

contributing to the transition toward sustainable transportation

in China (Liu et al., 2023). With advancements in VR technology

combined with a well-developed CI network, users would gain

confidence in their ability to easily locate charging stations and

benefit from improved battery performance. As a result, consumers

in the Chinese economy are more likely to switch to EVs when they

perceive them as a viable and convenient alternative to ICEVs (Liu

et al., 2023; Shao et al., 2023).

Additionally, the findings presented in Table 4 demonstrate

that an increase in the supply of BEVs results in a significant

decline in adoption rate compared to the control group (PHEVs

and ICEVs) than expected in the Chinese market. In this finding,

several factors contribute to this result, including limitations in

VR, concerns related to range anxiety, and consumer preferences

favoring PHEVs (Liu et al., 2023; Fatemi et al., 2023). That is,

BEVs typically have a limited driving range on a single charge

compared to PHEVs, which operate on both electric power and

internal combustion engines (Squalli, 2024). The recommendation

is that Chinese consumers, much like their global counterparts,

express apprehension regarding the limited range of BEVs, despite

their positive impact on achieving net-zero emissions. This

limitation has a significant drawback for potential EV buyers who

need to travel long distances regularly, such as commuters or

individuals living in rural areas, particularly for vans, cars, and

trucks. Even with advancements in charging stations, there are

still concerns about the availability and accessibility of charging

stations, particularly in less densely populated areas where BEV

owners heavily rely on CI, and this negatively impacts BEV

adoption in the Chinese market. Therefore, in response to range

limitations and range anxiety, consumers rather prefer PHEVs

over BEVs (Shao et al., 2023). Because PHEVs offer the flexibility

of using electricity and gasoline, they provide a greater sense of

security for longer trips. This inclination for PHEVs leads to a

decrease in BEV adoption, as consumers opt for vehicles aligning

better with their driving expectations.

Finally, the research findings indicate that an increase in the

availability of smart or FC systems positively correlates with higher

EVA rates within the Chinese market. The positive effect of fast

CI on EVA is that it significantly reduces charging time and

enhances the convenience of owning an EV (Fatemi et al., 2023;

Shao et al., 2023). Smart-charging stations allow EV owners to

recharge their vehicles much more quickly compared to standard

charging methods, which may take several hours (6–8). As a result,

the availability of smart CI assists in overcoming “range anxiety,”

which is one of the barriers to EVA, as drivers may recharge their

vehicles more easily during long trips (Haidar and Rojas, 2022).

4.2 EVA impact on ED analysis

Table 5 presents the electricity demand estimation results using

two distinct techniques, PRM and NBM. The two techniques, PRM

and NBM, are applied in Model 1 and Model 2, respectively,

to estimate the primary results. These same techniques are then

applied in Model 3 and Model 4 for sensitivity analysis, ensuring

the robustness of the findings. The comparison between Models 1

and 3 (for PRM) and between Models 2 and 4 (for NBM) allows

for an evaluation of how sensitive the results are to changes in

model specifications and estimation approaches. In Table 5, the

result suggests that ST and SD are the significant control variables.

Also, the results show that ED is independent of the lag demand,

and this is consistent with the PRM distribution assumption (Khan

et al., 2022).

The analysis reveals that for every percentage increase in VR

technology, or the greater the distance drivers desire to travel, there

is a corresponding 0.3% increase in ED. This suggests that increased

demand for VR technology necessitates additional electricity,

which potentially creates competition with other sectors for the

available electrical resources (Fatemi et al., 2023). This increase in

VR subsequently increases ED as more EVs hit the road (Li et al.,

2018; Liu et al., 2023). Overall, the positive effect of increased VR

on ED stems from a combination of reduced charging frequency,

higher EVA, and expanded usage scenarios (Li et al., 2018).

These factor advancements collectively contribute to an uptake

in electricity consumption, highlighting the interplay between

EV technology advancements and the electric grid’s capacity and

resilience. This, therefore, presents the need for alternative energy

sources particularly from renewable charging stations to meet

this growing EVA in a sustainable manner (Seyyedeh-Barhagh

et al., 2023; Vaishnav, 2023). Also, the results in Table 5 show

that a percentage increase in the supply of BEVs in the Chinese

economy required more than a 27.8% increase in ED (Fatemi et al.,

2023). That is, having more BEVs on the road requires a higher

demand for electricity, particularly during charging. This surge in

ED presents energy challenges and emissions consequences if the

energy is not a renewable source (Seyyedeh-Barhagh et al., 2023;

Zhou et al., 2023). To therefore, accommodate the increased ED

from BEVs, China requires investment in the development of smart

grids and advanced energy management systems (Squalli, 2024).

