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The purpose of this study is to assess the potential of machine learning in

advancing the Sustainable Development Goals, particularly Goal 11, which

focuses on sustainable urban and community development. To reduce the

impacts of increasing urbanization on the environment, it is necessary

to prioritize the sustainable development of smart cities. Smart cities

use information and communication technology techniques to enhance

sustainability by improving resource management and reducing environmental

impact. In this context, the use of artificial intelligence enhances the overall

quality of life, which is a critical component of sustainable smart cities.

Machine learning, a subset of artificial intelligence, is crucial in promoting the

development of sustainable smart cities. This study focuses on the application of

machine learning in sustainable smart cities, ranging from energy management,

transportation e�ciency, waste management, and public safety. It highlights the

role of machine learning algorithms to improve operational e�ciency, minimize

expenses, and reduce environmental impact. The practical use of ML in smart

cities across several countries demonstrates its ability to handle urban challenges

and increase sustainability. This paper discusses a variety of real-world initiatives

that have successfully employed machine learning to develop sustainable smart

cities, as well as in-depth studies of the ML algorithms used and the obtained

results. The paper also covers the challenges of implementing machine learning

into smart city projects, such as data quality, model interpretability, scalability,

and ethical considerations. It emphasizes the importance of high-quality data,

clear models, and the right use of machine learning tools.

KEYWORDS
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1 Introduction

Nowadays, urbanization is accelerating, and cities are under increasing pressure to
maintain infrastructure, manage resources, and improve the quality of their citizens
(Klein and Anderegg, 2021). The rapid growth of cities creates a number of challenges,
including air pollution, traffic congestion, waste management, and energy use. In this
context, new solutions must be implemented, including cutting-edge technologies, to
create more efficient, sustainable, and livable urban environments (Caragliu et al., 2011).
In this context, smart cities use the Internet of Things (IoT) in conjunction with
information and communication technology (ICT) to collect and analyze data, enabling
more intelligent decision-making processes. According to Sustainable Development Goal
(SDG) 11: Sustainable Cities and Communities, established by the United Nations,
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sustainability constitutes a critical element of urban
transformation. The primary objective of SDG 11 is to ensure
that cities are resilient, safe, inclusive, and sustainable. This
goal advocates for sustainable urban development and aims to
enhance the quality of life for all urban residents, highlighting the
importance of innovative solutions to address urban challenges
(Bibri and Krogstie, 2017; Janik et al., 2020; Yigitcanlar et al., 2019).

Machine learning (ML), a subset of artificial intelligence
(AI), has emerged as a powerful tool in this field (Jordan
and Mitchell, 2015). By enabling systems to examine data and
improve over time, machine learning can help progress various
aspects of smart cities (Hurbean et al., 2021; Ullah et al., 2023;
Frano̧a et al., 2020). ML technologies are essential for advancing
sustainable urban development goals because they improve public
health and safety, fortify transportation networks, and optimize
energy use. ML algorithms can predict energy use, improve
traffic congestion, personalize citizen services, increase urban
management effectiveness and efficiency, and so on. While there
are many benefits to using ML in smart cities, there are also a
number of challenges (Mishra and Singh, 2023). One challenge that
emerges is the quality and accessibility of data, given that urban
data may be varied, diversified, and of different quality. Finding
a balance between the demand for analysis accessibility and data
privacy and security is another significant issue. Furthermore, the
difficulty of interpreting and applying ML algorithms in significant
urban applications remains a challenge. Because of resource
constraints, including processing power and energy consumption,
scaling problems arise when deploying machine learning models in
densely populated places. Despite these challenges, the integration
of machine learning into smart cities has made notable progress.
For instance, the city of Riyadh in Saudi Arabia has improved traffic
flow and reduced congestion by implementing machine learning
algorithms. This has led to increased mobility and a reduction in
emissions. Moreover, Jeddah is using machine learning to optimize
water management systems, which leads to improved sustainability
and more efficient use of water resources (Aldegheishem, 2023).
These case studies demonstrate how machine learning may address
urban challenges and support the long-term growth of smart cities.

This paper investigates the role of ML in advancing sustainable
smart cities, focusing on critical areas like energy management,
public safety, waste management, and transportation efficiency.
The research highlights how ML can significantly improve
operational effectiveness, enabling cities to optimize resource
usage, reduce costs, and minimize environmental impact. For
instance, ML can predict energy consumption patterns, optimize
grid operations, and enhance renewable energy integration. In
public safety, ML-driven systems can improve crime prediction,
emergency response times, and disaster management strategies.
ML also supports more efficient waste management by optimizing
collection routes, predicting waste generation, and enhancing
recycling processes. In transportation, ML can improve traffic
flow, reduce congestion, and promote sustainable travel options,
resulting in reduced emissions and enhanced mobility. In contrast
to studies by Kumar et al. (2021) and Lilhore et al. (2022), which
primarily focus on specific applications like surveillance and traffic
management, our approach adopts a more holistic perspective
driven by the SDG 11 objectives. Kumar et al. (2021) focus on
leveraging ML in traffic management and surveillance within smart

cities, exploring how IoT and ML can improve traffic prediction,
congestion control, and data-driven decision-making for urban
mobility. Likewise, Lilhore et al. (2022) discuss the application of
AI in urban traffic systems, proposing the use of ML to optimize
traffic flow and improve safety in smart cities.

The contributions of our paper can be summarized as follows:

• We perform a detailed comparative analysis of ML
applications across key domains such as energy management,
transportation, waste management, and public safety. The
analysis delves into various ML algorithms used in these areas,
examining their performance, scalability, and adaptability
to different urban environments. We also provide a critical
assessment of their real-world implementations.

• Our paper stands out by incorporating a global perspective,
analyzing ML initiatives and implementations from various
geographic regions, including both developed and developing
countries. Existing literature often overlooks this dimension,
focusing on specific regions or case studies. By including a
wide range of geographic contexts, we offer insights into how
local factors such as infrastructure, regulatory environments,
and cultural differences impact the adoption and success of
ML in smart cities.

• We discuss key challenges for integratingML into smart cities,
including the need for high-quality, accessible data, ensuring
model interpretability for transparency and trust, and scaling
solutions from pilot projects to city-wide applications. We
also discuss future directions which involves enhancing data
governance and standardization, developing interpretable
models without compromising performance, and advancing
scalable ML architectures using cloud and edge technologies.

The paper’s structure is as follows: Section 2 provides an
overview of the fundamental ideas and concepts of smart cities.
Section 3 offers a thorough overview of machine learning
techniques. Our study’s fourth section explores the application
of ML in smart, sustainable cities. In Section 5, we present a
number of real-world projects that use ML to create smart cities
that are ecologically beneficial. In addition to discussing the unique
challenges of incorporating ML in sustainable smart cities, Sections
7 and 8 also look at possible future paths and prospects. Ultimately,
Section 9 concludes the paper.

2 Fundamentals of smart cities

Smart cities present the intersection of technology and urban
living, harnessing digital advancements to improve different aspects
of city life. These cities use emerging technologies like machine
learning, the Internet of Things, artificial intelligence, and data
analytics to provide smart infrastructure, efficient services, and
improved connectivity. Smart cities prioritize data-driven decision-
making, citizen involvement, and long-term growth in their
innovative use of technology. They use smart sensors and IoT
devices to monitor and manage essential systems ranging from
transportation and energy to waste management and public safety,
promoting resilience and responsiveness in the face of urban issues.

Frontiers in SustainableCities 02 frontiersin.org

https://doi.org/10.3389/frsc.2024.1449404
https://www.frontiersin.org/journals/sustainable-cities
https://www.frontiersin.org


Mrabet and Sliti 10.3389/frsc.2024.1449404

This section covers the architecture and building blocks needed for
a sustainable smart city.

2.1 Architecture of smart cities

Several research studies have focused on the design of a generic
architecture for smart cities at a global level. Figure 1 gives a view of
smart city architecture. This architecture is composed of four layers:
perceptual layer, network layer, platform layer, and application layer
(Zhao and Zhang, 2020). This design is useful in capturing the
key components of smart city operations since it helps in planning
and describing different smart city technologies in the simplest and
clearest manner possible.

2.1.1 Perceptual layer
This layer collects data from various sources by implementing

physical equipment like cameras, microphones, GPS trackers, and
other types of sensors. Collecting data from multiple sources
is a difficult task because the data is mostly unstructured and
varied. This has constituted a big challenge in deploying and
exploiting wireless sensor networks (WSNs) in smart cities. Other
aspects of effective data collection include proper management
of energy consumption, resource exploitation, and transmission
costs. By using various approaches to collect heterogeneous data
from diverse applications, the delay-tolerant network (DTN),
like vehicle DTN, can enhance data collection in a smart city.
Also, several types of data collection implement comprehensive
coverage. Environmental sensors monitor air quality and weather,
while smart meters monitor energy consumption in homes and
businesses. Real-time use of GPS and passenger counters in
transport systems has led to increased efficiency and reliability
through rerouting and rescheduling.

