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Introduction: Urban power load forecasting is essential for smart grid planning 
but is hindered by data imbalance issues. Traditional single-model approaches 
fail to address this effectively, while multi-model methods mitigate imbalance by 
splitting datasets but incur high costs and risk losing shared power distribution 
characteristics.

Methods: A lightweight urban power load forecasting model (DLUPLF) is 
proposed, enhancing LSTM networks with contrastive loss in short-term 
sampling, a difference compensation mechanism, and a shared feature 
extraction layer to reduce costs. The model adjusts predictions by learning 
distribution differences and employs dynamic class-center contrastive learning 
loss for regularization. Its performance was evaluated through parameter tuning 
and comparative analysis.

Results: The DLUPLF model demonstrated improved accuracy in forecasting 
imbalanced datasets while reducing computational costs. It preserved shared 
power distribution characteristics and outperformed traditional and multi-
model approaches in efficiency and prediction accuracy.

Discussion: DLUPLF effectively addresses data imbalance and model 
complexity challenges, making it a promising solution for urban power load 
forecasting. Future work will focus on real-time applications and broader 
smart grid systems.
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1 Introduction

The ability to intelligently control energy transmission and transformation equipment, 
fast transformation of urban power-generating methods, smart urban grids (Songhorabadi 
et al., 2023), and scientific advancements (Tian et al., 2024) have all become conceivable. 
Power load forecasting is a crucial instrument for smart, sustainable urban growth (Bibri, 
2018a) decision-making (Hazra et al., 2024). Smart urban grids use power load forecasting 
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models to plan the city’s power dispatching methods, estimate 
future trends in urban power loads, and identify the amount of 
power generation that will minimize power losses and maintain a 
stable supply and demand balance (Mahajan et al., 2022). Accurate 
urban smart power load forecasting is crucial for urban power 
networks to remain stable and financially sustainable. Due to 
businesses ceasing operations on Sundays, the power load scale in 
urban power load data is typically smaller on Sundays than it is on 
weekdays. This leads to inconsistent data in power load predictions. 
The power load dataset is divided according to various load 
distributions in existing multi-model systems (Huseien and Shah, 
2022), which then create forecasting models for each subset and 
provide distinct predictions. However, developing models with 
many models increases the total cost and splits the shared 
characteristics of power distribution among load distribution 
variations (Xie et al., 2024).

Smart power load forecasting in metropolitan areas can cause 
poor prediction performance of single-model approaches (Feng 
et al., 2022). Compensation for discrepancies and contrastive loss 
in short-term sampling are ideas that this model incorporates into 
the LSTM (Yazici et  al., 2023). The idea behind discrepancy 
compensation is to build a discrepancy compensation module that 
compares smart energy load samples with different distributions 
and uses that information to adjust the main sequence prediction 
module’s prediction results according to the predicted samples’ 
characteristics (Bibri, 2018b). We can train the main sequence 
prediction module to learn the common patterns of power load 
variation of samples with diverse distributions of power loads by 
using this strategy. Regularization functions for model training 
that rely on dynamic centroids are known as short-term sampling 
contrastive losses. As a result, it highlights intra-class compactness 
by making sure that power load sequences on the same day are 
close to each other. For days of the week with similar smart energy 
load distributions, the model can differentiate because of this loss. 
In addition, the discrepancy compensation module is trained 
more effectively with the help of short-term sampling contrastive 
loss, which increases the learning weight of a small number of 
sample data. To further reduce the number of model parameters, 
we also propose the idea of a common feature extraction layer. 
The discrepancy correction module and the primary sequence 
prediction module can share this layer. Creating hyperparameter 
tweaking and comparison tests validated the model’s performance. 
The experimental results show that the suggested model 
outperforms state-of-the-art models in prediction by correctly 
capturing power load fluctuations between weekends and 
weekdays, due to the discrepancy compensation module and 
short-term sampling contrastive loss.

The main contributions of this study are as follows:

 1 Improving the predictive efficacy: Enhancing the predictive 
performance of single-model methodologies in urban smart 
power load forecasting tasks affected by data imbalance 
through the integration of discrepancy compensation 
into LSTM.

