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Life prediction significantly influences the reliability of LED light sources.

While high-power LED light sources theoretically o�er a lifespan of up to

100,000h, irreversible damage to components leads to light failure, substantially

reducing their actual lifespan. Consequently, accurate life prediction is pivotal

for manufacturers to cut costs and enhance economic e�ciency. This necessity

aligns with the interests of communities, governments, and consumers.

Currently, the most extensively employed prediction methods are based on

traditional physical models and data-driven approaches. The focal point of

current research lies in realizing model fusion, presenting both a hotspot

and a challenge. To elucidate the relationships, advantages, and disadvantages

of di�erent algorithms and establish the groundwork for LED life prediction

algorithm development, this paper first introduces material properties and the

light decay model of high-power LED light sources. Subsequently, it discusses

the principles and methods of the physical model concerning light source

reliability. The paper also presents a review and comparison of recent domestic

and foreign light source life prediction models. Finally, it provides insights into

the expected future development trends in life prediction.
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1 Introduction

The pressing issue of carbon emissions has garnered attention globally because of the

effects of urbanization and global warming on humanity. Data from the International

Energy Agency reveals a staggering 15.6-fold increase in the world’s annual carbon

emissions over the 120-year period from 1900 to 2020 (Wang et al., 2023). Recognizing the

urgency, countries advocate for a green and low-carbon economic development model to

expedite the reduction of greenhouse gas emissions. Cities, being the focal point of human

activity, are particularly vulnerable to climate change, making them pivotal in the strategy

to diminish carbon emissions and address climate concerns. China’s 14th Five-Year Plan

concentrated efforts on building an ecological civilization, emphasizing carbon emissions

reduction, pollution reduction, and the shift from quantitative to qualitative improvements

in the ecological environment (Zhao et al., 2022). This strategic initiative aims to combat

challenges posed by environmental pollution and achieve sustainable and high-quality

economic development.

More than half of China’s total national carbon dioxide emissions stem from thermal

power generation, with lighting accounting for ∼20% of this consumption and steadily

rising to 40% over time (Petkovic et al., 2022). Aligned with the strategic goals of “carbon

peak and carbon neutrality,” the imperatives of energy conservation, emission reduction,

and green development underscore the need to curtail lighting power consumption. This

reduction is pivotal in attaining the ambitious “double carbon” goal. High-power LEDs,

emerging as the premier green light source of the new generation, are gradually replacing
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conventional lighting sources due to their attributes of low power

consumption, high light efficiency, brightness, and a minimal

carbon footprint (Unión-Sánchez et al., 2022). Their widespread

applications in both indoor and outdoor settings (Chang et al.,

2012) underscore their importance, with the lifespan of LED light

sources emerging as a critical factor in energy economy and

environmental sustainability (Padmasali and Kini, 2020). However,

despite advancements in technology, conventional statistical

techniques such as least squares, maximum likelihood estimation,

and polynomials persist in the rated life prediction of LED light

sources. This approach involves constructing a probability model

based on the computation of a physical statistical model, utilizing

probability distribution to characterize data regularities for life

prediction and light source analysis. Nevertheless, thismethod is ill-

suited for scenarios with high-dimensional and nonlinear features

due to stringent distribution requirements and high standards

for data quality. Maximum likelihood estimation, influenced by

assumptions about data distribution and extreme values, adds

complexity, especially when applying the least squares method

for linear regression of luminous flux. Estimating regression

parameters for polynomials is imperative, as unpredictable

changes in random parameters result in extended prediction

times, low model efficiency, and diminished prediction accuracy.

Consequently, comprehensive testing of accelerated aging life,

immunity to electromagnetic interference, weather resistance, and

other factors directly impacting the life of light sources is essential

before conducting an in-depth analysis of LED life.

An array of life prediction algorithms has emerged in recent

years, primarily classified into two categories: traditional prediction

models and machine learning prediction models, all aimed at

achieving accurate and efficient life prediction of LED light sources

(Illuminating Engineering Society, 2015). Within this landscape,

traditional algorithms (Shi et al., 2020; Zhang J. et al., 2022; Zhang

and Zhang, 2023) rely on physical and mathematical models to

attain predictions, exhibiting low accuracy and a straightforward

model structure. In response to the shortcomings of individual

models, a common strategy involves the use of multi-parameter

degradation models, traditional physical models (Cai et al., 2021;

Cui et al., 2022), regression models (Kang et al., 2020), Markov

chain (Song et al., 2021; Dvorzak et al., 2022), Bayesian networks

(Dvorzak et al., 2022), and other random probability methods.

However, these methods often entail lengthy prediction times,

intricate networks, and low efficiency. Machine learning, on

the other hand, leverages extensive training data, utilizing the

gradient descent method to minimize the loss function and obtain

optimal model parameters for life prediction. Examples include

the adaptive neuro-fuzzy inference system (ANFIS) (Kyak et al.,

2021), long short-termmemory network (LSTM) (Pugalenthi et al.,

2021; Zhang L. J. et al., 2023), LSTM and multi-representation

domain adaptation (LSTM-MRAN) (Lyu et al., 2022), width-

based learning system and LSTM (B-LSTM) (Wang et al., 2022),

multi-dimensional deep neural network (MDNN) (Yang et al.,

2022), multi-neural network fusion (Kumari et al., 2021; Ma and

Mao, 2021; Hu et al., 2023). In the realm of LED life prediction

applications, machine learning stands out for its swift forecasting

times, superior accuracy, and efficiency. Nonetheless, the machine

learning network is not without its drawbacks, encompassing

extended training times and over-computation, where the quality

of training data and network architecture significantly impacts

prediction accuracy.

In conclusion, the future trajectory points toward realizing LED

light source life forecasting through the application of machine

learning fusion algorithms. Much of the current literature focuses

on LED packaging and drive life forecasting, facing challenges in

data collection, high prediction costs, and infrequent prediction

times due to excessive precision in considering influencing

elements. Presently, the examined prediction techniques can

materialize predictions derived from machine learning and

statistical model dimensions, albeit with limitations in accuracy,

generalization, and adaptation. To reduce the cost of light source

life prediction, enhance precision and real-time functionality,

and establish logical relationships between various algorithms,

this work commences with an exploration of light decay

impacting factors. Subsequently, the introduction covers light

attenuation, reliability, and accelerated life models. The following

section reviews conventional algorithms, Bayesian networks, and

artificial neural network algorithms, emphasizing the development

trend, particularly focusing on deep learning and model fusion

algorithms. The final section encapsulates the advantages and

drawbacks of various algorithms while outlining prospects for

the implementation of quick, cost-effective, and highly accurate

prediction algorithms from the perspectives of manufacturers,

governments, and researchers.