These technologies enhance grid efficiency, reduce energy losses,

and enable better integration of renewable energy to accelerate

China’s sustainable transportation (Zhou et al., 2023).
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4.3 Impact of EVA on OD in China

Table 6 presents oil displaced estimation results using two

distinct techniques, PRM and NBM. The two techniques, PRM

and NBM, are applied in Model 1 and Model 2, respectively,

to estimate the primary results. These same techniques are then

applied in Model 3 and Model 4 for sensitivity analysis, ensuring

the robustness of the findings. The comparison between Models 1

and 3 (for PRM) and between Models 2 and 4 (for NBM) allows for

an evaluation of how sensitive the results of oil displaced by EVA

are to changes in model specifications and estimation approaches.

These findings suggest that an increase in VR, or a greater

preference among consumers for longer EV trips, reduces the total

amount of oil displaced in the Chinese economy by 1.9%. This

reduction occurs because longer VR allows EVs to travel greater

distances on a single charge, decreasing the reliance on gasoline

or diesel. As a result, oil consumption in the transportation sector

decreases, contributing to oil displacement (Liu et al., 2023; Mastoi

et al., 2022). Consequently, increased adoption of EVs with longer

ranges has further implications for China’s oil imports. As a major

oil importer, China could reduce its dependence on foreign oil

sources as it shifts toward renewable energy through increased EVA.

This transition may have economic and geopolitical significance,

as reduced reliance on oil imports can strengthen energy security.

Additionally, the technological advancements in VR for EVs may

not only contribute to lower oil imports but also enhance net-zero

goals (Mastoi et al., 2022; Squalli, 2024).

Also, the finding shows that a percentage increase in CI tends

to reduce the total amount of oil displaced in the Chinese economy

by a marginal amount of 0.1%. This means that as the availability

and accessibility of charging stations for EVs improve, there is a

corresponding decrease in the reliance on oil for transportation (Li

et al., 2018). Charging infrastructure supports the adoption and

usage of EVs, which are typically powered by electricity rather

than fossil fuels like gasoline or diesel (Lin and Abudu, 2020).

Therefore, an expansion of charging infrastructure contributes to

the displacement of oil in the transportation sector, as more people

choose to drive EVs and rely less on traditional ICEVs (Liu et al.,

2023). Therefore, the implication of reducing the total amount of

oil displaced in the Chinese economy due to an increase in CI has

several important implications for carbon emissions and carbon

neutrality. Many countries, including China, have set ambitious

targets for carbon neutrality, aiming to balance carbon emissions

with carbon removal or offsetting measures (Li et al., 2019; Squalli,

2024). Thus, the reduced reliance on oil and the adoption of EVs

align with these goals. So, policy measures must be put in place to

enhance the CI across the country to meet climate action, carbon

emissions reduction, and neutrality (Mastoi et al., 2022). Finally,

an increase in CI leads to a reduction in oil displacement, thereby

supporting industrial decarbonization and the transition to cleaner

and more sustainable transportation options like EVs (Squalli,

2024). This transition aligns with global efforts to reduce carbon

emissions, achieve carbon neutrality, and promote sustainable

energy sources, ultimately benefiting both the environment and

public health in China (Li et al., 2019; Vaishnav, 2023). Finally, the

finding shows that the combined policy technologies in improving

both VR and CI are currently constant with the total fossil fuel

displaced. Furthermore, the results reveal that a percentage increase

in the adoption of BEVs in the Chinese economy has displaced

oil by a great deal of 88.1%. The effect of a percentage increase

in BEVs’ adoption on the total oil displaced in the Chinese

economy has significant policy implications (Squalli, 2024). First,

the high adoption rate of BEVs is believed to be sourced from low-

carbon or renewable sources and therefore a significant reduction

in oil consumption for transportation. This would have positive

implications for carbon emissions reduction and efforts to achieve

carbon neutrality, as BEVs produce zero tailpipe emissions relative

to PHEVs and ICEVs (Li et al., 2019; Mastoi et al., 2022; Shao

et al., 2023). Also, BEVs contribute to industrial decarbonization

by lowering greenhouse gas emissions in the transportation sector.

As more BEVs replace ICEVs, there is a direct reduction in carbon

emissions associated with transportation, a sector that significantly

contributes to industrial emissions in China and in the case of the

United States (Squalli, 2024).