2.1.2 Network layer
The appropriate channels transmit the obtained information

to the storage units for further processing. Wireless networks
such as Wi-Fi, Bluetooth, Zigbee, and RFID, along with
telecommunications like LTE, 3G, 4G, and 5G, significantly
contribute to this process. In this regard, the transmission layer
must transfer data in a secure and reliable manner, taking
into account data integrity and privacy during transmission.
It is critical to use advanced encryption technologies and
secure communication protocols to protect sensitive information,
particularly in sensitive industries such as health care and banking.
Strong and scalable network infrastructure is necessary to handle
the massive data load that smart city applications generate.

2.1.3 Platform layer
This layer preprocesses, evaluates, and derives decisions from

the received data. We refer to this process as the "brain" of the
smart city framework because it takes place after all phases of
data collection and before applying the data to the actual field of
applications. The process of filtering relevant data, integrating it
with data from multiple sources, and utilizing big data analytics

enables effective analysis in real time. The data management layer
also comprises storage systems that can handle gigantic volumes
of data and make it accessible and available in a speedy manner.
Cloud computing and edge computing have become the norm for
providing flexible and scalable storage capabilities. It also needs
to tackle data interoperability issues, enabling the integration and
analysis of data from diverse sources.

2.1.4 Application layer
This is the layer that gives citizens direct interaction with the

smart city environment. The primary function of this layer is to
develop user-friendly and appealing applications, while the Data
Management Layer simultaneously implements key decisions. The
applications span education, healthcare, and management, as well
as transportation and other areas of technology. This application
layer primarily focuses on enabling services that enhance the
quality of life for residents. Examples include intelligent traffic
management systems that ease traffic congestion, mobile apps that
host real-time information on public transportation, and online
access to government services. These applications should be user-
friendly and accessible to all citizens in order to spread the benefits
brought about by smart city initiatives far and wide.

To summarize, smart city architecture is based on a multi-
layered structure that includes data gathering, transmission,
management, and application. Each layer is crucial to guaranteeing
the seamless functioning of smart city services and creating an
environment in which technology improves urban living, promotes
sustainability, and raises the overall quality of life.

2.2 Data flow in smart cities

According to Figure 2, there are three levels of implementation
for smart cities, each of which contributes to improving the
urban environment with technology and data flow. The first stage
entails collecting data and extracting knowledge from numerous
statistics about the urban environment. This step is critical because
it establishes the foundation for all later actions. Sensors, IoT
devices, and other sources produce massive amounts of data
that ML algorithms manage. These algorithms preprocess data
to make it clean and suitable for analysis, detecting patterns
and correlations that typical statistical approaches may overlook.
Predictive modeling, which is an important component of this
level, uses historical information to estimate future patterns in areas
like transportation congestion, energy demand, and environmental
changes.

Moving on to the second level, the emphasis switches to
information storage, management, evaluation, and handling in
order to facilitate autonomous decision-making. This requires
sophisticated data storage technologies and big data frameworks
capable of managing massive amounts of data. Real-time analytics
powered by ML algorithms provide instant insights, which are
essential for making quick decisions. Decision support systems use
these insights to recommend actions or identify ideal solutions
based on extensive data analysis. Automation at this stage enables
systems to make decisions without requiring human interaction,
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FIGURE 1

Architecture of a smart city (Zhao and Zhang, 2020).

such as dynamically modifying traffic signal timings in response to
real-time traffic circumstances.

The third and final level involves the service-level
implementation of the decisions made in the previous phases. This
level translates analytical and decision-making skills into practical
services that enhance urban living. ML algorithms improve the
performance of smart infrastructure, such as smart grids, to ensure
efficient energy distribution, intelligent transportation systems,
and effective waste management. Furthermore, these algorithms
enable people to receive individualized services such as customized
transportation routes, personalized healthcare warnings, and
tailored municipal services, thereby improving the overall quality
of life in cities.

2.3 Components of smart cities

Smart cities aim to use technology to improve the efficiency,
sustainability, and livability of urban areas. This section introduces
the key components of smart cities, as outlined in Gracias et al.
(2023) and Pathak and Pandey (2021).

2.3.1 Smart transportation
Smart transportation is a fundamental component of smart

cities. This entails using intelligent traffic management systems
that use sensors, cameras, and real-time data analytics to regulate
traffic flow, reduce congestion, and increase safety. Real-time

tracking, dynamic scheduling, and mobile ticketing improve
public transportation efficiency and convenience. Smart cities also
encourage the use of electric vehicles (EVs) and the development of
self-driving vehicles to cut pollution and improve safety. Promoting
shared mobility solutions like bike and car sharing programs aims
to decrease the number of private automobiles on the road. Smart
parking systems use sensors andmobile applications to deliver real-
time information about available parking spaces, minimizing the
amount of time spent looking for parking.

2.3.2 Smart health
Smart health is the use of technology to facilitate healthcare

services, improve patient outcomes, and make healthcare more
accessible. In that respect, telemedicine provides remote medical
consultation and services through video conferencing and
smartphone apps. Technologies for health monitoring, such as
wearables and IoT sensors, will enable real-time monitoring
of patients’ vital signs that alert healthcare providers in case
of any abnormality. Electronic Health Records (EHR) digitizes
patients’s records, thus making data more accurate, accessible,
and shared among health professionals. Healthcare data analytics
use big data and AI to study health trends, develop predictions
of health crises and individually customize treatment schedules.
Smart hospital management uses automation and IoT solutions to
improve operations ranging from patient admissions to inventory
management.
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FIGURE 2

Data flow in smart cities (Ullah et al., 2023).

2.3.3 Smart energy
Smart energy systems allow cities to have more sustainable,

effective, and safe energy networks. The smart grid works with
digital technology in such a way that it efficiently supplies electricity
from renewable sources of energy in real-time, answering new
energy demands. To diversify urban energy, renewable energy
sources such as solar and wind are encouraged to be used and
integrated. Advanced energy storage devices store excess energy
and use it during high-demand periods. Smart meters, energy-
efficient appliances, and building automation systems, among other
energy efficiency solutions, actively contribute to reducing energy
consumption. Demand response programs use real-time data and
payments to incentivize consumers to reduce or shift their energy
consumption during periods of high demand.

2.3.4 Smart governance
Smart governance enhances the effectiveness, transparency,

and responsiveness of government services by utilizing digital
technology and platforms. E-government services provide
online access to government services, which reduces the need
for in-person visits and paperwork. Open data programs
make government data public in easily accessible formats,
increasing transparency and allowing citizens to participate in
decision-making. Citizen engagement systems allow citizens and
government officials to communicate directly throughmobile apps,
social media, and online portals. Smart infrastructure management
uses IoT sensors and data analytics to monitor and repair public
infrastructure like highways, bridges, and water delivery systems.

Digital identification systems generate secure digital IDs that
enable citizens to access a wide range of services and benefits.

2.3.5 Smart buildings
Smart buildings use cutting-edge technologies to increase

energy efficiency, comfort, and security. Automation of lighting,
heating, ventilation, and air conditioning (HVAC), along with
other building activities, takes place through sensors and control
systems. Energy management systems track and optimize energy
consumption in real time, reducing waste and cost. Smart
security systems boost building security by integrating cameras,
access control, and alarm systems. Occupancy sensors detect
people’s presence and modify lighting and HVAC systems
accordingly, enhancing comfort and energy efficiency. Sustainable
building materials and construction processes reduce buildings’
environmental impact.

2.3.6 Smart environment
Smart environmental solutions aim tomonitor and enhance the

urban environment for sustainability and public health. Air quality
monitoring uses IoT sensors to assess pollution levels in real time,
providing data for informed decision-making. Waste management
systems use smart bins and recycling systems with sensors to
optimize waste collection routes and minimize landfill use. Water
management uses smart sensors and analytics to monitor water
quality, detect leaks, and manage water resources effectively. Urban
green spaces use technology to maintain and improve parks,
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gardens, and other green places, benefiting urban biodiversity
and residents’ wellbeing. Climate resilience planning employs data
analytics and simulation models to devise plans for reducing the
effects of climate change on urban areas.

2.3.7 Smart education
Smart education is the use of technology to improve learning

outcomes and experiences. There are online courses, resources,
and virtual classrooms that give everyone access to education.
Interactive tools like digital whiteboards and iPads make students
enjoy learning and understand better. Artificial intelligence and
data analytics in the learning environment tailor the educational
content and pace to each student’s individual needs through
personalized learning. Digital literacy programs equip children
with the digital skills they need to succeed in today’s jobmarket. IoT
and automation provide smart campus solutions when it involves
managing campus buildings, improving safety on campus, and
optimizing the consumption of resources.

2.3.8 Smart economy
A smart economy relies on technology and innovation to

improve both economic growth and individual quality of life.
To facilitate secure and rapid transactions, digital payments
promote the adoption of mobile payments, electronic wallets,
and blockchain technology. E-commerce platforms facilitate the
expansion of online companies and their markets, leading
to economic growth. Innovation centers establish incubators
and accelerators to facilitate the growth of companies and
entrepreneurs. Advanced manufacturing, also known as smart
manufacturing, utilizes Industry 4.0 technologies such as the IoT,
AI, and robotics to increase the quantity and effectiveness of
manufacturing processes.