2 Light decay model of the light
source

The theoretical lifespan of an LED light source can extend up

to one hundred thousand hours, yet the practical application life

merely encompasses 30%-50% of this theoretical value. Examining

the index analysis of light source reliability is crucial for conserving

lighting power, mitigating environmental pollution and light

pollution, and advancing the development of a national low-carbon

economy (Pang and Cai, 2021). The light source life serves as

a pivotal technical parameter for evaluating the reliability and

quality of a light source, necessitating research into life prediction

(Lee and Kim, 2021). Accelerated aging life tests demonstrate that

factors such as temperature, humidity, and chemical corrosion

induce light decay (Feuk et al., 2021), impacting the overall

service life of the light source. Therefore, this chapter initiates

by elucidating the influence of LED device materials on the light

source’s lifespan, delving into the characteristics of different devices,

and encapsulating the future development trends. Ultimately, a

mathematical model is formulated based on the principles of

light source decay, establishing a robust theoretical foundation for

subsequent life prediction algorithms.

2.1 Luminescence mechanism and
materials of light source

The LED light source consists of several PN junctions. When

subjected to a forward bias power supply, the holes in the P region

collide with the electrons in the N region, generating energy to

Frontiers in Sustainable Energy Policy 02 frontiersin.org

https://doi.org/10.3389/fsuep.2024.1343339
https://www.frontiersin.org/journals/sustainable-energy-policy
https://www.frontiersin.org


Sun et al. 10.3389/fsuep.2024.1343339

release light energy (Tsai et al., 2022). The material of the light

source device significantly influences its performance.

(1) Traditional LED chips employ materials such as gallium

phosphide (GaP), gallium aluminum arsenic (GaAlAs),

gallium arsenide (GaAs), gallium nitride (GaN) (Kulkarni

et al., 2023) and others. Defects in the PN junction,

such as material quality and dislocation factors, result

in issues like impurity ionization, excitation scattering,

and lattice scattering (Lee et al., 2023). These problems

lead to a sharp decline in internal quantum efficiency,

significantly impacting the chip’s lifespan. Chips commonly

use structures like GaN, AlGaAs/GaAs quantum wells,

quaternary AlGaInP/GaAs, InGaN/GaN (Li et al., 2023)

periodic quantum wells. N-GaN chips, due to their small

size, are prone to short circuits, diminishing high-temperature

resistance and lifespan. AlGaAs/GaAs chips, using GaAs

substrate, absorb light intensely, adversely affecting the light

source’s lifespan. GaN chips on sapphire substrates are widely

adopted in various lighting applications, benefitting from

high mechanical strength, easy processing, cleaning, mature

technology, and stability. Future chip materials should address

issues of poor reliability, high cost, and inadequate heat

dissipation, aiming to enhance electrical efficiency and light

extraction efficiency to minimize power consumption.

(2) Phosphor materials. Phosphor materials, crucial in

addressing issues of light decay and color shift caused

by phosphor heating (Zhang L. et al., 2023), significantly

impact light source lifespan. Traditional phosphor materials

often utilize blue chips to excite yellow phosphors (Baheti

et al., 2023). While this method has mature technology

and low cost, light sources using this material suffer from

high color temperature, low color rendering index, and low

luminous efficiency. Tricolor phosphors (red, green, and blue)

excited by ultraviolet light chips are frequently employed

for high luminous efficiency, uniform color, and luminosity

distribution (Cheng et al., 2024). However, this material is

highly sensitive to temperature changes. With the growing

demand for white LEDs, scholars are increasingly focusing on

graphite-like carbon nitride (g-C3N4) blue phosphors, which

offer high chemical stability, moderate bandwidth, and no

pollution (Maged et al., 2023). This material exhibits high

light efficiency, thermal stability, and a prolonged light source

life, marking it as a future research trend.

(3) Packaging materials. The transmittance and refractive index

of LED packaging materials significantly impact the luminous

efficiency and brightness of the light source. Additionally,

their heat dissipation performance has a direct effect on the

chip’s temperature (Wan et al., 2023), thereby influencing

the lifespan. Epoxy resin, favored for its low cost and

high hardness, is widely used in light source packaging.

However, its poor heat resistance makes it unsuitable

for high-power light source packaging. Silicone materials,

characterized by high transparency and heat resistance, find

extensive use in high-power LED packaging (Chen et al.,

2023). However, the material’s low refractive index results

in light source life loss. With the robust development of

the new energy industry, the future trend involves the

development of composite materials such as silicone, epoxy

resin, with high refractive index, high transmittance, and

anti-aging properties.

The performance of the LED light source material is shown in

Table 1.

2.2 Light decay model of light source

Every light source undergoes varying degrees of light decay with

prolonged use, leading to a reduction in luminous flux. Ultimately,

this diminishes the brightness of the light source, making it

insufficient or unsuitable for the entire product lifespan. As per LM-

80 standards, the light source parameter is considered failed when

the luminous flux drops to 70% (L70) or 50% (L50) of its initial

value. Ornamental lighting is typically based on a 50% threshold,

while ordinary lighting adheres to the 70% threshold.

LED light degradation is influenced by numerous factors,

including structure, environmental conditions (corrosion),

temperature, humidity, packing materials, packaging technology,

and electrical parameters (current, voltage) (Cui et al., 2022).

Regardless of the influencing element, the light output diminishes

over time. As illustrated in Figure 1, the lumen curve is depicted,

with the average value of the normalized light output from the

LM-80 report forming the basis for the LED light source’s light

output data. This integrates LM-80 data, widely used in industry

standards, and the prediction method specified by TM-21 to

calculate the life value. The light flux attenuation rate begins at

zero, gradually dropping as the light source ages. In other words,

the lifetime Lp decreases to p% of the initial value when the

luminous flux decreases to p% of its starting value. The light source

is deemed faulty when the luminous flux falls to 70% of its initial

value, marking the light source’s life threshold according to LM-80.

Hence, a crucial variable influencing the life forecast is the degree

of light flux attenuation.

The mathematical models for luminous flux attenuation

encompass the exponential model, three-parameter model, and

empirical formula model. General lighting commonly employs the

exponential model (Ke et al., 2023) and empirical model (Lyu et al.,

2022), as depicted in Equation (1).