4.4 Result discussion and policy implication

China’s growing adoption of EVs is a key driver in its push

toward decarbonizing the energy sector, enhancing sustainable

electricity, and reducing greenhouse gas emissions, in line with

its commitment to achieve carbon neutrality by 2060. The rise

in EVA has significant implications for sustainable electricity

generation, the transformation of the transportation sector, and

the attainment of net-zero emissions (Lin and Abudu, 2020; Liu

et al., 2023). As more EVs hit the road, the demand for electricity

is increasing, particularly as VR expands and the supply of BEVs

grows. Every improvement in VR leads to a proportional rise in

electricity consumption, which, combined with a higher availability

of BEVs, presents both a challenge and an opportunity for China’s

energy setting. The challenge lies in meeting growing ED through

sustainable sources, as the environmental benefits of EVs can only

be fully realized if the energy that powers them is derived from

renewables like solar, wind, and hydropower (Xue et al., 2021).

By ensuring that EVs are charged with clean energy is crucial

to advancing China’s renewable energy transition. The integration

of EVA is pivotal in reducing oil consumption, offering a direct

pathway toward transforming China’s transportation sector (Guo

et al., 2021). With each increase in VR, there is a corresponding

reduction in oil usage, which will be further driven down by

the supply of BEV. This shift has the potential to reduce China’s

reliance on fossil fuels and significantly lower transportation-

related carbon emissions, which currently account for over 10% of

the country’s emissions in this sector (Liu et al., 2023). However,

the persistence of PHEVs in the market, due to concerns over range

anxiety and insufficient charging infrastructure, presents barriers to

fully transitioning to zero-emission transportation. PHEVs offer a

temporary solution for reducing oil consumption; however, their

reliance on fossil fuels limits their contribution to China’s net-

zero emissions goals. To address this, China should prioritize the

adoption of BEVs by advancing VR through critical materials

technologies and enhancing the accessibility of CI (Fuinhas et al.,

2021).

Furthermore, continuous improvement in CI is essential for

the successful implementation of EVA, as it strengthens the
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TABLE 5 Electricity demand results.

Estimate technique Model 1 Model 2 Model 3 Model 4

Variable PRM NBM PRM NMB

VR 1.003∗∗∗ 1.000∗∗∗ 1.002∗∗∗ 1.003∗∗∗

(0.000) (0.000) (0.000) (0.000)

CI 1.000∗∗∗ 1.000∗∗∗ 1.000∗∗∗ 1.000∗∗∗

(0.000) (0.000) (0.000) (0.000)

VRCI 1.000∗∗∗ 1.000∗ Sensitivity Robustness

(0.000) (0.021) Test Test

BEV 1.278∗∗ 1.578∗ 1.028 1.155

(0.008) (0.010) (0.642) (0.250)

lagED 0.999 0.999 1.000 0.999

(0.206) (0.530) (0.301) (0.637)

EVA 0.999 1.000∗ 0.999 1.000∗

(0.566) (0.030) (0.312) (0.057)

EPX 3.007 7.443∗ 0.666 1.436

(0.191) (0.032) (0.446) (0.573)

SD 1.000∗∗∗ 1.000∗∗∗ 1.000∗∗∗ 1.000∗∗∗

(0.000) (0.000) (0.000) (0.0000

ST 0.999∗∗ 0.999∗∗∗ 0.999∗ 0.999∗∗∗

(0.007) (0.000) (0.027) (0.000)

Constant 433.874∗∗∗ 94.912∗∗∗ 2,379.159∗∗∗ 756.525∗∗∗

(0.000) (0.000) (0.000) (0.000)

R2 0.8903 0.60 0.8815 0.75

Values parentheses are p-values. PRM, Poisson regression model; NBM, negative binomial model; VR, vehicle range; CI, charging infrastructure; VRCI; BEV, battery electric vehicle; EVA,

electric vehicle adoption; lagED, lag ED; EPX, electricity prices; SD, government subsidies; ST, EV stock shares. ∗p < 0.1. ∗∗p < 0.05. ∗∗∗p < 0.01.

synergy between VR and the availability of smart charging options.

This interaction emphasizes the need for a robust and accessible

charging network, made possible through by integrating IoT

technologies. Although China has made advances in intensifying

its CI, gaps remain, particularly in regions where charging

stations are scarce. Additionally, issues such as high public-

charging tariffs and slow charging speeds further impede the

widespread adoption of EVs (Fuinhas et al., 2021; Haidar and

Rojas, 2022). In addressing these challenges, China needs to invest

in developing fast-charging networks, integrated with renewable

energy sources, to encourage broader EVA. Such advancements

will help alleviate range anxiety and ensure that EV charging

aligns with the country’s sustainability objectives. The success of

EVA in contributing to China’s sustainable development and net-

zero emissions efforts depends on several strategic actions. First,

accelerating the transition from ICEVs and PHEVs to BEVs is

essential, as BEVs offer greater potential for reducing fossil fuel

dependence and emissions (Fuinhas et al., 2021). That is, while

VR anxiety is an important concern for customers, achieving net-

zero emissions takes precedence in advancing sustainable energy

and carbon neutrality. This, therefore, can be achieved through

technological advancements in BEVs and a transition to cleaner

energy sources. Also, this may be achieved through implementing

consumer incentives, subsidies, and public awareness campaigns

that emphasize the long-term environmental and economic

benefits of BEVs. Second, as ED continues to grow with EVA,

meeting this demand through renewable energy sources is critical.