 2 Introducing short-term sampling contrastive loss: 
We  propose short-term sampling contrastive loss as a 
regularization method in model training. This approach 
helps augment the learning weight of limited sample data 

and distinguish between weekday power load data exhibiting 
analogous load curves.

 3 Developing a unified feature extraction module: We introduce 
a unified feature extraction module that enables both the 
primary sequence prediction and discrepancy compensation 
modules to utilize a single feature extraction layer. This reduces 
the model’s parameter count while preserving 
predictive accuracy.

 4 Conducting an experimental evaluation: We  perform an 
experimental evaluation of the Lighten-Dynamic Channel-
Selection Convolution (DCSC)-LSTM model against other 
traditional methodologies. The article utilizes RMSE, MAPE, 
and MAE to evaluate mistakes. In the experimental evaluations, 
the Lighten-DCSC-LSTM outperforms other models.

Section 2, an overview of previous studies, highlights gaps 
addressed by this research, and Section 3 defines symbols and 
notations and outlines the problem being investigated. Section 4 
presents and explains the proposed model’s framework, algorithms, 
and assumptions; Section 5 describes experiments, analyzes the 
results, and compares the model with existing methods; and Section 
6 concludes findings and contributions and suggests directions for 
future research.

2 Related work

2.1 Traditional power load forecasting 
models

In recent years, the field of smart power load forecasting has made 
extensive use of statistical approaches and AI computation (Kılkış 
et  al., 2023). Autoregressive (AR) (Sarker, 2022), moving average 
(MA) (Alomar, 2023), autoregressive moving average (ARMA) (Olabi 
et al., 2023), and autoregressive integrated moving average model 
(ARIMA) (Mehmood et  al., 2024) are some of the most popular 
statistical forecasting models used for power load forecasting. 
Although these models do not necessitate a lot of processing power 
(Bine et al., 2024), they are not as accurate as models based on artificial 
intelligence (Javed et al., 2022). However, greater accurate performance 
comes at a cost—computationally more expensive—when using 
artificial intelligence approaches such as support vector regression 
(SVR) (Ouallane et al., 2022) and artificial neural networks (ANN) (Li 
et al., 2023). More importantly, the algorithms do not consider the 
correlation between consecutive power load series data. As a classic 
time series data, there is a high correlation between consecutive power 
load time series. Hence, conventional time series forecasting 
techniques fail to account for the correlation between successive 
power load data and time-dimensional distance features, resulting in 
imprecise predictions.

2.2 Deep learning-based power load 
forecasting models

Researchers have suggested several deep learning models to 
address the smart power load forecasting issue in light of the current 
advances in machine learning and deep learning. Hopfield (Ahmed 
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et al., 2024) first suggested the RNN in the early 1980s. By connecting 
nodes in a directed graph, RNN can take the temporal dimension of 
correlation into account while processing time series data. However, 
RNNs are prone to gradient expansion and gradient vanishing during 
training because of their endless dynamic loop. An RNN-based long 
short-term memory network (LSTM) was suggested by the author 
(Atitallah et al., 2020) as a solution to the gradient vanishing problem. 
To prevent problems with gradient explosion and disappearance, a 
typical LSTM network has four gates: an input gate, a forget gate, a 
memory cell, and an output gate. The bidirectional LSTM (Bi-LSTM) 
(SaberiKamarposhti et al., 2024) is an enhanced version of the LSTM 
network that learns the input time series in both directions. Power 
load forecasting activities that depend on previous data will benefit 
greatly from deep learning features. One deep learning framework 
that the author suggested (Olabi et al., 2023) combines LSTM with 
convolutional neural networks (CNNs). To learn sequences, the 
CNN-LSTM model uses LSTM layers, while CNN layers extract 
characteristics from the input data. By including an attention 
mechanism, Attention-LSTM (Pandiyan et al., 2024) improves the 
LSTM network’s capacity to learn important characteristics from 
lengthy input sequences. Power load forecasting is another area that 
has benefited from this model’s use to enhance prediction accuracy 
(Powell et al., 2024). These networks are currently trending in several 
industries, including NLP (Nguyen et al., 2024), SR (Deng et al., 2021), 
MF (Boopathy et al., 2024), and WSM (Mukherjee et al., 2020).