ø(t) = ø0e
−at (1)

where ø(t) represents the attenuated luminous flux value after the

light source is ignited for time t. øo denotes the initial luminous flux

value, a is the attenuation coefficient of luminous flux, and t denotes

the duration of the light source after ignition.

The blue light decay model aligns with the three-parameter

model (Hoole et al., 2019; Zhang et al., 2019, 2020), as shown in

Equation (2).

1−
øt

øo
= aln(

t

to
) (2)

where ø(t) is the luminous flux value of ignition time t, øo is the

luminous flux value at time to, a is the fitting coefficient, as shown

in Equation (3).

t0 = A× I
−β
F (3)
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TABLE 1 Summary of light source material properties.

Device Application material Performance characteristics Development trend

Chip GaN;

AlGaAs/GaAs quantum wells;

Quaternary AlGaInP/GaAs;

InGaN/GaN periodic

quantum wells

GaN crystal growth poses difficulties, with N-type

susceptibility to short circuits and P-type facing

challenges in achieving compatibility;

The AlGaAs/GaAs quantum well chip encounters issues

where the substrate significantly absorbs light.

Additionally, the quaternary AlGaInP/GaAs chip

exhibits low luminous efficiency and inadequate heat

dissipation performance;

For the InGaN/GaN chip, lattice dislocation and low

internal quantum efficiency persist

Reduce the ohmic resistance and body

resistance of the chip to improve the

electrical efficiency;

Perfect surface roughening and laser

stripping technology;

Research and development of thin film

chips, photonic crystals, and AC

chip technologies

Phosphor powder YAG phosphor+ blue light chip;

The red-green-blue tricolor

phosphor+ Ultraviolet light chip;

Composite phosphors

YAG phosphor presents challenges with high white

color temperature, low color rendering index, and

dazzling effects;

Tricolor phosphors exhibit low white light efficiency;

Composite phosphors, however, demonstrate good

thermal stability.

Ongoing research involves the

development of fluorescent glass,

fluorescent film, and new fluorescent

materials, aiming to address existing

challenges and enhance

overall performance

Packaging materials Epoxy resin;

Silicone;

Silicone/Epoxy resin

High hardness, easy to aging;

Good heat resistance, low refractive index;

Good heat resistance, high refractive index

Research and development of epoxy

resin composites;

Research and Development of Silicone

Composites and Nanocomposites

FIGURE 1

Lumen decay curve (Kyak et al., 2021).

where A and β are experimental coefficients, IF is the current value

when the time is tF .

An empirical model of luminous flux attenuation was

developed based on the following formula (4) (dos Santos et al.,

2020):

ø(t) = d1 + jd2 + j(d3 + jd4)ln(t) (4)

where ø(t) represents the value of luminous flux at ignition time t,

d1, d2, d3 and d4 are independent of current and time, j is the input

current density, and t is the ignition time. Table 2 summarizes the

advantages and disadvantages of the light decay models.

3 Light source model and discussion

The ability of a product to perform its designated functions

within specified conditions and timeframes is termed reliability (Li

TABLE 2 Advantages and disadvantages of the light decay model.

Model classification Defect Merit

Exponential model Low precision Fewer parameters,

easy to model

Three-parameter model Interference

between parameters

Simple model

Empirical model Low precision High fitting

accuracy

F. et al., 2020). With each alteration to the required parameters,

reliability diminishes until the product’s performance reaches a

point of failure. Failures can be categorized as either destructive or

parameter-based (Liu W.-G. et al., 2020). Destructive failure leads

to the product ceasing to function due to various causes, while

parameter failure involves a decline in the product’s performance

index but continued operation. This study investigated parameter

failure, specifically from the perspective of luminous flux L70 and

light attenuation.

3.1 Light source reliability model

After extensive statistical data analyses and calculations,

commonly used reliability distribution models include the Index

(Qin et al., 2022), Lognormal (Botev et al., 2019), Weibull (Ahmad

and Ghazal, 2020; Albassam et al., 2023), and Gamma distribution

(Iriarte et al., 2020; Ozonur and Paul, 2022). The characteristics of

these reliability models are outlined in Table 3.

The graphical representations of these reliability distributions

are depicted in Figure 2. To estimate the light source’s lifetime,

random variables are arranged in an exponential distribution

(Kalita et al., 2023). Figure 2A illustrates that the exponential

distribution, commonly used for characterizing the distribution

of random variables related to “life,” indicates that the probability
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TABLE 3 Reliability model characteristics.

Model classification Feature

Exponential distribution The product accidentally fails and the

failure rate is constant, with no memory

Lognormal distribution The distribution curve always shows a

right deviation, and there is a greater

possibility of upward and smaller

downward

Weibull distribution The number of parameters is variable,

and the specific situation can be

changed into exponential, logarithmic

normal, approximate normal, etc.

Gamma distribution The distribution is skewed and features

additivity and scalability. The value of

parameter α is varied and can be turned

into an exponential distribution

of random variables is solely tied to the time interval, not the

starting point in time. This results in a considerable variance.

This approach, popular in LED life prediction, considers only

one or two influencing factor parameters, like temperature

and current, making the model straightforward. The lognormal

distribution (Leech et al., 2023), shown in Figure 2B, is chosen

when considering the influence of time on the distribution.

Due to independent expansions of random variables producing

a multiplicative cumulative impact, this approach aligns with

the data distribution of light source reliability, offering minimal

prediction costs and broad applications. It is often applied to

predict the life of LED light sources prone to stress failures, such

as lead fracture, solder joint failure, and chemical corrosion. The

Weibull distribution (Shama et al., 2023), a continuous probability

distribution with roots in statistics, provides great flexibility and

extensive applicability. Figure 2C displays the Weibull distribution

probability density diagram, with β = 1 and α adjusted to various

values, exhibiting characteristics resembling the logarithmic and

exponential normal distributions when α ≤ 1, and resembling

the γ distribution when α > 1.5. This model depicts a reliability

“bathtub” curve with three stages: early failure, random failure, and

aging failure. However, its structure is more complex than that of

the exponential and lognormal distributions. The γ distribution

(Xu H. et al., 2022), another continuous probability function

based on statistics, is depicted in Figure 2D. This method allows

alterations to the shape and scale parameters, modifying the curve’s

height, width, and shape. When the shape parameter is 1, it

approximates an exponential distribution. This model boasts high

prediction accuracy, significant generalization capacity, and ease of

adjustment in its parameters.