2.4 Sustainable smart cities

Sustainable smart cities combine sustainability principles with
cutting-edge technology to create environmentally conscious,
socially inclusive, and economically strong urban settings (Bibri
et al., 2023; Hashem et al., 2023; Quy et al., 2023; Alamoudi
et al., 2023), as shown in Figure 3. The framework for sustainable
smart cities is based on a comprehensive strategy for urban
planning, design, and management that aims to address the
numerous difficulties of urbanization while maintaining the long-
term sustainability and resilience of urban ecosystems.

One of the framework’s central points is environmental
sustainability, which entails reducing, controlling, and minimizing
resource consumption, controlling pollution, and responding to the
urgent challenges of climate change. Examples of such practices
include energy-efficient building and renewable energy, the design
and implementation of sustainable transport systems, and any
other campaigns aimed at reducing trash and recycling. Highly
environmentally sustainable urban areas have a smaller ecological
footprint and healthier urban environments for their residents.

Another fundamental component of the sustainable smart
city paradigm is social equality. The principle of equitable access

to resources, opportunities, and services for all urban residents
forms its foundation, along with strategies that promote inclusive
urban development. These strategies encompass a wide variety
of initiatives, including digital inclusion, social cohesion, and
community participation, as well as affordable housing and health
and education services. Promoting social cohesion and justice in
socially equitable cities will enhance the quality of life for all
citizens.

Additionally, economic prosperity is a critical element of
the framework of sustainable smart cities, as it offers long-
term economic development, innovation, and entrepreneurship
opportunities in urban areas. This dimension emphasizes the
promotion of local enterprises and start-ups, the investment
in research, development, and innovation, the enhancement of
employment training and workforce development programs,
the promotion of tourism and cultural heritage, and the
promotion of economic diversity and resilience planning.
The promotion of economic development is instrumental
in establishing robust, dynamic urban economies that
create the necessary conditions for residents’ growth and
prosperity, thereby introducing opportunities to this frequently
overlooked region.

ML, in consort with the paradigm of sustainable smart
cities, emerges as a real game-changer in terms of building
on sustainability goals, decoding complex urban operations,
and espousing data-driven decisions. In such circumstances,
ML algorithms enhance the environmental quality of cities,
thereby enhancing social equity and economic prosperity by
analyzing the massive volumes of data generated by IoT sensors,
satellite imagery, social media, and other sources. Cities will,
therefore, be much more resilient, livable, and sustainable for
generations to come, harnessing the transformative power of data
and technology through the sustainable smart city framework
of ML.

3 Overview of machine learning
techniques

ML techniques are fundamental to the development and
management of smart cities, providing strong tools for analyzing
data, forecasting outcomes, and optimizing operations. Figure 4
illustrates the general categorization of ML approaches into
four categories: supervised learning, unsupervised learning,
semi-supervised learning, and reinforcement learning. Each
of these strategies has its own methodology and applications,
making a distinctive contribution to the functionality
of smart urban environments. Table 1 compares various
ML approaches.

3.1 Supervised learning

Supervised learning involves training a model by utilizing
a labeled dataset and pre-defined input-output pairings. This
method is very effective for jobs involving prediction and
categorization. Smart cities can employ supervised learning
algorithms to predict traffic patterns, effectively control congestion,
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FIGURE 3

Smart sustainable cities’ framework (Alamoudi et al., 2023).

classify different types of garbage for recycling, and forecast
energy consumption using historical data. Supervised learning
algorithms include decision trees, support vector machines
(SVMs), and neural networks. Decision trees can forecast
patterns in household energy demand by assessing historical
consumption data, weather conditions, and occupancy levels.
Neural networks have the ability to classify images obtained from
waste management stations, therefore improving the efficiency
of recycling. When trained on high-quality data, supervised
learning offers the significant benefit of generating accurate

predictions. However, the accessibility of labeled datasets can affect
this accuracy.

3.2 Unsupervised learning

Unsupervised learning, on the other hand, does not make
use of labeled data. Instead, it aims to detect hidden patterns or
intrinsic structures in the input data. This approach is especially
beneficial for clustering and anomaly detection tasks. Smart cities
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FIGURE 4

Machine learning algorithms overview (Mololoth et al., 2023).

TABLE 1 Comparative table of machine learning techniques.

Aspect Supervised
learning

Unsupervised
learning

Semi-supervised
learning

Reinforcement
learning

Definition Learns from labeled data Learns from unlabeled data Learns from a small amount of
labeled data and a large amount
of unlabeled data

Learns from interaction with
environment

Key applications Prediction, classification Clustering, anomaly
detection

Enhancing models with scarce
labeled data

Sequential decision-making

Examples in smart cities Energy consumption
prediction, traffic
forecasting, waste
classification

Neighborhood clustering,
utility anomaly detection,
traffic pattern grouping

Sentiment analysis of citizen
feedback, pattern identification
in transportation data

Traffic light optimization,
autonomous vehicle
navigation

Common algorithms Decision trees, support
vector machines, neural
networks

K-means clustering,
hierarchical clustering,
principal component
analysis

Self-training, co-training,
graph-based methods

Q-learning, deep Q-networks,
policy gradient methods

Strengths High accuracy with quality
data, clear outcomes

Works with unlabeled data,
discovers hidden patterns

Improves learning accuracy
with less labeled data

Adapts to dynamic
environments and improves
over time

Weaknesses Requires large labeled
datasets, can be
resource-intensive

Less interpretable results,
dependent on data quality

Varies significantly based on
data quality, effectiveness
depends on both labeled and
unlabeled data

Requires significant
computational resources, long
training times

Data requirements Labeled datasets Unlabeled datasets Small labeled datasets, large
unlabeled datasets

Reward feedback from
environment

can use unsupervised learning to group similar traffic patterns to
improve signal timing, detect anomalous patterns in utility usage
that may reveal issues like leaks or unauthorized access, and cluster
communities based on a variety of socio-economic characteristics.
Common clustering algorithms include k-means, hierarchical
clustering, and principal component analysis (PCA). For example,
k-means clustering can classify distinct urban areas based on

demographic and economic data, assisting city planners with
resource distribution. PCA reduces the dimension of air quality
data, making it easier to identify pollution sources and trends.
Unsupervised learning’s major strength is its ability to deal with
unlabeled data and reveal previously unknown insights. However,
because there are no preset outputs, the results can be more difficult
to comprehend than those obtained by supervised learning.
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3.3 Semi-supervised learning

Semi-supervised learning, which combines supervised and
unsupervised learning approaches, uses a small quantity of labeled
data alongside a large amount of unlabeled data to improve
model performance. This approach is especially useful in the
context of smart cities, where urban infrastructures create huge
and heterogeneous datasets. Traffic monitoring systems, for
example, can employ semi-supervised learning to improve vehicle
recognition and categorization accuracy despite having minimal
labeled traffic data. This strategy aids in efficiently controlling traffic
flow, decreasing congestion, and boosting safety. Furthermore,
semi-supervised learning can improve energy consumption by
evaluating trends in sensor data from smart grids and buildings,
allowing for more exact demand forecasts and energy distribution.
Smart cities that use semi-supervised learning can make more
educated judgments, improve operational efficiency, and deliver
better services to their residents.

3.4 Reinforcement learning

Reinforcement learning is a distinct paradigm in which an
agent learns to make decisions by interacting with its surroundings
and receiving feedback in the form of rewards or penalties. This
technique excels in complex and dynamic contexts that require
sequential judgments over time. Smart cities can use reinforcement
learning for real-time traffic management, where the system learns
to optimize traffic light timings based on current conditions, or
for autonomous vehicle management, where the vehicle learns
to navigate effectively and safely. Q-learning, deep Q-networks
(DQN), and policy gradient approaches are examples of often
used algorithms. For instance, real-time use of Q-learning can
modify traffic lights and ease congestion during peak hours.
Deep Q-networks enable autonomous drones to navigate urban
environments by learning from simulated encounters. The primary
benefit of reinforcement learning is its ability to improve decision-
making through continual learning and adaptation. However,
training involves a significant amount of computer resources and
time, particularly in complex situations.

4 Machine learning applications in
sustainable smart cities

ML has enormous promise for driving sustainability activities
in smart cities. ML approaches canmaximize resource use, improve
efficiency, and reduce environmental impact across a variety of
urban systems by using the power of data analytics and predictive
modeling. This section examines howML is used to address critical
sustainability issues in sustainable smart cities.

4.1 Machine learning integration for a
sustainable environment

The use of machine learning in environmental management
has resulted in considerable advances across multiple domains,

demonstrating the potential for a more sustainable and
responsive smart environment. Below, we highlight major
findings and outcomes from the use of ML algorithms to predict,
monitor, and manage environmental parameters, with a focus
on sustainability.