The authors (Fadhel et al., 2024) suggested splitting the dataset 
into weekday, Saturday, and Sunday groups depending on power load 
data in studies on smart power load forecasting with data imbalance. 
The team then developed three separate forecasting models for each 
day of the week. By dividing the electricity load  information into 
workday, weekend, and holiday clusters, the author (Hazra et al., 2024) 
was able to make predictions. Based on our review of the literature, it 
appears that the majority of studies dealing with power load 
forecasting in the face of data imbalance use the technique of sample 
segmentation based on load distribution to conduct independent 
forecasts. There has not been much effort to improve single-model 
approaches without changing the dataset to fix this issue.

Therefore, this study attempts to add a discrepancy compensation 
module that learns the differences in samples with LSTM network 
training regularization using varying load factors and a contrastive 
loss based on short-term sampling. With these enhancements, the 
model is currently well under data imbalance conditions. In addition, 
we  extract a shared feature extraction layer to construct a more 
lightweight power forecasting model.

3 Symbols definition and problem 
description

3.1 Symbols definition

Table 1 contains the symbols that were utilized in this article.

3.2 Problem description

Sustainable urban growth power load mainly consists of 
residential and industrial power loads. Residential power load 

includes the electricity usage of typical home electronics including 
lights, washers, air conditioners, and TVs. This burden is intricately 
linked to the daily lives of residents and thus exhibits a stable daily 
pattern over time. Industrial power load refers to the electricity 
consumption used for industrial production by enterprises. Although 
industrial power load shows regularity according to the working hours 
of sustainable urban growth residents, most enterprises choose to halt 
or reduce production on Sundays, leading to significant differences in 
industrial power load between weekdays and weekends. This 
introduces an imbalance in the data used to predict urban power 
loads, which is a major obstacle to reliable smart power load 
forecasting in cities. This article visualizes experimental data to 
specifically describe the daily regularity and data imbalance problem 
in urban power load data.

As shown in Figures 1, 2, two characteristics of the smart energy 
load distribution can be clearly observed:

 1 The power load data exhibit daily regularity. By observing 
Figure  1, it can be  seen that the power load shows 
regularity with a cycle of 96 sampling points (1 day). A 
comprehensive review of the entire experimental dataset 
confirms that the power load data indeed display strong 
daily regularity.

 2 The magnitude of Sunday power consumption is often less than 
that of weekdays. Figure 2 illustrates that the magnitude of 
sustainable urban growth power load is reduced on weekends, 
exhibiting a significant decline on Sundays in contrast to 
weekdays. The rationale behind this is that the majority of firms 
opt to cease or diminish production on Sundays, resulting in a 
corresponding decrease in power load on weekends. Due to the 
lesser reduction in power load on Saturdays relative to 
weekdays, this study categorizes Saturdays as weekdays. The 
consistent patterns in urban power load data enable academics 
to project future sustainable urban growth power load trends 
through the development of deep learning-based forecasting 
models. The issue of data imbalance in sustainable urban 
growth power load poses a hurdle to deep learning-based 
smart power load forecasting.

4 Model construction

4.1 Long short-term memory network 
(LSTM)

The LSTM network is an extension of the recurrent neural 
network (RNN) architecture, first proposed in a previous study 

TABLE 1 Signs definition.

Sign Definition

{ }, , ,2 1X X X Xt t tβ= − − −

Electricity load of the previous βth days

preYtr
Electricity load observation of the tth day

trueYt
Electricity load detection of the tth day

Gt Dynamic class center of the tth day
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(Fadhel et al., 2024), to solve the problems of gradient vanishing and 
explosion in RNNs. In sequence modeling and prediction tasks, 
RNNs, represented by LSTM, have strong capabilities in extracting 
features from time series data. Figure  3 shows the architecture 
of LSTM.