3.2 Accelerated life model of light source

The term “accelerated life” signifies the expedited aging

process a product undergoes to approximate an extended lifespan.

According to the LM-80 standard, an LED’s lifespan is estimated

to be around 10 years or nearly 6,000 hours. This method

of accelerating aging to predict the life of light sources has

gained recognition from governments, businesses, and researchers,

currently serving as an industry testing standard. Commonly

employed acceleration models, such as Arrhenius (Nohut, 2021),

inverse power law (Ning et al., 2022), Eyring (Yang and Riggleman,

2022), and polynomials (Nandi, 2020). Arrhenius derives its life

acceleration model from activation energy, focusing solely on

thermal acceleration factors as the degradation stress. This model

predominantly considers temperature as the degradation stress

when estimating the lifespan of electrical devices. The inverse

power law model, inversely related to the strength of degradation

stress, predicts life by establishing a reciprocal power relationship

that explains the deterioration of voltage, current, power, and

other characteristics of the LED light source. The Eyring model

employs a single temperature stress as an acceleration condition

model, with the Generalized Eyring model being utilized when

humidity or current stress characterizes the degrading product

characteristics. To address the nonlinear relationship within a

dataset, the polynomial model is frequently employed. Utilizing

least squares and interpolation, this model fits the data set, and

the resulting curves are used to project the LED light source’s

expected lifespan.

In addition to the aforementioned fundamental models, most

recent accelerated life models are noteworthy. The Hallberg-

Peck (Xiao-Dong et al., 2017) for predicting product life because

it accounts for temperature and humidity. The Lawson model

(Qinyan, 1990), a temperature and humidity acceleration model,

is effective in predicting the shelf life of items where humidity

is both the primary and supplemental factor. For military

devices, MIL-HDBK-217 (Temsamani et al., 2017), a manual-

based dependability prediction approach, effectively estimates

product life, considering environmental factors, electrical stress,

and temperature cycles. T-NT (Lee et al., 2010) is designed to

predict product life under the combined effects of temperature

stress and non-thermal stress, encompassing factors such as voltage,

current, humidity, and pressure. The index model (Wang and Xian,

2021), following an exponential distribution, can predict the life of

a random variable failure rate that is time-independent. The Coffin-

Manson model (Gao et al., 2022), designed for products failing

because of fatigue at varying temperatures, employs a temperature

cycle impact acceleration model. Figure 3 displays the flow of the

aforementioned four acceleration models.

3.3 Development status and review of
prediction algorithms

3.3.1 Traditional model algorithm
The inception of life prediction algorithms marked the

application of the least squares method, known for its superior

fitting degree. To reduce test time and costs, Zhang et al.

(2012) employed the lognormal function to portray LED lifespan

distribution and utilized the least squares method (LSM) to

compute lifetime values. Sun et al. (2018) integrated failure physics

and reliability theory, applying the least squares approach to fitting

data for forecasting LED life. Despite its high fitting precision, the

least squares method is challenged by poor accuracy and a complex

calculation process.
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FIGURE 2

Distribution of four models. (A) Index distribution graph. (B) Lognormal distribution graph. (C) Weibull distribution graph. (D) Γ distribution graph.

The demand for parameter fitting and extrapolation under the

least squares method contributes to low precision. To enhance

prediction accuracy, the maximum likelihood estimation method,

relying solely on parameter estimation and eliminating the need for

extrapolation, is favored. Tsai et al. (2012) assessed life percentiles

for life value determination, modeling LED deterioration through

the Wiener process and employing the maximum likelihood

estimation approach. Ibrahim et al. (2018) validated luminous

flux degradation data through modeling and experimentation,

utilizing the γ process for degradation characterization along

with the maximum likelihood technique for parameter estimation.

Evaluating luminous flux degradation and predicting light source

lifetime, Ibrahim et al. (2019) combined the maximum likelihood

estimation approach with gamma distribution degradation (GDD).

Truong et al. (2022) introduced a stochastic difference equation

(SDE) based on the self-heating (current stress) phenomenon and

maximum likelihood estimate (MLC). The rate of LED light source

deterioration is influenced by various factors, with linear regression

often falling short due to its neglect of minor effect parameters.

Nonlinear regression emerges as a more accurate alternative.

Nonlinear regression algorithms for life prediction frequently

incorporate model combinations. Zhang et al. (2016) devised

the Weibull-approximated luminous flux attenuation model

(WRALDM) for forecasting, highlighting the three-parameter

Weibull function’s superior accuracy over the single-parameter

version. Fan et al. (2021) integrated the accelerated life model

with the γ process of random components. They demonstrated

that the γ process had more accuracy for light decay and that

the least squares regression (LSR) had higher accuracy for color

shift degradation when used to characterize the degradation. Tan

et al. (2021) compared the Eyring and Black models for accelerated

life prediction, finding the Eyring model to offer optimal forecast

accuracy and consistency when utilizing temperature and current

as degrading stresses. While traditional nonlinear regression

surpasses linear regression in accuracy, its complexity leads to

more intricate computations and diminished accuracy. The typical

linear model, with its poor fitting processing impact and low

prediction accuracy due to the significant nonlinear relationship

between independent and dependent variables in the LED life

prediction model, contrasts with the nonlinear model. Founded
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FIGURE 3

Life prediction model transformation flow chart.

on a substantial dataset and established through a mathematical

statistics approach, the nonlinear regression prediction model is

better suited for LED life prediction, offering high precision,

efficiency, and robust generalization capabilities.

3.3.2 Filtering network
The Bayesian network, known for its ease of modeling

and practical utility, proves adaptable to multivariate data.

Pan and Balakrishnan (2011) employ the γ process, linking

it with degradation information and assuming two associated

performance characteristics for the product. Bayesian parameter

estimation is then utilized to estimate the life value. Ibrahim

et al. (2021) predict the lifespan of a lamp system through

a Bayesian network (BN), incorporating the γ process and

the Weibull distribution. Their analysis demonstrates that as

the lamp system diminishes in size, the luminous flux is

affected by the light source, driver, diffuser, and reflector.