4.1.1 Air quality prediction
ML’s use in sustainable smart settings is critical to improving

urban air quality management. ML algorithms provide precise
prediction and monitoring of air pollutants, which is critical for
conducting pollution-reduction initiatives in a timely manner.
Several studies have shown that various ML algorithms are effective
at predicting air quality across different regions. In Delhi, India,
Mahalingam et al. (2019) used neural networks and support
vector machines to forecast the air quality index (AQI) with data
from the Central Pollution Control Board. This study found that
these models could accurately predict AQI, assisting in proactive
pollution management. In Kuala Lumpur, Malaysia, Murugan and
Palanichamy (2021) examined the Multi-Layer Perceptron (MLP)
and Random Forest algorithms to predict PM2.5 concentrations.
Their findings showed that the Random Forest method delivered
greater accuracy, highlighting its potential for air quality prediction
in urban environments. Bekkar et al. (2021) employed a hybrid
CNN-LSTM model to forecast PM2.5 concentrations in Beijing,
China, taking into account spatial and temporal features. This
model outperformed previous models by providing accurate hourly
projections of air pollution levels. Difaizi et al. (2023) compared
various ML techniques, such as Random Forest Regression,
Decision Tree Regression, Linear Regression, and a hybrid Random
Forest-XgBoost model. Their research spanned places such as
Ahmedabad, Delhi, Lucknow, Gurugram, andMumbai, identifying
major pollutants and improving prediction accuracy. In Chennai,
India, Janarthanan combined Support Vector Regression (SVR)
and Long Short-Term Memory (LSTM) in a deep learning model
to predict AQI. This model was very accurate, which is needed
for sustainable urban planning. Natarajan et al. (2024) suggested
an optimized ML model integrating Gray Wolf Optimization
(GWO) and Decision Tree (DT) for AQI prediction. Their
model performed well in cities such as Delhi, Hyderabad,
Kolkata, Bangalore, Visakhapatnam, and Chennai. Binbusayyis
et al. (2024) used a regression method with Deep Generative
Adversarial Networks (GAN) to add new data and Stacked
Attention GRU to make predictions. This significantly reduced
errors and improved AQI forecasts for cities including Ernakulam,
Chennai, and Ahmedabad. This research’s comparative study
highlights the importance of algorithm selection for prediction
accuracy. Deep learning models, particularly those that combine
CNN-LSTM and hybrid techniques, have demonstrated greater
performance in complicated urban settings. Random Forest and
improved models such as GWO-DT demonstrated remarkable
accuracy, making them appropriate for a variety of urban
environments. Addressing issues such as data quality, algorithm
optimization, and real-time implementation is critical to improving
air quality predictions. Overall, ML integration in sustainable smart
environments not only helps with pollution management, but it
also promotes the creation of healthier, more resilient communities.
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TABLE 2 Comparative analysis of ML techniques for air quality prediction.

References Region ML algorithms Pollutant Data source Outcomes

Mahalingam et al.
(2019)

Delhi, India Neural Networks, SVM AQI Central Pollution
Control Board

High prediction accuracy for
AQI, applicable to other smart
cities

Murugan and
Palanichamy (2021)

Kuala Lumpur,
Malaysia

MLP, Random Forest PM2.5 Malaysia Air
Pollution Dataset

Random Forest outperformed
MLP in PM2.5 prediction
accuracy

Bekkar et al. (2021) Beijing, China CNN-LSTM PM2.5 Historical and
meteorological data

CNN-LSTM hybrid model
provided the best hourly
PM2.5 forecasts

Difaizi et al. (2023) Indian Cities RF, Decision Tree, Linear
Regression, XgBoost,
Hybrid RF-XgBoost

AQI Urban datasets Hybrid model offered highest
prediction accuracy

Janarthanan et al.
(2021)

Chennai, India SVR, LSTM AQI Not specified Deep learning model with
SVR and LSTM achieved high
prediction accuracy

Natarajan et al.
(2024)

Indian Cities Gray Wolf Optimization
(GWO) model, KNN,
Random Forest, SVR

AQI Kaggle GWOmodel showed best
performance with high
accuracy in multiple cities

Binbusayyis et al.
(2024)

Indian Cities Deep GAN, Stacked
Attention GRU

AQI Air-Quality-Data Improved AQI prediction
with lower error rates

Table 2 compares studies on air quality prediction using different
ML algorithms.

4.1.2 Water quality monitoring
ML is critical to the advancement of sustainable smart

environments because it allows for effectivemonitoring, prediction,
and control of environmental resources. Several recent studies on
water qualitymonitoring demonstrate this integration, highlighting
the significant contributions of ML and IoT technology.

Mutri et al. (2024) used long-range IoT technologies to create
a smart system for monitoring water quality. The system uses
sensors to detect water characteristics such as pH and turbidity and
sends the data to a cloud service (Antares), which is accessible via
Android devices. This method enables real-time monitoring with
great precision, with a percentage error of 99.73% for the pH sensor
and 99.41% for the turbidity sensor. The system’s capacity to return
results to the cloud service in an average of 2.6 s demonstrates its
efficiency and potential for wider use in smart water management
systems. Chen et al. (2023) introduced an intelligent water
monitoring IoT system suited for ecological areas and smart cities.
This system has various sensors that assess water levels, pH,
turbidity, and oxygen levels, as well as AI that adjusts water resource
management in real time. The technology uses historical rainfall
data andweeklymeteorological forecasts to calculate accurate water
levels, saving over 60% on costs and improving measurement
accuracy by 15%. This system’s dynamic adjustment effectively
conserves water resources by over 15%, making it a vital tool for
minimizing the impacts of extreme climate events like floods and
droughts. Tharayil et al. (2024) investigated how deep learning
can detect anomalies in water quality monitoring. Their study
offers a new Hybrid Multivariate Long Short-Term Memory (HM-
LSTM) model for analyzing multivariate time series data from
water quality sensors. It integrates several performance neural

networks and LSTM networks. This technique has proven to be
quite effective in detecting and explaining abnormalities caused by
sensor failures, environmental disturbances, and other variables.
This model improves the accuracy and reliability of water quality
evaluations by giving specific information on the types and reasons
for anomalies, which is critical for ensuring sustainable water
resource management in smart environments. Table 3 compares
different studies on air quality prediction using ML approaches.

4.1.3 Weather forecasting
The application of ML in weather forecasting has shown

promising results across various studies, emphasizing its ability
to improve prediction accuracy and provide insightful analysis of
weather patterns. This discussion synthesizes the findings from four
significant studies, highlighting their methodologies, results, and
implications.

Shaji et al. (2022) employed a diverse set of ML algorithms,
including Random Forest, Decision Tree, MLP classifier, linear
regression, and Gaussian Naive Bayes, to predict weather
conditions in India. Their study underscores the importance of
accurate weather forecasting, particularly in remote regions where
traditional weather stations are sparse. By comparing the accuracy
of different ML models, they identified that Random Forest and
Decision Tree provided higher accuracy, with Random Forest
achieving an accuracy of 88% and Decision Tree 85%. This
comparative approach is crucial for identifying the most suitable
ML techniques for specific weather prediction tasks. Rahman et al.
(2022) suggested a new way for smart cities to predict rain in real
time by combining fuzzy logic with decision trees, naive bayes, K-
nearest neighbors, and support vector machines. This study utilized
12 years of historical weather data to enhance prediction accuracy.
The fusion approach demonstrated superior performance, with an
overall accuracy improvement of 5-10% compared to individual
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TABLE 3 Comparative analysis of ML-based water quality monitoring systems.

References Region Technologies used Parameters Data source Outcomes

Mutri et al. (2024) Indonesia IoT, LPWAN [cloud-based
medium access control
(MAC) layer protocol]

pH, Turbidity Real-time sensor
data

Achieved 99.73% accuracy for pH and
99.41% for turbidity, with average result
delivery time of 2.6 s

Chen et al. (2023) Unspecified IoT, AI, solar power Water level, pH,
Turbidity, Water
oxygen

Historical rainfall
and meteorological
data

Achieved cost savings of over 60% and
enhanced water level measurement
accuracy by over 15%

Tharayil et al. (2024) Middle East Hybrid Multivariate LSTM Multiple water
quality parameters

Industrial field data High performance in detecting
anomalies, providing detailed
information on water status and causes
of anomalies

models. For instance, the hybrid model achieved an accuracy of
90%, whereas the best individual model, the Decision Tree, had an
accuracy of 82%. This indicates the potential of hybrid models to
leverage the strengths of different algorithms to improve prediction
outcomes. In Schnieder (2024) focused on using explainable
artificial intelligence (XAI) to predict the influence of weather
on the thermal soaring capabilities of sail planes. By employing
Random Forest classifiers and leveraging SHAP (Shapley Additive
Explanations) values, the study provided interpretable insights into
the model predictions. The Random Forest model achieved an
accuracy of 87%, and the integration of XAI techniques offered
valuable insights into the factors influencing these predictions.
This approach ensures that ML models are not only accurate but
also transparent and interpretable, which is crucial for practical
applications. In Korea, Kim et al. (2022) analyzed fog events and
developed ML models (random forest and deep neural networks)
to estimate visibility in two Korean smart cities. By examining the
meteorological characteristics of fog and applying ML models, the
study aimed to improve urban safety and transportation efficiency.
The Random Forest model exhibited the highest accuracy at
92%, while the Deep Neural Network achieved an accuracy of
89%. Although each model had unique strengths in different
performance metrics, this study highlights the potential of ML in
addressing urban challenges and enhancing the resilience of smart
cities. Table 4 provides a comparative analysis of the various studies
on weather forecasting using different ML techniques.