As shown in Figure  3, each LSTM unit contains multiple 
operations, specifically as shown in Equations 1–6.

 ( )1t xf t gf t ff Z x Z g cσ −= + +  (1)

 ( )1t xi t gi t ii Z x Z g cσ −= + +  (2)

 ( )0 1t x t go t oo Z x Z g cσ −= + +  (3)

 ( )˜

˜
1tanht x t gc t c

c Z x Z g Dπ −= + +
 

(4)

 
˜

1 tt t t td f c i d−= +   (5)

 ( )tanht t tg o d= 

 (6)

Where xZ  and c are the bias vector and the weight matrix, 
respectively; tf , ti , and to  are the forget gate, input gate, and output gate, 
respectively. The computation of these three gates depends on the 
current input tx  and the previous output 1tg −  . 

˜
td   is the cell state, 

˜
td   is 

the new candidate value for the cell state, tg   is the hidden output at 
time u, and ⊙ represents the element-wise product. In LSTM, the 
forget gate controls the amount of historical data from state 1tg − that 
can be passed through and the amount that is erased. What fresh data 
are utilized to modify the cell’s state is decided by the input gate td , and 
the output gate determines which information in the cell state 

˜
td  needs 

to be  output. These three gates work together to learn and store 
sequential information. The weights xZ  and biases are learned during 
model training by minimizing the difference between the LSTM unit’s 
output and the actual training samples.

FIGURE 1

Urban power load distribution for a week.

FIGURE 2

Box plot of load data distribution for different weeks from 2018 to 2021.
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4.2 Contrastive loss in short-term sampling

Even on neighboring weekdays, urban electrical load sequences 
could vary slightly. To train the model to predict daily power loads, it 
must generate 96 observations for the following day, with each 
observation sampled every 15 min. To determine training loss, the 
model can easily disregard discrepancies in observations between load 
sequences on the same workday but on different dates (for example, 
Monday and Tuesday). Consequently, a training-based regularization 
loss function must be included.

However, there is no way to utilize a constant class center to get 
close samples of electrical load data because it is a time series that 
fluctuates over time. Instead of using fixed class centers, this study 
suggests a contrastive learning loss based on short-term samples. A 
dynamic class center, as opposed to a static one, is utilized in this loss. 
The current prediction sequence’s power load sequence from 7 days 
prior serves as the class center for sampling in this investigation. To 
determine the decrease in contrastive learning from short-term 
sampling, we use the power load sequence from the previous Monday 
as the dynamic class center. This is performed for situations where the 
current predicted smart energy load sequence is set to occur on Monday.

Figure 4 shows that a contrastive learning loss function allows the 
model to prioritize intra-class compactness by drawing power load 
sequences from the same class closer together. Furthermore, by 
including this loss function, the model can differentiate between 
datasets of weekday power load with similar distributions, and it can 
learn more from small samples (weekend samples).

The specific contrastive learning loss calculation formula is shown 
in Equation 7:

 
( ) ( )2pre pre

SC
1 1

,
N N

F i ii i
i i

L e G Y G Y
= =

= = −∑ ∑
 

(7)

where N  refers to the size of the batch and Fe   is the Euclidean 
distance (Pliatsios et  al., 2023). { 1G G= , }2,, ,, NG G  and 

{ }pre pre prepre
1 2, , , NY Y Y Y=   stand for the batch samples’ anticipated 

sequences and dynamic class centers, respectively.

4.3 Discrepancy compensation and shared 
feature extraction

Based on the idea of discrepancy compensation, this article divides 
the traditional single sequence prediction into part of a portion of the 
DC module and the MSF module, both of which are for discrepancy 
compensation. Its core sequence prediction module and its discrepancy 
compensation module both use LSTM and FC layers. The primary 
roles of the two components are illustrated in Figure 5 and are:

 1 Sequence Prediction Module: The main sequence prediction 
module ignores the differences between power load data 
samples with different power load curves and learns to predict 
the power load data of normal samples.

 2 Discrepancy Compensation Module: When comparing normal 
samples to those with a low power load, the discrepancy 
adjustment module picks up on the differences. When the 
prediction sample is a few samples, it comes into play.