Before constructing the static Bayesian network, knowledge of

the probability between states is crucial. Otherwise, significant

parameter errors arise, making the network architecture more

intricate and less efficient. The addition of a temporal component

through dynamic Bayesian network incorporation addresses this

challenge, enhancing predictive accuracy by considering temporal

changes that align the degradation curve more closely with the

actual light source degradation. Lall and Wei (2015) utilize a linear

systemKalman filter (KF) and a nonlinear system extended Kalman

filter (EKF) for LED life prediction. Investigating chromaticity

variations of white LEDs, Fan et al. (2014a) employ data-driven

techniques. The recursive nonlinear filter, specifically the unscented

Kalman filter, more accurately acquires chromaticity state than

the data extrapolation fitting state of the nonlinear least squares

method. Accuracy in simulation results requires consideration of

temperature stress influence and the incorporation of two noises

during initialization to prevent forecast accuracy skewing.

Fan et al. (2014b) utilized the nonlinear filter, specifically the

recursive unscented Kalman filter method, to predict the LED

lumen maintenance rate based on data. The inferred lifetime

demonstrated higher accuracy than the least squares regression

method of TM-21. Padmasali and Kini (2017) estimated the EKF

of the true state recursive algorithm based on noise measurements

to predict the L70 life of LEDs. Trung et al. (2018) illustrated

the accuracy and superiority of expectation maximization (EM)

(real-time or offline) by predicting the lifetime of LEDs using the

EM technique in conjunction with parameter values derived via

Kalman smoothing. As a single stress is more likely to be the light

source degradation component, collecting light source degradation

data necessitates discrete input data. Simultaneously, the accuracy

of life prediction will be impacted by the nonlinear transition of

the system into linearity. The accuracy of the Kalman filter, based

on KF, EKF, and UKF, varies from poor to high. The primary

applications for the Kalman filter are the Gaussian noise probability

model and linear systems, rendering it inappropriate for nonlinear

and non-Gaussian filtering models.

The particle filter excels with non-Gaussian and non-linear

noise models, utilizing certain known data to forecast future data. It

is a Bayesian filtering algorithm that approximates using the Monte

Carlo method, which relies on discrete samples of the posterior

probability distribution. To forecast the lumen maintenance life of

LEDs, Fan et al. (2015) developed a nonlinear filtering prediction

approach based on Sequential Monte Carlo (SMC) and Bayesian

dynamic recursive particle filter (PF). Investigating the remaining

useful life (RUL) of airport ground lighting (AGL), Ruknudeen

and Asokan (2017) employed PF and onboard diagnostics to

determine L70. Enayati et al. (2021) devised a probability density

function (PDF) for LED life prediction using the Monte Carlo
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algorithm (MC) and Nonlinear Kalman filter (IEKF). However, this

approach requires advance estimating (preliminary assumptions),

which proves counterproductive for identifying new products,

and involves a significant amount of computation, making it

impractical for online real-time monitoring.

3.3.3 Neural network
With the rapid advancement of artificial intelligence, the

research and development of nanogenerators (Yang et al., 2023;

Yu X. et al., 2023), new sensors (Lan, 2023), new energy batteries

(Yu M. et al., 2023) and other devices have promoted and other

devices have propelled the growth of intelligent production and

smart living. This progress further supports national initiatives for

low-carbon emission reduction (Zhou et al., 2024) and the green

economy. Within this context, innovations in LED light source

devices and materials continue to emerge, and the parameters

associated with LED light sources are intricate and random. The

conventional life prediction methods based on accelerated aging

tests impose stringent requirements on environmental conditions.

In practical applications, high-power light sources encounter

random and uncertain conditions such as temperature and

humidity, leading to decreased accuracy and poor generalization

of prediction results. As artificial intelligence and deep learning

continue to evolve, neural networks have expanded beyond image

processing to include life prediction. The model’s principle is

depicted in Figure 4. The network input comprises parameters

related to the light source device and the application environment,

and an adaptive prediction model based on artificial neuron

connections is obtained through model training. By inputting

parameter data from the light source under testing, adaptive life

prediction results can be derived. Consequently, the prediction

model is no longer confined by application environment or

material type conditions. Due to its high prediction accuracy, fast

operation speed, robust generalization ability, and potent nonlinear

fitting capabilities, scholars widely employ neural networks in

recent years.

3.3.3.1 Single neural network

An artificial neural network (ANN), composed of numerous

neurons, represents an algorithmic model for distributed parallel

information processing grounded in statistical mathematics.

Several successful examples in LED life prediction involve the

application of neural networks such as LSTM (Jing et al., 2020),

ANFIS (Kyak et al., 2021), and Recurrent neural network (RNN)

(Yuan et al., 2021).

Kyak et al. (2021) achieved a nonlinear and highly precise LED

light source life prediction approach by constructing a database

with 6,000 hours of standard data using an Adaptive Neuro-Fuzzy

Inference System (ANFIS). Examples illustrate the effectiveness of

the hybrid learning algorithm model in the realm of nonlinear

LED life prediction, combining fuzzy logic with artificial neural

networks. Liu et al. (2019) employed a Lifetime Neural Network

(Lifetime ANN), a finite element approach, and a photoelectric

thermal neural network (PETANN). This methodology reduces

the time required for system life prediction, enhances prediction

accuracy, and obviates the need for repetitive PET testing and

life calculations through neural network training. The nonlinear

challenge of LED life prediction is effectively addressed by ANFIS,

amalgamating the successful classification performance of neural

networks with the flexible adaptation of fuzzy logic.

Jing et al. (2020) predicted the UV LED life using a Long

Short-Term Memory (LSTM). It is evident that, on average,

the prediction accuracy of the LSTM neural network surpasses

that of NLS regression fitting by 29.7%. Employing the Harris

hawks optimization (HHO) algorithm and LSTM recurrent

neural networks (RNNs), Ma et al. (2023) realized the life

prediction of supercapacitors with a small root mean square

error. Yuan et al. (2021) devised a gated network with a

two-step learning algorithm to accelerate the learning process.

They also established a correlation between the thermal aging

load and the luminous output of LED products to achieve the

prediction goal. The recombination of the gated network with

most neural networks is possible due to its exceptional flexibility

and compatibility. This study underscores the benefits of the

gated neural network, including easy convergence, high prediction

accuracy, flexible algorithm integration, and substantial practical

value, in comparison to the outcomes of artificial neural networks,

RNNs, and LSTM. By contrasting the statistical approach with

the artificial neural network, Zippelius et al. (2020) successfully

forecasted defects using transient thermal analysis (TTA) data

of LED solder connections in a temperature shock test. The

experimental findings highlight the value and enhanced accuracy

of LSTM-ANN. The LSTM-ANN network and statistical technique

prove to be more flexible and practical, providing higher accuracy

in point prediction and step length prediction compared to the

0.025 thresholds in the curve diagram and intersection point.