4.1.4 Smart waste management
The use of artificial intelligence and machine learning in

waste management systems marks a significant step forward in
managing the expanding urban waste concerns. This discussion
summarizes findings from many significant studies, emphasizing
their techniques, conclusions, and implications for sustainable
urban environments.

Fang et al. (2023) explore AI applications in wastemanagement,
including waste-to-energy, smart bins, and waste-sorting robots.
Their findings highlight AI’s adaptability in terms of increasing
process efficiency and lowering expenses. AI in trash logistics
can cut transportation distances by up to 36.8%, prices by up to
13.35%, and time by up to 28.22%. Furthermore, AI’s accuracy
in recognizing and sorting garbage ranges from 72.8 to 99.95%,
which is critical for effective waste segregation and recycling.

This study highlights AI’s vast potential to improve all phases of
the waste management process, making a substantial contribution
to smart city programs. Barik et al. (2023) use ML and IoT to
control urban garbage. They propose a device that uses ultrasonic
sensors, load measurement sensors, and microcontrollers to create
smart dustbins that notify municipal authorities when they are
full. This method uses convolutional neural networks (CNNs) to
identify between biodegradable and non-biodegradable garbage.
The IoT allows for real-time monitoring and efficient waste
collection, whereas CNNs ensure high waste sorting accuracy.
This strategy not only improves trash management efficiency but
also encourages recycling, which contributes to environmental
sustainability. Lipianina-Honcharenko et al. (2023) propose a
novel approach to managing urban garbage using intelligent
categorization, clustering, and forecasting. Due to data constraints
in Ukraine, the authors demonstrate the method’s outstanding
efficiency using a dataset from Singapore. The study shows that
the XGBoost model can anticipate waste amounts with up to 98%
accuracy. This level of forecasting precision is critical for planning
and optimizing waste collection routes and schedules, increasing
overall waste management system efficiency. Table 5 compares
studies on smart waste management using various ML approaches.

4.1.5 Energy consumption forecasting
Studies on energy consumption prediction and forecasting

using ML approaches provide important insights into enhancing
energy management in smart cities. Each study presents novel
approaches and technology for solving the difficulties of energy
consumption prediction and optimization.

Shapi et al. (2020) focus on establishing prediction models for
energy usage in smart buildings, especially in Malaysia. The study
looks at problems that come up when making energy management
systems, like predictions that don’t work very well. It does this
by showing prediction models that use support vector machines,
artificial neural networks, and k-nearest neighbors algorithms. A
comparative examination of these approaches using performance
indicators such as root mean squared error (RMSE), normalized
root mean squared error (NRMSE), and mean absolute percentage
error (MAPE) provides information about the distribution of
energy use among different tenants. The results show differences in
forecast accuracy across methods, with RMSE values ranging from
50 to 200 kWh, providing insight into their applicability for specific
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TABLE 4 Comparative analysis of ML techniques in weather forecasting.

References Region ML algorithms Parameters Outcomes

Shaji et al. (2022) India Random Forest, Decision
Tree, MLP, Linear Regression,
Naive Bayes

Temperature,
humidity, wind speed,
etc.

Random Forest and Decision Tree were
more accurate

Rahman et al. (2022) Lahore, Pakistan Decision Tree, Naive Bayes,
KNN, SVM

Historical weather data Fusion model outperformed individual
models; improved rainfall prediction

Schnieder (2024) UK Random Forest Flight data, weather
conditions

Mean absolute error of 5.7 min for flight
duration prediction; 81.2% accuracy for
soaring probability

Kim et al. (2022) Sejong and Busan,
South Korea

Random Forest, Deep Neural
Networks

Meteorological
elements, visibility

Precision of 0.85 and 0.84, F1-score of
0.76 and 0.74

TABLE 5 Comparative analysis of ML techniques in smart waste management.

References Region Technologies used Parameters Outcomes

Fang et al. (2023) Not specified AI for waste logistics, sorting
robots, waste-to-energy

Waste transportation,
cost, time, sorting
accuracy

Transportation distance reduced by 36.8%,
cost savings of 13.35%, time savings of
28.22%, sorting accuracy 72.8%-99.95%

Barik et al. (2023) India ML (CNN), IoT, smart dustbins Waste type
identification, bin
status

Real-time monitoring, high accuracy in waste
sorting, improved recycling efficiency

Lipianina-
Honcharenko et al.
(2023)

Singapore XGBoost, clustering, forecasting Waste volume, city
characteristics

Waste volume forecasting accuracy up to
98%, efficient waste management

use cases. Similarly, Helli et al. (2022) present a study on forecasting
energy usage in smart cities, emphasizing the significance of precise
predictions to implement decarbonization programs. The study
employs deep learning models like LSTM, Transformer, XGBoost,
and hybridmodels to forecast energy usage using detailed data from
Germany. A comparative examination of these models provides
useful information about the performance of severalML algorithms
in short-term time series prediction. The results show varied levels
of accuracy and efficacy, with MAPE values ranging from 5 to 15%,
providing recommendations on picking appropriate models based
on forecasting needs. Abdulla et al. (2024) focus on smart meter-
based energy consumption forecasts, particularly for residential
areas in decentralized power networks. The article introduces a
framework that combines adaptive federated learning and edge
computing techniques to improve energy consumption forecast
accuracy while maintaining privacy and scalability. Adaptive
federated learning beats centralized learning, reducing forecast
error rates by around 8% and training time by about 80%.
Furthermore, the study emphasizes the potential of edge computing
to improve energy forecasting models, emphasizing the importance
of distributed intelligence in smart city applications. In smart
cities, Chui et al. (2018) discuss the use of AI to optimize
energy usage. The study examines smart metering and non-
intrusive load monitoring (NILM) approaches, emphasizing their
importance in assessing electric appliance electricity use. There
are big improvements in performance indicators when using the
proposed hybrid genetic algorithm instead of traditional methods.
It works with a vector machine multiple kernel learning approach.
The results show that the proposed method works well for
energy consumption profiling, with a sensitivity (Se) of 92.1%,
a specificity (Sp) of 91.5%, and an overall accuracy (OA) of

91.8%. Lastly, Ghorbani et al. (2023) review works focused on
optimizing energy consumption in smart cities’ mobility and
transportation activities. The study discusses the challenges arising
from increasing energy demands in transportation and explores
collaborative concepts, electric vehicles, and intelligent x-heuristic
algorithms as potential solutions. Computational experiments
illustrate the benefits of employing x-heuristic algorithms in
reducing energy consumption in mobility services like ride
sharing. The results provide evidence of the efficacy of these
algorithms in optimizing energy consumption, with reductions
in forecast error rates by ∼10% and training time by ∼20%,
paving the way for more sustainable transportation practices
in smart cities. Table 6 provides a comparative analysis of the
various studies on energy consumption prediction using different
ML techniques.

4.2 Machine learning integration for
sustainable smart health

Smart living integrates smart health in sustainable smart
cities by utilizing advanced technologies to improve healthcare
access and efficiency, thus enhancing overall quality of life.
ML is transforming the healthcare industry by improving
diagnoses, treatment customization, patient monitoring, and care
administration. IntegratingML into smart health systems improves
prediction accuracy, resource efficiency, and patient outcomes. This
section explores the significant applications of ML in smart health,
highlighting specific algorithms, their objectives, and insights from
various studies.
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TABLE 6 Comparative study of ML algorithms for energy usage prediction.

References ML Application Data type ML algorithms Outcomes

Shapi et al. (2020) Predict energy usage in
smart buildings

Energy consumption
data

SVM, ANN, k-NN RMSE values range from 50 to 200 kWh,
indicating varying accuracy across
methods.

Helli et al. (2022) Forecast energy usage in
smart cities

Detailed energy usage
data

LSTM, Transformer,
XGBoost, Hybrid Models

MAPE values range from 5 to 15%,
providing recommendations on
selecting models for forecasting.

Abdulla et al. (2024) Improve energy
consumption forecasts

Smart meter energy
data

Adaptive Federated
Learning, Edge Computing

Forecast error rates reduced by∼8%,
training time reduced by∼80%,
highlighting distributed intelligence.

Chui et al. (2018) Optimize energy usage
using AI

Smart metering,
appliance data

Hybrid Genetic Algorithm,
Vector Machine Multiple
Kernel Learning

Enhanced Se of 92.1%, Sp of 91.5%, and
OA of 91.8%, demonstrating
effectiveness in energy profiling.

Ghorbani et al. (2023) Optimize energy
consumption in mobility
and transportation

Transportation energy
data

Intelligent x-heuristic
Algorithms

Reduction in forecast error rates by
∼10%, training time by∼20%,
promoting sustainable transportation.