Based on this, this article constructs a shared feature extractor by 
extracting the LSTM responsible for extracting power load time series 
features in both the primary module for predicting sequences and the 
module for compensating for discrepancies. This reduces the number 
of model parameters and enables the model to focus more on 
extracting the common time series features among samples with 
different smart energy load distributions.

4.4 Lighten-DCSC-LSTM model

The shared feature extractor, main sequence forecast, discrepancy 
compensation, and training loss calculation modules make up the 
Lighten-DCSC-LSTM model. There is also a discrepancy module.

FIGURE 3

LSTM network structure.
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Mean squared error (MSE) and short-term sampling contrastive 
(SC) losses are a part of the training loss calculation module (TLC 
Module) (Habibi, 2021). Predicted and observed values are used to 
compute the mean squared error (MSE) loss, while the dynamic center 
and observed values are used to calculate the short-term sampling 
contrastive loss. Here are the detailed procedures for putting the 
Lighten-DCSC-LSTM model into action:

Step 1: Input the sequence X into the shared feature extraction 
layer for feature extraction to obtain the time series features tH .

Step 2: Input the extracted time series features tH  into the main 
sequence prediction module for prediction to obtain the main 
prediction sequence min

tY .
Step 3: Input the extracted time series features tH  and the auxiliary 

input tis few−  for use by the DC module. If the anticipated sample is 
more than a fewt samples through, the DC module’s judgment gate 
will flag it e ts f w−  . If it is, the DC module is turned on to anticipate the 
discrepancy compensation sequence for the time series features tH , 
obtaining disY . Then, disY  is applied to the main prediction sequence 

minY , resulting in the final sequence prediction result preY .
Step 4: To get the ultimate training loss L, add the two losses. 

Equation 8 displays the loss calculation formula:

 ( ) ( )pre pretrue
MSE SC 7, ,t tt tL L Y Y L X Yλ −= +

 
(8)

Among them, λ represents the weight of short-term sampling 
contrast loss.

5 Experimental evaluation

To evaluate the capability of the Lighten-DCSC-LSTM model in 
solving power load data with uneven distributions, this study 
conducted hyperparameter optimization and comparative experiments.

5.1 Data explanation

The dataset used in this study comes from the 10th TDI Cup Data 
Mining Challenge’s Problem B. It includes 44 months of electricity 
load data, with readings every 15 min, from 1 January 2018 at 0:00 to 
31 August 2020 at 23:45 (Herath and Mittal, 2022). Specifically, these 

data track patterns in electricity use and offer insightful information 
about long-term, sustainable urban growth. The dataset’s granularity, 
coupled with regular and reliable measurements, makes it a perfect 
tool for examining energy use in scenarios involving urban expansion.

5.2 Data preparation

Due to potential instability in the detection and transmission of 
power load data, the dataset may contain missing, abnormal, and noisy 
data. Therefore, pre-processing of the dataset is necessary before 
constructing the model. This study performed several pre-processing 
steps, including filling in missing values, removing duplicates, handling 
outliers, and normalizing the data. There were two sets of data used to 
validate the experiment: one set for the most recent 10 days and 
another set for the most recent 30 days of sustainable urban growth 
power load data. The rest of the dataset was divided into two parts: one 
for training and another for testing. The training set covered the period 
from January 1, 2018, to July 25, 2020 and the testing set covered the 
time from July 25, 2020, to July 31, 2020 (Nižetić et al., 2019), and the 
testing set covered the same time from 25 July 2020 to 11:45. From the 
power load sequence, we also extracted the day-of-week feature min

tY
to obtain the auxiliary input e tis f w− .

5.3 Measures for assessment

This study utilized three popular measures in time series 
forecasting evaluation: root mean square error (RMSE) (Jie Chen and 
Ramanathan, 2021), mean absolute percentage error (MAPE) (Wai 
et al., 2022), and mean absolute error (MAE) (Howell and Rezgui, 
2017) to assess the effectiveness of various power load forecasting 
methods. As demonstrated in Equation 9: MAE is the average of the 
total absolute errors between the actual values and the 
estimated values.