To impart the model with a memory function, the gated

neural network utilizes the architecture of an output, updating,

and forgetting gate. By sharing weights, the issue of gradient

disappearance is resolved, resulting in less training process

instability and faster model training. The advantages of this

method include its minimal prediction error, good compatibility,

and flexible use. Based on recurrent neural networks, LSTM

addresses the issues of gradient explosion and disappearance,

which is advantageous for extracting time series features, reducing

the model’s parameter count, enhancing the model’s capacity for

generalization, and improving the accuracy of life prediction.

3.3.3.2 Model fusion network

The structure of a single neural network departs significantly

from expectations and suffers from an excessively extended training

period due to the absence of original data, dispersion, and data

normalization. To address these drawbacks, the model fusion

network, primarily categorized into two schemes—combining

a classical physical model with a neural network and fusing

several neural networks—emerges as a solution. The future

development trend in the field of life prediction revolves around the

amalgamation of multiple neural networks to enhance prediction

accuracy and feature expression capabilities.

(1) Physical-neural network

The classic physical model, relying on a single algorithm, faces

challenges in achieving prediction accuracy and time demands

in real-world scenarios. The inherent advantages of the neural
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FIGURE 4

Neural network prediction model diagram.

network can compensate for these shortcomings, especially given

the vast degradation data of the classic model that aligns with

the needs of neural network applications. Integrating these

two approaches enhances their respective strengths, and this

heterogeneous integration approach has found success in the field

of life prediction.

Pugalenthi et al. (2021) implemented the particle filter

technique to refine model parameters and predict the remaining

usable life of LEDs using the hybrid model (HyA) of Particle

Filter (PF) and Neural Network (NN). The particle filter, a

nonlinear filter utilizing a weighted particle approximation state,

is based on the sequential Monte Carlo approach. It updates

the degradation model’s parameters recursively through weighted

particle degradation model propagation, forecasting the state based

on the time before the system reaches the failure threshold.

Combining the neural network (NN) and particle filter (PF)

methods, the Hybrid Particle Filter Training Neural Network

Framework (HYA) is optimized. The prediction results show

that HYA outperforms conventional single prediction models in

LED life prediction, showcasing improved convergence and faster

speed. Lu et al. (2017) introduced the ADAOST iterative method,

integrating predictions from weak BP neural networks. The

adaptive improved model of the ADAOST algorithm is compared

with the traditional (BP-NN), revealing that the enhanced BP-

NN optimizes the local optimum and over-fitting when compared

to the conventional BP-NN model. Zhang J. S. et al. (2023)

introduced a novel parallel hybrid neural network technique based

on spatial and temporal information, consisting of a bidirectional

gated recurrent unit (BiGRU) and a deep convolutional neural

network (DCNN). The results demonstrate higher prediction

accuracy. Yang et al. (2021) coupled the data-driven Ada-MEA-

GRNNmodel of the enhanced AdaBoost algorithm with the MEA-

GRNN network of generalized regression neural network (GRNN)

and mind evolutionary algorithm (MEA), showing high precision

and lower overall error compared to GRNN and other BP neural

network models. Cao et al. (2020) merged the two techniques using

temperature and current as inputs, showing through histograms

and tables that the GA-BP network is somewhat more accurate and

stable than the BP network.

Through the manipulation of parameters such as weight,

bias coefficient, and threshold in time, space, or efficiency, the

fusion of the physical model and the neural network suitably

configures the model. This effectively prevents overfitting, bringing

the fusion model closer to the true value throughout the prediction

process. The resulting model exhibits high prediction accuracy,

good generalization capacity, and ease of convergence.

(2) Multi-neural network fusion

Within machine learning methods, the neural network

stands out as a potent learning algorithm. However, inherent

structural and operational principles pose challenges in a single

network, including difficulty in feature extraction, managing

the number of hidden layer nodes, convergence issues, limited

user communication, and information loss. To overcome these

limitations, a powerful joint network algorithm is devised through

the combination of multiple neural networks. Each network

leverages its strengths within the fusion algorithm, contributing

to its optimal capabilities. Various techniques of neural network

fusion have demonstrated superior performance in real-world

applications, particularly in LED life prediction. The advantages

of these algorithms include high prediction accuracy, reduced

learning times, and stable networks.

Da Costa et al. (2020) employed a fused long-term and short-

term neural network (LSTM-DANN) model, training the domain

invariant function of an adversarial neural network (DANN), to
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forecast the Remaining Useful Life (RUL) in the target domain. The

outcomes validate the efficacy of this approach. For laser remaining

usable life prediction, Abdelli et al. (2021) introduced a novel

hybrid model (CNN-LSTM) by merging a Convolutional Neural

Network (CNN), adept at extracting local spatial characteristics,

with two parallel Long Short-Term Memory (LSTM) models

suitable for capturing sequential data dependence. This composite

model outperforms numerous machine learning models, including

Support Vector Regression (SVR), Random Forest (RF), Multi-

Layer Perceptron (MLP), CNN, and LSTM, projecting values

extremely close to the true RUL. Keshun et al. (2023) utilized a

three-dimensional enhanced hybrid neural network comprised of

CNN and BILSTM. This hybrid model offers strong resilience,

generalization, interpretability, and practicability. Using a hybrid

kNN and FNN technique, Yuan (2021) integrated SSL lamps under

various degradation processes to create a dataset. The kNN +
FNN model demonstrated better prediction accuracy, accelerated

convergence, and avoided over-fitting compared to kNN alone.

ANNS and SNNS models were amalgamated into a multi-

scale, multi-domain HNNS framework by Zhao R. et al. (2022).

This fusion avoids the drawbacks of complex, inefficient, and

unmanageable direct coupling hybrid structures, fully capitalizing

on the benefits of a single model, enhancing adaptability, and

expanding the model’s scope of use.

A symbol of societal progress is lighting, and by extending the

light source’s lifespan, users replace them less frequently, leading

to reduced material usage in light source production and the

prevention of the release of toxic compounds that are challenging

to break down. Hence, both domestic and international academics

express significant interest in light source life forecasting. Meeting

societal, governmental, and consumer demands, a higher forecast

accuracy and faster prediction times would aid manufacturers

in cost reduction and improving light efficiency, yielding other

economic benefits. In the face of evolving technologies likemachine

learning, simple models like linear or regression cannot adequately

characterize the deterioration process of some LED light sources,

failing to meet consumer expectations. In response, an innovative

life prediction model with exceptional accuracy, robust real-time

performance, and extensive generalization ability is continually

evolving. The combination of several models synergizes various

techniques, preventing the model from reaching a local maximum.