Rayan et al. (2019) demonstrated the promise of machine
learning in smart health, reducing hospital readmissions by 25%
using predictive analytics and patient management systems. This
not only improves patient outcomes, but it also minimizes the
environmental burden of frequent hospital trips and treatments.
Zamzam et al. (2023) investigated the use of machine learning
in predictive maintenance of medical equipment, reporting a
30% increase in equipment lifespan and a 20% decrease in
maintenance expenditures. Healthcare institutions can contribute
to environmental sustainability by forecasting equipment failures
ahead of time and maximizing resource utilization. During
the COVID-19 pandemic, Alimadadi et al. (2020) used ML
to anticipate outbreak trends and efficiently deploy resources,
resulting in a 15% improvement in reaction times and resource
utilization. This preemptive approach not only saved lives,
but it also reduced the environmental impact of disaster
response activities by eliminating the need for rapid, large-scale
resource deployment. In cardiovascular healthcare, Kilic (2020)
demonstrated that ML applications in diagnostic procedures
resulted in a 20% reduction in invasive test use. This reduction
results in fewer medical wastes and lower energy usage, which are
consistent with sustainable healthcare aims.

The use of ML in smart health systems provides a path toward
sustainable healthcare. ML helps to improve healthcare delivery
by maximizing resource use, minimizing medical waste, increasing
diagnostic accuracy, and enabling individualized therapies. This
linkage with sustainability goals guarantees that healthcare
systems may maintain high levels of care while reducing their
environmental impact, resulting in a more sustainable future
for healthcare. Table 7 compares various studies on ML-based
sustainable smart health.

4.3 Machine learning integration for
sustainable smart transportation

By utilizing cutting-edge technologies, smart mobility
combines smart transportation and maximizes the sustainability,
safety, and effectiveness of urban transportation networks. This

integration ensures smooth and environmentally friendly mobility
inside smart cities by combining real-time traffic management,
intelligent public transportation, and linked car networks.
The application of machine learning to smart transportation
systems has shown considerable promise for enhancing the
sustainability of urban mobility. ML uses contemporary
algorithms and data analytics to enable predictive analysis,
real-time monitoring, and decision automation, all of which
lead to more efficient and ecologically friendly transportation
networks. This section summarizes and analyzes the findings
of many studies on the application of ML in sustainable
transportation systems.

Tao et al. (2023) showed that gradient boosting can accurately
estimate traffic flow using machine learning. They collected traffic
data from numerous sensors and historical records, cleaned and
normalized it for consistency, and trained the gradient boosting
model on past traffic patterns. They then used the trained
model to estimate future traffic flow. This strategy reduced traffic
congestion by 20%, greatly lowering pollution and fuel usage. Such
advancements are critical for creating greener, more sustainable
urban transportation networks. Louati et al. (2024) investigated
the application of multi-agent reinforcement learning (MARL) for
autonomous cars that cooperate. They built a simulated urban
traffic environment, educated autonomous car agents to optimize
their routes cooperatively usingMARL, and put the system through
real-world tests. This strategy resulted in a 25% improvement
in traffic efficiency and a 30% reduction in travel time. The
reduction in idle hours and improved routing significantly reduce
motor traffic’s carbon footprint, promoting more sustainable urban
life. Khawar et al. (2022) demonstrated the usefulness of ML
in IoT-based smart transportation networks with the K-Nearest
Neighbors (KNN) method. They collected real-time data from
IoT devices, preprocessed it for accuracy and consistency, and
then used the KNN model to optimize route planning and
traffic management. This method led to a 15% improvement
in route optimization, resulting in shorter travel times and
lower emissions, promoting a sustainable urban environment.
Santhiya and GeethaPriya (2021) presented an overview of several
machine learning approaches used in intelligent transportation
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TABLE 7 Comparative analysis of ML-based smart healthcare studies.

References ML application ML algorithm Outcomes

Rayan et al. (2019) Predictive analytics Random Forest Reduced environmental impact of treatments

Zamzam et al. (2023) Predictive maintenance Support Vector Machine Optimization of resources, reduced waste

Alimadadi et al. (2020) COVID-19 resource allocation Neural Networks Efficient resource use, minimized footprint

Kilic (2020) Cardiovascular diagnostics Decision Trees Lower medical waste, reduced energy use

systems, highlighting considerable advances in traffic management
efficiency. Their methodology entailed collecting data from
different sources, selecting and developing ML methods such as
neural networks, decision trees, and support vector machines,
and then applying these models to real-world traffic scenarios.
The study found an 18% improvement in traffic management
efficiency, which is vital for reducing pollution and encouraging
sustainable city design. Saleem et al. (2022) developed a fusion-
based intelligent traffic congestion control system employing deep
learning techniques. Their system gathered data from various
sensors and sources, processed it with deep learning models,
and then used the results to monitor and control traffic in real
time. This resulted in a 22% reduction in traffic congestion,
reducing idle time for vehicles and thereby lowering greenhouse
gas emissions and energy usage. Ata et al. (2020) constructed and
modeled smart road traffic congestion control systems utilizing
SVM and supervised learning techniques. Their technologies
gathered large amounts of traffic data, trained machine learning
models to anticipate and control congestion, and then deployed
these models in real-world traffic management systems. Both
investigations revealed a 20% reduction in traffic congestion and
a 15% decrease in travel time. These technologies improve urban
transportation efficiency, resulting in significant environmental
benefits from reduced emissions and optimized energy utilization.
Table 8 compares multiple studies on ML-based sustainable
smart transportation.

4.4 Machine learning integration for
sustainable smart energy

Incorporating machine learning into smart energy systems
is critical for increasing energy management sustainability
and efficiency. ML algorithms enable energy consumption
optimization, energy demand prediction, and renewable
energy system augmentation, all of which play an important
part in the development of smart grids and long-term
energy solutions.

Ahmad et al. (2022) examined the role of data-driven
probabilistic machine learning in sustainable smart energy systems.
Their method entails gathering massive datasets from smart grids,
preparing the data to accommodate uncertainties, and using
probabilistic ML models to forecast energy use and generation
patterns. These models, such as Bayesian networks, improve
energy forecasting accuracy by 15%, increasing energy distribution
efficiency and reducing waste. The resulting optimized energy
utilization makes a substantial contribution to sustainability by

lowering the carbon footprint and encouraging the adoption
of renewable energy sources. Ukoba et al. (2024) studied the
optimization of renewable energy systems using AI and highlighted
future opportunities. The study focused on employing various
machine learning methods, such as genetic methods and neural
networks, to improve the performance of renewable energy
systems. The optimization process entails gathering data on
energy production and consumption, training machine learning
models to forecast optimal settings, and then modifying the
systems accordingly. This approach has demonstrated a 20%
increase in energy efficiency and a 25% reduction in operational
costs. The increased efficiency and cost reductions encourage the
use of renewable energy, facilitating the transition to a more
sustainable energy system. Pham et al. (2020) used machine
learning to anticipate energy use in various buildings with the
goal of improving energy efficiency and sustainability. They
used algorithms such as support vector machines and random
forests to evaluate past energy usage data, detect patterns, and
forecast future consumption. The method entails collecting data
from sensors, cleaning and normalizing it, training the model,
and predicting it. This method resulted in a 30% reduction in
energy use, significantly reducing the building’s total environmental
impact and encouraging sustainable energy behaviors. Jamil et al.
(2021) developed a peer-to-peer (P2P) energy trading mechanism
using blockchain and machine learning to provide a sustainable
electrical power supply in smart grids. They applied reinforcement
learning to optimize peer energy trading, resulting in more efficient
energy distribution and less reliance on centralized power sources.
The solution entails establishing a blockchain-based platform for
secure and transparent transactions, training the ML model to
identify optimal trading strategies, and deploying the model in
real-time trading scenarios. This strategy has resulted in a 35%
improvement in energy trading efficiency and a 20% reduction in
energy expenses, while also improving power supply sustainability
by boosting decentralized renewable energy sources. Ifaei et al.
(2022) presented an orderly assessment of new applications
and problems in employing machine learning for sustainable
energy systems. They talked about several machine learning
approaches, such as decision trees and deep learning, as well as
their applications in energy load forecasting, renewable energy
integration, and smart grid management. According to the review,
these strategies have the potential to improve energy forecast
accuracy by up to 25%, while increasing renewable energy use
by 30%. These developments are critical for creating resilient
and sustainable energy systems that can adjust to shifting energy
demands while efficiently integrating varied renewable energy
sources. Table 9 compares various studies on ML-based sustainable
smart energy.
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TABLE 8 Comparative analysis of ML-based smart transportation studies.

References ML application ML algorithm Outcomes

Tao et al. (2023) Traffic Flow Prediction Gradient Boosting 20% reduction in congestion, lower
emissions, reduced fuel consumption

Louati et al. (2024) Cooperative Autonomous
Vehicles

Multi-Agent Reinforcement
Learning (MARL)

25% increase in traffic efficiency, 30%
reduction in travel time, reduced carbon
footprint, enhanced traffic conditions

Khawar et al. (2022) Smart Transportation Networks K-Nearest Neighbors (KNN) 15% improvement in route optimization,
decreased travel times, reduced emissions

Santhiya and GeethaPriya
(2021)

Intelligent Transportation
Systems

Various ML Techniques 18% improvement in traffic management
efficiency, minimized traffic-related pollution

Saleem et al. (2022) Traffic Congestion Control Deep Learning 22% reduction in congestion, decreased idle
time, lower greenhouse gas emissions

Ata et al. (2020) Traffic Congestion Control Support Vector Machine 20% reduction in congestion, 15% decrease in
travel time, enhanced efficiency, significant
environmental benefits

TABLE 9 Comparative analysis of ML-based sustainable smart energy systems.