 

ˆ1
i i

i
MAE x x

n
= −∑

 
(9)

In this context, ix  and 
ˆ
ix stand for the 96 points each day that 

combine to form the predicted and actual power load for the 𝑖 day. 

FIGURE 4

Short-term contrastive loss causes the model to prioritize compactness within classes.
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While MAE and MAPE are similar, MAPE accounts for the degree to 
which actual and predicted values differ by dividing each MAPE 
difference by the actual value, as shown in Equation 10:  

( )
ˆ

100MAPE % i i

ii

x x
n x

−
= ∑

 

(10)

FIGURE 5

Extracting shared feature extraction layer.
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TABLE 3 Comparative experiment results.

Type of 
model

Model Future 30 days Future 10 days

RMSE MAE MAPE RMSE MAE MAPE

Single-model-based 

model

SVR [12] 9568.7 7216.8 0.03 8,828 6590.5 0.03

RNN [15] 5858.3 4338.5 0.018 4,501 3457.7 0.018

LSTM [16] 5369.3 3652.5 0.015 5,693 4395.8 0.019

Bi-LSTM [22] 6785.9 5126.3 0.022 6,471 5,055 0.022

CNN-LSTM [25] 6962.3 5606.6 0.024 5,103 4255.1 0.024

Attention-LSTM [28] 6381.8 4651.6 0.019 5,899 4288.5 0.019

Multi-model-based

model

LSTM [16] 4638.7 3184.9 0.015 4,977 3804.8 0.015

Bi-LSTM [18] 5087.7 3722.9 0.016 5,693 3995.8 0.016

CNN-LSTM [25] 5313.9 3751.7 0.016 5,753 4255.6 0.016

Proposed model Lighten-DCSC-LSTM 3927.9 2825.1 0.013 3,303 2,294 0.013

The root mean squared error (RMSE) measures precision by 
contrasting the actual and estimated values’ dispersion, as shown in 
Equation 11:

 

( )
ˆ

100MAPE % i i

ii

x x
n x

−
= ∑

 

(11)

The model’s accuracy is proportional to the minimization of 
MAE, MAPE, and RMSE.

5.4 Hyperparameter tuning

The model in this study is constructed using a deep learning 
framework, and its predictive performance depends on the number of 
parameters, which are influenced by the model’s hyperparameters. 
This study selected two common parameters for hyperparameter 
optimization: the hidden layer HHH in the LSTM (Lin et al., 2024) of 
the feature extraction layer, in addition to the fully linked layers’ CCC 
(Abdul Matin et al., 2023) dimension in the discrepancy correction 
module and the primary sequence prediction module. The model’s 
parameter size is primarily determined by these two parameters. The 
larger the hidden layer HHH and the dimension CCC, the larger the 
model’s parameter size. In addition, as the hidden layer HHH (Singh 
et al., 2020) of the feature extraction layer increases, the extracted 
power load features become larger, which, in turn, increases the 
dimension CCC of the fully connected layers in both the primary 
module for predicting sequences and the module for compensating 
for discrepancies. The specific relationships are shown in Table  2 
under the columns “Hyperparameters” and “Number of Params.”

The studies were conducted utilizing the PyTorch framework. The 
model training used the Adam optimizer (Rizi and Seno, 2022) for 
parameter optimization, with an initial learning rate of α = 0.001, a 
weight λ = 0.5 for short-term sampling contrast loss, and an input 
sequence length β = 7. Furthermore, we incorporated two callback APIs 
during training: Early Stopping and the ReduceLROnPlateau callback 
function, employing the specified parameters: factor = 0.85 and 
patience = 300. Table 2 presents the results of the parameter modification. 
The hyperparameters G and D delineate the model’s complexity, with G 
potentially signifying the number of groups or nodes and D indicating 
the depth or dimensionality of shared layers. Augmenting G and D 
typically enhances the model’s capability and the parameter count, hence 
affecting prediction accuracy and computational expenses.