That is, expanding renewable energy–based charging stations and

developing smart grid systems will ensure that EVs are powered by

sustainable electricity (Lewicki and Nowak, 2021; Li et al., 2022).

Finally, significant improvements in CI, particularly fast-charging

networks, are necessary to support higher levels of BEV adoption

and reduce oil dependence in the Chinese economy.

5 Conclusion and policy
recommendations

In conclusion, China’s EVA is central to its efforts to

decarbonize the transportation sector, transition to sustainable

energy, and achieve net-zero emissions. However, the success of

EVA in contributing to sustainable electricity and transportation

depends on advancing technologies focusing on promoting

BEVs adoption over PHEVs and ICEVs, continued investment

in renewable energy and boosting infrastructure. Also, the

study concludes that advancements in EV materials technology

in critical minerals (aluminum, carbon fiber, lithium, nickel,

cobalt, and neodymium) and energy-efficiency technologies are
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TABLE 6 Oil displaced results.

Estimation technique Model 1 Model 2 Model 3 Model 4

Variable PRM NBM PRM NMB

VR 0.981∗∗∗ 0.980∗∗∗ 0.990∗∗∗ 0.990∗∗

(0.000) (0.000) (0.000) (0.006)

CI 0.999∗∗∗ 0.999∗∗∗ 0.999∗∗∗ 0.999∗

(0.000) (0.000) (0.000) (0.069)

VRCI 1.000∗∗∗ 1.000∗∗∗ Sensitivity robustness

(0.000) (0.000) Test Test

BEV 0.119∗∗∗ 0.119∗∗∗ 0.252∗ 0.588

(0.000) (0.000) (0.031) (0.346)

lagOD 1.000 1.000 1.000 0.999

(0.942) (0.992) (0.980) (0.789)

PX 1.000∗∗∗ 1.000∗∗∗ 1.000∗∗∗ 1.000∗∗∗

(0.000) (0.000) (0.000) (0.000)

ST 1.000∗ 1.000∗∗∗ 1.000∗∗∗ 1.000∗

(0.076) (0.000) (0.000) (0.065)

EVA 0.999 0.999∗∗ 0.999∗∗∗ 0.999

(0.519) (0.001) (0.000) (0.370)

SD 1.000∗ 1.000∗∗∗ 1.000 1.000

(0.020) (0.000) (0.966) (0.982)

EPX 0.019∗ 0.019∗ 200.818∗ 131.626∗

(0.043) (0.066) (0.012) (0.094)

ED 1.000∗∗∗ 1.000∗∗∗ 1.000∗∗∗ 1.000∗∗∗

(0.000) (0.000) (0.000) (0.000)

Constant 125,833.8∗∗∗ 125,833.8∗∗∗ 1.212 3.344

(0.000) (0.000) (0.776) (0.584)

R2 0.9933 0.7129 0.9910 0.5364

Values parentheses are p-values. PRM, Poisson regression model; NBM, negative binomial model; VR, vehicle range; CI, charging infrastructure; BEV, battery electric vehicle; lagED, lag ED;

EVA, electric vehicle adoption; EPX, EV price; SD, government subsidies; ST, EV stock shares; EPX, electricity prices; VRCI, FC, OD, oil displacement. ∗p < 0.1. ∗∗p < 0.05. ∗∗∗p < 0.01.

crucial to the success of EV uptake in China. The study

concludes that technological innovations such as lightweight

materials and improved battery technologies enhance vehicle

performance, increase range, and reduce energy consumption.

These improvements may not only contribute to more efficient

transportation but also help in reducing the overall environmental

impact. Furthermore, through continued investment in material

science and energy-efficient technologies, China may further

support its goals for sustainable mobility and achieve significant

progress toward net-zero emissions and a greener economy.

Consequently, the study recommends policymakers actively

integrate advanced technologies such as artificial intelligence,

the IoT, blockchain, and smart grid systems in using real-time

data, swappable battery services to further promote EVA and

drive progress in the energy and transport sectors. As these

advanced technologies may play a crucial role in optimizing EV

infrastructure, supporting the country’s digital economy drive, and

advancing its goals of sustainable electricity, transportation, and

net-zero emissions. Together with renewable energy solutions,

these technological advancements will maximize the environmental

benefits of EVs, reduce reliance on fossil fuels, and accelerate

China’s transition toward sustainable transportation and net-zero

emissions targets.
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