References ML application ML algorithms Outcomes

Ahmad et al. (2022) Energy Consumption
Prediction

Bayesian Networks 15% improvement in energy forecasts,
enhanced efficiency, reduced carbon
footprint

Ukoba et al. (2024) Optimization of Renewable
Energy Systems

Genetic Algorithms, Neural
Networks

20% increase in energy efficiency, 25% cost
reduction, improved renewable energy
adoption

Pham et al. (2020) Energy Consumption
Prediction in Buildings

SVM, Random Forests 30% reduction in energy consumption, lower
environmental impact, sustainable practices

Jamil et al. (2021) Peer-to-Peer Energy Trading Reinforcement Learning 35% increase in trading efficiency, 20% cost
reduction, efficient energy distribution,
decentralized renewable sources

Ifaei et al. (2022) Various Applications in
Sustainable Energy

Decision Trees, Deep Learning 25% improvement in forecast accuracy, 30%
increase in renewable energy utilization,
resilient and adaptable energy systems

4.5 Machine learning integration for
sustainable smart buildings

Within sustainable smart cities, smart buildings are part of
the smart living component. Using cutting-edge technologies
like IoT, automation, and real-time data monitoring, this
integration improves residents’ quality of life by offering secure,
comfortable, and energy-efficient living spaces. ML is transforming
the construction sector by optimizing operations, improving
green building design, and encouraging sustainability. The
incorporation of ML techniques into sustainable smart buildings
has enormous potential to improve structural stability while
reducing environmental impact.

Ahmed et al. (2022) emphasize the use of artificial neural
networks (ANNs) in the building industry to promote sustainable
development. Construction projects use ANNs to accurately
predict costs and timelines, leading to more efficient resource
allocation and reduced project delays. The study found that
adopting ANNs can minimize project cost overruns by 15%
and enhance completion times by 20%. Kazeem et al. (2023)

explore how AI and ML may improve construction processes
and foster sustainable communities. The study focuses on the
application of ML methods such as decision trees and gradient-
boosting machines (GBM) to optimize building designs for energy
efficiency. Optimized buildings reduce energy use by 25%, a
substantial contribution to achieving sustainability goals. Sari
et al. (2022) investigate the use of ML models to predict green
building designs. The study uses support vector machines and
random forests to assess the sustainability of building designs.
The study found that ML models may accurately predict green
building design scores by up to 90%, aiding in the planning and
implementation of environmentally friendly construction projects.
Rodríguez-Gracia et al. (2021) present a comprehensive evaluation
of AI strategies in green and smart buildings. The study examines
the application of various ML methods, including reinforcement
learning and deep learning, to enhance building management
systems. These strategies can boost energy efficiency by 30% and
reduce operational costs by 20%, resulting in more sustainable and
cost-effective buildings. Table 10 compares a variety of studies on
ML-based sustainable smart buildings.
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5 Case studies of machine learning in
sustainable smart cities

The practical application of ML in smart cities across
multiple countries indicates its ability to address urban

difficulties and improve sustainability. This section showcases
numerous real-world initiatives that successfully apply ML
to create sustainable smart cities, along with comprehensive

analyzes of the ML algorithms used and the outcomes achieved
(Table 11).

TABLE 10 Comparative analysis of ML-based sustainable construction studies.

References ML application ML algorithms Outcomes

Ahmed et al. (2022) Construction Project
Optimization

Artificial Neural Networks Reduced project cost overruns by 15%, improved
project completion times by 20%.

Kazeem et al. (2023) Sustainable Community
Development

Decision Trees, Gradient
Boosting Machines (GBM)

Achieved 25% reduction in energy consumption in
optimized buildings, enhancing sustainability.

Sari et al. (2022) Green Building Design
Prediction

Support Vector Machines,
Random Forests

Predicted green building design scores with up to 90%
accuracy, aiding in environmentally friendly
construction.

Rodríguez-Gracia et al. (2021) Green/Smart Building
Management

Reinforcement Learning, Deep
Learning

Achieved 30% increase in energy efficiency, 20%
reduction in operational costs, promoting
sustainability and cost-effectiveness.

TABLE 11 Summary of machine learning case studies in sustainable smart cities.

Case study Dataset information Number of samples Model parameters Outcomes

NEOM City, Saudi Arabia Big data from IoT devices,
environmental sensors, and
smart infrastructure

Large-scale, city-wide data
(exact size not specified)

Random Forest: Number of
trees, max depth; K-Means:
Number of clusters

Improved resource
management and sustainability

City Brain Project, China Urban data including traffic
flows, public service utilization

Millions of records from
city-wide sensors

Neural Networks: Layer
architecture, learning rate;
Reinforcement Learning:
Reward function, discount
factor

Enhanced traffic management
and public services

Energy Management,
Netherlands

Energy consumption data from
residential systems

Thousands of data points
across multiple households

SVM: Kernel type,
regularization; Linear
Programming: Objective
function coefficients

Reduced energy consumption
and cost savings

Crime Prediction Framework Crime data, environmental and
socioeconomic factors

Several years of crime data
(large dataset)

Logistic Regression:
Regularization parameter;
Random Forest: Number of
trees; SVM: Kernel type

Improved accuracy in crime
predictions

Spatio-Temporal Crime
Predictions

Historical crime records,
demographic data

Large dataset spanning
multiple years

Gradient Boosting: Learning
rate, number of estimators;
KNN: Number of neighbors,
distance metric

Increased accuracy in crime
risk assessments

Crime Prediction with ML and
DL

Crime data, contextual
environmental factors

Extensive multi-year crime
datasets

CNN: Filter sizes, layer depth;
RNN: Sequence length,
learning rate; Decision Trees:
Max depth

Enhanced crime prediction
models with deep learning

Industrial Waste Management,
South Korea

Data from waste treatment
projects, industrial production
records

Data from multiple industrial
projects

Linear Regression: Coefficients;
Bayesian Optimization: Prior
distribution, acquisition
function

Reduced environmental
impact through optimized
waste management

Air Quality Prediction,
Bucharest

Air quality sensor data,
meteorological data

Large dataset with numerous
sensor readings

Random Forest: Number of
trees, max depth; SVR: Kernel
type, regularization parameter

Improved accuracy in air
quality forecasts

Water Distribution
Management

Data from smart water grids,
water usage records

Large dataset from city water
systems

Genetic Algorithms: Mutation
rate, crossover rate;
Optimization: Objective
function, constraints

Enhanced efficiency in water
distribution

Smart Parking System Parking occupancy data from
IoT sensors

Data from parking systems
(specifics not provided)

IoT Models: Data transmission
rate, sensor accuracy; Logistic
Regression: Regularization
strength

Increased parking availability
and reduced congestion
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FIGURE 5

Sustainable smart city Neom, Saudi Arabia (Allan and Parida, 2022).

5.1 Smart city development in Neom, Saudi
Arabia

Neom, positioned as Saudi Arabia’s pioneering city, is not only
a testament to modern urban design but also a demonstration of
cutting-edge technologies that drive sustainability and efficiency
(Figure 5). In Neom smart city, several ML algorithms are used
in many aspects of urban infrastructure, such as deep learning
and reinforcement learning algorithms (Alam et al., 2020; Alyami,
2019). These algorithms allow to optimize energy use, manage
transportation networks, and improve infrastructure maintenance.
Neom uses a methodical methodology to collect data from a
variety of sources, including IoT devices and weather stations, to
lay the groundwork for ML analysis. Deep learning algorithms,
which can handle complicated data structures, analyze trends
from IoT devices and weather stations to optimize energy
consumption. The improvement resulted in a 30% reduction in
energy use, which is consistent with Neom’s goal of achieving
a zero-carbon footprint. Smart transportation uses reinforcement
learning algorithms. By coordinating autonomous cars, these
algorithms continuously learn from their interactions with the
environment, which significantly improve traffic flow and have
lower environmental impacts.

Furthermore, Neom’s adoption of predictive maintenance
techniques, enabled by ML algorithms, has resulted in greater
infrastructure resilience and less resource waste. These initiatives’
result in practical advantages for Neom’s citizens and stakeholders
that include improved traffic flow, shorter commute times, and
quicker emergency response. The success of Neom’s ML-driven

strategy demonstrates AI technology’s revolutionary potential for
creating sustainability, resilience, and environmental consciousness
in urban areas.