From the fifth and sixth rows in Table 2, it can be seen that by 
constructing a shared feature extraction layer, the model’s parameter 
size can be reduced from 121,150 to 93,120 without changing other 
hyperparameters. Moreover, the model performs best when both 
hyperparameters HHH and CCC are set to 96 for predicting the next 
10 days and 30 days. Therefore, based on the parameter tuning, we set 
both HHH and CCC to 96 in this study.

5.5 Comparative experiments

Six different prediction models were compared to the Lighten-
DCSC-LSTM model to determine its efficacy. These models included 
RNN, SVR, LSTM, Bi-LSTM, CNN-LSTM, and Attention-LSTM. The 
results of our studies comparing this model to multi-model LSTM, 
Bi-LSTM, and CNN-LSTM models are presented in Table 3.

Compared to the Attention-LSTM, CNN-LSTM, Bi-LSTM, and 
LSTM models built using a single model, the multi-model versions fared 

TABLE 2 Hyperparameter tuning results.

Hyperparameters Number of 
parameters

Future 30 days Future 10 days

RMSE MAE MAPE RMSE MAE MAPE

G = 6,D = 6(shared) 3,840 4404.1 3082.2 0.013 3,574 2739.7 0.013

G = 12,D = 12(shared) 780 4342.3 3132.5 0.013 3,539 2619.3 0.012

G = 24,D = 24(shared) 16,510 4246.7 3082.2 0.013 3,534 2739.6 0.013

G = 48,D = 48(shared) 37,440 4184.3 3046.8 0.013 3,303 2539.9 0.013
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better when dealing with data on uneven sustainable urban growth 
power loads in predicting the next 10 days and 30 days of sustainable 
urban growth power load. This indicates that the multi-model approach 
can indeed alleviate the problem of uneven data distribution.

Simultaneously, looking at the prediction accuracy of the Lighten-
DCSC-LSTM model versus that of the LSTM, Bi-LSTM, and 
CNN-LSTM models that were built using a multi-model approach, 
the Lighten-DCSC-LSTM model performs better when it comes to 
forecasting urban power loads for the next 10 and 30 days.

To illustrate the efficacy of the Lighten-DCSC-LSTM model on 
urban power load datasets characterized by uneven data distribution, 
we depicted the model’s power load forecasts for the subsequent 30 days 
alongside the actual dataset values, as presented in Figure 6, where orange 
denotes the predicted values and blue signifies the actual values. The 
model’s forecast results closely mirror the actual power load time series.

6 Conclusion

Forecasting urban power loads is crucial for unit activation, 
allocation, and operating strategy in urban power systems. This research 
aims to address the suboptimal performance of single-model approaches 
on imbalanced urban power load datasets. The study clarifies the origins 
of data irregularity in urban power load datasets: the significant 
reduction in power demand on Sundays, due to industrial shutdowns or 
reduced output compared to weekdays, exacerbates the problem of data 
imbalance in urban energy consumption. The study elucidates 
contemporary power load forecasting techniques, emphasizing the 
shortcomings of multi-model approaches utilizing disparate power load 
datasets and illustrating how single-model approaches can more adeptly 
identify prevalent temporal trends across diverse samples. This study 
introduces a correction strategy for inconsistencies and contrast loss in 
short-term sampling, employing a single-model approach to tackle the 
problem of uneven data in urban power load forecasting. Moreover, by 
extracting shared characteristics from the extraction layer, the model’s 
parameters are further minimized, resulting in a more efficient model 
(Lighten-DCSC-LSTM). The model’s hyperparameters were optimized 
by tuning, and comparative studies have shown that the proposed model 
outperforms traditional power forecasting methods and existing multi-
model power load forecasting strategies on datasets containing irregular 

data. This study illustrates that improving single-model approaches and 
loss functions can lead to enhanced performance in forecasting urban 
power loads using distributed data. We intend to improve the model’s 
forecasting accuracy in future endeavors by optimizing the short-term 
sample contrast loss function. In addition, we will strive to implement 
similar solutions to tackle other forecasting issues related to irregular data.
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