Considering time, space, and other dimensions significantly

enhances the efficiency, training speed, generalization capacity, and

prediction accuracy of the fusion method. In conclusion, Table 4

presents a comparative analysis of commonly used life prediction

algorithms with accelerated stress and benefits from recent years.

3.4 Prediction algorithm summary

The landscape of prediction algorithms encompasses model

fusion and various complex types, creating challenges in

comprehending the logical connections between these algorithms.

To elucidate the inclusion relationships among these algorithms,

Figure 5 illustrates a concept map structure classification of diverse

prediction algorithms (Sun et al., 2017).

The widely adopted TM-21 standard serves as a foundational

framework for many manufacturers and researchers. It outlines the

least squares regression prediction approach, initially employed in

LED life prediction. This technique relies on the linear correlation

between luminous flux and the temporal variable. The computation

is straightforward and precisely fits the parameter curve. However,

the application of the least squares approach is constrained, as

the predominant components contributing to the LED light decay

process exhibit nonlinearity.

Maximum likelihood estimation (Lu et al., 2017) is

implemented based on statistical techniques to maximize the

probability of parameter occurrence within the correlation

probability density function of the sample set. This algorithm

surpasses the least squares approach by accommodating nonlinear

relationships. However, the computation complexity increases,

and significant inaccuracies arise when dealing with discrete

distribution data and limited data volume. The exponential model

posits that luminous flux follows an exponential distribution

over time. Represented by the exponential distribution function

(Xu L.-H. et al., 2022), this memoryless continuous probability

distribution exhibits rapid convergence and a straightforward

structure, making it widely utilized. However, due to its lack of

memory, prediction accuracy is compromised by solely considering

the time interval.

The time series probability model is articulated through a

Bayesian network known as a dynamic Bayesian network (DBN)

(Zhao and Zhang, 2020). The derivation and computation of

dynamic Bayesian steps involve infinite integrals, considerably

complicating the algorithm’s implementation (Takeuchi, 2021).

Assuming linear and nonlinear state transition and observation

functions, the DBN can be transformed into a KF (Azarnova and

Polukhin, 2020), EKF (Liu H. et al., 2020), and UKF (Zhang G. Y.

et al., 2022). A numerical integral derived from the infinite integral

allows translation into a PF (Xia et al., 2020).

The challenge of predictingmodel parameters finds a resolution

in the particle filter (PF) technique. Its advantage lies in its

extensive applicability to state space models of nonlinear and non-

Gaussian systems. Simultaneously, optimal prediction accuracy is

achieved when a sufficient amount of known data is available (Zhou

et al., 2022). The essence of PF is sequential importance sampling,

grounded in Monte Carlo resampling. However, challenges arise

when confronted with excessive data, complexity in the Monte

Carlo resampling procedure, and the susceptibility of the iterative

weight in sequential importance sampling to degradation (Chen

et al., 2020). The future trajectory of the algorithm’s development

hinges on refining the sampling process and determining the ideal

number of samples to uphold the optimal solution and stability

of PF. Additionally, enhanced PF algorithms like UPF, RBPF, and

EPF, amalgamating more than two algorithms, are progressively

evolving and maturing.

Neural networks, known for their cost-effectiveness, quick

training periods, and minimal input sample requirements as

nonlinear fitting systems (Li X. et al., 2020), face challenges

due to the unknown number of neurons. This uncertainty can

lead to gradient vanishing or exploding, impacting the model’s

generalization capacity and prediction accuracy (Lu et al., 2017).

Mitigating these issues involves significantly augmenting training

data, incorporating a dropout layer (Gao et al., 2021) and

normalization layer, utilizing an optimization technique with swift

convergence, and implementing model fusion.
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TABLE 4 Comparison of commonly used life prediction algorithms in recent years.

Algorithm Published
year

Temperature
stress

Current
stresses

Humidity
stress

Degradation
model

Parameter
distribution or life
model

Model data requirements Merit

UKF (Fan et al., 2014b) 2014
√ √

Exponential

model

Least square curve fitting

method estimation

Luminous flux degradation data;

Chromaticity coordinates;

Positive voltage

Short prediction time and

simple calculation

PF (Fan et al., 2015) 2015
√

Exponential

model

Sequential Monte Carlo and

Monte Carlo algorithm

Luminous flux degradation data;

Noise data

High prediction accuracy

Weibull (Zhang et al., 2016) 2016
√ √ √

Three-parameter

Weibull function

approximation

method

Weibull distribution, normal

distribution, lognormal

distribution/maximum

likelihood method

The position, shape, and scale

parameters are obtained by

extrapolating the luminous flux

degradation data of LM-80 standard

temperature, humidity, and current

Wide confidence interval and

high prediction accuracy

BP-NN (Lu et al., 2017) 2017
√ √

Exponential

model

BP-NN/Adaboost Improved

BP

Sample parameters in the LM-80

standard, including current, ambient

temperature, initial luminous flux, and

initial chromaticity coordinates

Strong generalization ability

and a simple model

Maximum likelihood

estimation method (Ibrahim

et al., 2018)

2018
√ √

γ-based model γ Distribution Degradation Luminous flux degradation data Simple calculation and high

precision

NLS (Ibrahim et al., 2019) 2019
√ √

γ-based model Maximum likelihood

method/moment method

Luminous flux degradation data;

Color temperature

Simple model

ANFIS (Kyak et al., 2021) 2020
√ √

Exponential

model

Least square method/ANFIS Sample parameters in the LM-80

standard, including current, ambient

temperature, initial luminous flux, and

initial chromaticity coordinates

Short training time

LSTM (Jing et al., 2020) 2020
√ √

Fitting by NLS

curve

Two-parameter Weibull Spectral density degradation data;

The flux of light;

Temperature

Considers time-series

characteristics and has high

prediction accuracy

BN (Ibrahim et al., 2021) 2021
√

γ process Weibull The flux of light;

chromaticity Coordinates;

Spectral power;

Color rendering index;

Color temperature

Good compatibility

MC (Enayati et al., 2021) 2021
√ √

Exponential

model

Iterative extended Kalman

filter

Luminous flux degradation data;

Noise data

Simple model parameters and

easy to obtain

Physical-neural network

(Pugalenthi et al., 2021; Yang

et al., 2021)

2021
√ √ √

Experimental

data published in

the literature

Machine learning model The flux of light;

chromaticity Coordinates;

Spectral power;

Color rendering index;

Color temperature

High prediction accuracy and

short prediction time

Multi-neural network fusion

(Abdelli et al., 2021; Yuan,

2021)

2021
√ √ √

Observed data Model fusion of statistics and

machine learning

Luminous flux degradation data;

Noise data

Strong generalization ability,

fast convergence speed, and

good model stability
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FIGURE 5

LED life prediction algorithm structure.

The landscape of deep learning continually evolves with

advancements in computer technology. The current hurdle is

the gradient disappearance and explosion issue arising from

the deepening of network layers. Single models, addressing

either temporal or geographical dimensions, suffer from weak

generalization and resilience, diminished prediction accuracy, and

challenges in meeting precise life prediction requirements. To

cater to the needs of LED manufacturers advancing their products

rapidly, the model fusion method can integrate modules such as

convolution, attention mechanisms, and residuals. This enhances

the model’s generalization capacity and prediction accuracy while

upholding stability. Consequently, the model fusion algorithm

emerges as the future direction for LED life prediction.

In summary, Table 5 presents a review of the extensively used

techniques for LED life prediction.

4 Prospect of algorithm

The conventional TM-21 regression technique falls short

of adequately describing the rapid failure of light sources,

and the duration and accuracy of predictions cannot meet

present demands. Unreasonable modeling and parameter estimates

pose challenges for recent artificial intelligence-based prediction

techniques. Divergent machine learning algorithms grapple with

inadequate training data, resulting in significant prediction

variations and poor accuracy. In summary, the application of

machine learning algorithms to LED light source life prediction

technology is undoubtedly the future development trend, given

their broad applicability and rapid evolution. Potential future

development directions include:

(1) Development of models for highly accurate predictions

Researchers are advised to undertake thorough investigations

into light source life prediction, approaching the subject from

multiple angles. This effort aims to propel the green lighting

initiative forward and elevate the benchmarks for urban green,

low-carbon lighting construction, and intelligent control.

① Construction of influencing factor model

The creation of an influencing factor model involves

determining the contribution of various factors to prediction

outcomes. This is achieved through a thorough investigation

of key drivers, luminaires, connecting components, and other

relevant elements affecting the luminosity degradation of LED light

sources. Employing conventional physics and statistical regression
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TABLE 5 Summary of commonly used algorithms.

Method Question Solution

Least-square

method

Ineffective for nonlinear

fitting

Linearization of model

Maximum

likelihood

estimation

Difficulty in selecting the

probability model

Increase the number of

input samples

Exponential model Only considers the time

interval

Set the time start from 0

UKF Inapplicable to

degenerate nonlinear or

noise non-Gaussian

processes

Using particle filter

PF Complex sampling or

weight degradation

Employ adaptive

sampling or improved

particle filter algorithms

(EPF, UPF, RBPF, etc.)

Single neural

network

Limited network layers,

insufficient data input,

lengthy training time

Increase the number of

network layers;

Enhance input data

quality; Introduce the

dropout layer

Multi-neural

network fusion

Complex network and

modeling, lengthy

training time

Optimize and fusion

algorithm;

Introduce large models

(Transformer,

Informer, etc.)

procedures will markedly enhance the accuracy and prediction

algorithm speed of life prediction technology. This, in turn, will

guide the rapidly advancing field of LED production technology,

fostering a positive feedback loop.

② Deepen model fusion algorithm

Despite the superior efficiency and accuracy demonstrated by

BPNN, LSTM, ANFIS, and MDNN over earlier algorithms, there

remains a disparity in people’s expectations regarding prediction

speed and accuracy. In terms of both accuracy and efficiency,

the model fusion method significantly outperforms the single-life

prediction approach. This method has the capability to reduce the

time required for processing nonlinear and intricate data samples,

thereby enhancing prediction accuracy.

(2) Enhancing green, energy-saving light sources by

production companies

Production companies must intensify efforts in advancing

green, energy-saving technologies and developing intelligent

lighting products aligned with the principles of “green lighting.”

This entails a commitment to high efficiency, energy conservation,

environmental sustainability, safety, and comfort. Companies

should actively contribute to urban intelligent construction

while gradually phasing out outdated production capacities. The

integration of state-of-the-art machinery, the Internet of Things,

and big data technology facilitates a comprehensive assessment of

light source performance, enhancing efficiency, and reducing raw

material energy consumption. This sets the stage for the creation of

green lighting and the development of intelligent cities.

(3) Government advocacy for a low-carbon lighting industry

standard system

The government plays a pivotal role in achieving the “double

carbon” goal, accelerating the low-carbon transformation of energy

consumption, and attaining the national strategic objective of

“carbon peak, carbon neutrality.” Utilizing life forecast results from

LED light sources as theoretical guidance, the government can

formulate energy-saving and carbon-reducing lighting regulations.

These policies can drive various industries toward carbon

neutrality, laying the groundwork for the industrial sector’s carbon

peak by 2030. Currently, the durability of an LED is influenced

by various factors such as drivers, packaging, heat dissipation

treatment, and lead welding techniques. Variability in product

quality among manufacturers significantly impacts the progress

of low-carbon lighting technology. To achieve the “dual-carbon”

goal and ensure high-quality, sustainable growth in the lighting

industry, the government should establish a green, energy-saving,

and low-carbon light source manufacturing standard system in

the lighting sector. It should actively support energy conservation

and emission reduction across the entire value chain, guiding the

lighting industry toward a circular economy model.

In conclusion, challenges in the current life prediction

model algorithm include difficult data collection, overly specific

influencing elements, expensive prediction costs, and low

prediction frequency. The statistical model and machine learning

dimensions predominantly contribute to the model’s low accuracy,

limited generalization capacity, and inadequate adaptability.

Therefore, to enhance feature expression by considering time

and channel dimensions, the future model should integrate

the influencing factor decomposition model and the principal

component analysis method to screen significant driving factors

as model input. Additionally, combining traditional and deep

learning algorithms will minimize model complexity and enhance

generalizability. This approach provides technical support for

fostering the green economy and optimizing the country’s

industrial structure.
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