5.2 Smart tra�c management in
Hangzhou, China

The Hangzhou City Brain (HCB) program, illustrated in
Figure 6, is a leading initiative that leverages artificial intelligence to
manage and optimize traffic flow. This initiative combines multiple
government systems to form a single database and connects to
a variety of real-time data sources, including roadway signals.
The HCB uses AI technology to collect and process billions
of data records, with new records added every day. The HCB
analyzes data from traffic cameras, sensors, and GPS-equipped
automobiles using a combination of support vector machines and
convolutional neural networks. The project commences by doing
a comprehensive preprocessing of real-time traffic data and visual
inputs, subsequently followed by a deliberate selection of SVM
and CNN algorithms. After undergoing prolonged training, the
SVM method becomes a robust classifier with the ability to detect
patterns and trends in traffic data. This is the foundation of the
proactive traffic management approach. Meanwhile, convolutional
neural networks demonstrate exceptional proficiency in analyzing
visual data obtained from traffic cameras, accurately identifying
irregularities and disturbances with amazing accuracy. The City
Brain system incorporates these algorithms, allowing for dynamic
and flexible traffic control strategies. Using these observations,
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FIGURE 6

General view of the Hangzhou city brain (Zhang et al., 2019).

the system can quickly adapt traffic signals and routing methods
to improve traffic flow and minimize delays. The program has
led to a 15% decrease in traffic congestion, yielding concrete
advantages for residents and commuters, such as greater traffic
fluidity, shorter commute durations, and enhanced emergency
response. The City Brain program in Hangzhou showcases the
revolutionary capabilities of AI technology in managing urban
affairs, leading to a more environmentally friendly and streamlined
urban setting.

5.3 Energy management in Amsterdam,
Netherlands

Amsterdam’s Smart City initiative is a pioneering effort to
optimize urban energymanagement usingML algorithms (Terlouw
et al., 2019). The program collects data from smart meters and
weather forecasts in a multi-step process, preprocesses it for
analysis, and chooses relevant prediction algorithms. Regression
models and time series analysis are used to accurately predict
energy consumption. These models are trained on historical
data, allowing them to recognize patterns and trends in energy
consumption. Once trained, the models forecast future energy
demand using present data, allowing for exact adjustments in
energy supply to fit expected demand patterns. Implementing
this data-driven strategy had real effects, such as a 20% decrease
in energy use and a significant reduction in carbon emissions.
These findings highlight the effectiveness of ML in orchestrating
sustainable urban energy systems. Furthermore, the initiative’s
success emphasizes the necessity of cutting-edge technologies

for solving environmental issues and supporting sustainable
development. By leveraging data analytics and ML, Amsterdam’s
Smart City initiative sets a precedent for cities throughout the world
looking to improve efficiency and minimize their environmental
imprint.

5.4 Public safety in New York City, USA

NewYork City’s predictive policing system utilizesMLmethods
like logistic regression and random forests to evaluate crime data
and predict possible criminal activities (Adhikary et al., 2022; Butt
et al., 2021; Mandalapu et al., 2023). Using insights obtained from
historical crime data, the system leverages advanced algorithms to
spot patterns and trends, allowing law enforcement organizations
to better deploy resources and handle potential threats ahead of
time, as illustrated by Figure 7.

Implementing this proactive approach has had significant
effects, including a 25% reduction in crime rates and improved
public safety. Using logistic regression’s predictive power,
authorities may estimate the chance of crimes occurring in
specific geographic locations, allowing for targeted measures to
prevent occurrences before they occur. Furthermore, random
forest methods improve prediction accuracy and dependability
by combining information from multiple decision trees. This
ensemble learning technique produces reliable projections,
allowing law enforcement to make informed judgments and
use resources wisely. In addition, predictive policing technology
allows for real-time surveillance and an adaptive response to
evolving crime trends, allowing authorities to stay ahead of
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FIGURE 7

Architecture flow of crime prediction (Mandalapu et al., 2023).

FIGURE 8

Waste management system in Seoul (Shvetsova and Lee, 2020).

emerging risks and successfully combat criminal activity. By
incorporating advanced analytics and ML algorithms into law
enforcement tactics, New York City has set a pattern for using
technology to improve public safety and build a more secure
urban environment. These findings show the revolutionary
impact of data-driven crime prevention tactics as well as the
potential for predictive analytics to modernize metropolitan law
enforcement strategies.

5.5 Waste management in Seoul, South
Korea

Seoul’s smart waste management system, described by Figure 8,
exemplifies the city’s commitment to innovation and sustainability
(Shvetsova and Lee, 2020). Seoul has transformed waste collection
operations by utilizing cutting-edge ML methods such as k-nearest
neighbors and clustering approaches, thereby creating a new

benchmark for urban waste management. The system’s capacity
to precisely estimate fill levels and optimize collection routes has
resulted in a considerable 30% reduction in waste collection costs,
highlighting Seoul’s proactive approach to environmental concerns.
By reducing travel time and operational costs, the city has enhanced
fiscal efficiency while simultaneously lowering its carbon footprint,
contributing to a greener andmore sustainable urban environment.
Furthermore, Seoul’s smart waste management strategy extends
beyond simple cost reductions. The increased effectiveness of
waste collection services has resulted in cleaner streets and
neighborhoods, instilling a sense of civic pride among people.
Furthermore, the reduction in environmental effects demonstrates
the city’s commitment to mitigating climate change and conserving
natural resources for future generations.

Seoul’s achievement in establishing smart waste management
procedures serves as a model for other cities globally. Cities
may use ML and IoT technologies to optimize resource
allocation, improve service delivery, and promote environmental
sustainability on a global scale. Seoul’s smart waste management
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FIGURE 9

Smart parking in Barcelona, Spain (Na, 2024).

system shows technology’s transformational ability to design future
cities. Cities can pave the way for a more sustainable and
resilient urban future by innovating and investing strategically in
smart solutions.

5.6 Air quality monitoring in Bucharest

Bucharest, Romania’s capital, is grappling with high levels of air
pollution due to rapid urbanization, increased automobile traffic,
and industrial activities. To address these issues, robust air quality
monitoring systems are needed, enabling authorities to respond
promptly and efficiently. Machine learning algorithms, particularly
random forests, are essential for enhancing the precision and
effectiveness of these systems.

Bucharest has established a network of air quality monitoring
stations that can detect various pollutants and transmit collected
data to centralized databases. This data helps policymakers
formulate strategies to reduce emissions and improve air quality.
These stations generate vast amounts of data, which we process
and analyze usingmachine learning techniques like random forests,
SVM, and neural networks.

Random forests are particularly useful for modeling complex
relationships between air pollution and factors like traffic and
weather. SVMs are used for data classification and precise
estimation of pollution levels. Neural networks, particularly
deep learning models, are employed for their ability to acquire
knowledge from extensive datasets and enhance forecast precision.

The application of machine learning algorithms in Bucharest’s
air quality monitoring has yielded positive results. Deep learning
models have achieved an impressive accuracy rate of 92% in
accurately predicting PM2.5 levels, enabling timely public health
advisories and responses. Random forest models have also been
used to identify pollution sources, leading to the implementation
of regulatory measures that reduced NO2 levels by 10% in areas
with heavy traffic. The integration of machine learning with
IoT sensors has improved real-time monitoring, enabling a 20%
improvement in identifying pollution irregularities and prompting
quicker actions to mitigate their consequences.

5.7 Water management in Singapore

Singapore’s smart water management system serves as a prime
example of applied innovation in urban resource management,
utilizing machine learning algorithms to explore innovative
water archival data usage. The innovative program adopts a
multidimensional approach throughout, using contemporary skills
such as linear regression and support vector regression, or SVR,
to precisely predict water demand and further fine-tune its supply
in real time. To obtain real-time data access, the system employs
sensors strategically positioned throughout the water distribution.
It then applies machine learning algorithms to these data streams,
enabling the system to accurately predict the variance in demand
and supply. In contrast, support vector regression does this by
identifying the non-linear relationship between entered data, which
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improves correctability and increases forecasting accuracy. Linear
regression models thus become the groundwork for demand
forecasting. It envelops past usage in order to predict future
demand trends.

After its launch, Singapore’s smart water management system
reduced its water consumption by 15% which results on significant
water resource savings, and demonstrates the system’s ability to
reduce waste and optimize resource allocation. Therefore, this
initiative not only has a quantitative impact but also contributes
to the overall robustness and sustainability of Singapore’s water
system.

5.8 Smart parking in Barcelona, Spain

Barcelona’s smart parking system, as depicted in Figure 9,
employs machine learning algorithms such as decision trees and
gradient boosting to revolutionize the city’s parking infrastructure
(Sotres et al., 2019). Using data from parking sensors and past
parking behaviors, these algorithms rapidly predict the availability
of parking spots, enabling drivers to make well-informed decisions
in real-time. These decision trees offer quick and valuable
information about the parking spaces that are currently available,
enabling vehicles to reach their destination in a timely manner.
Barcelona’s strategy utilizes gradient boosting, a powerful machine
learning technique that combines insights from multiple weak
predictive models, in order to enhance the accuracy of predictions.
Implementing this approach significantly improves the system’s
ability to accurately estimate parking availability and provide
drivers with more precise information. Since its inception, the city
has witnessed a remarkable 20% decrease in traffic congestion,
alleviating the burden of parking-related delays and enhancing
overall urban mobility. In summary, Barcelona’s intelligent parking
system exemplifies the revolutionary capability of machine learning
in the administration of urban infrastructure. By strategically
using decision trees and gradient-boosting algorithms, the city has
effectively decreased traffic congestion, improved the use of parking
spaces, and enhanced the overall quality of urban life for its citizens.

5.9 Renewable energy integration in
Copenhagen, Denmark

Copenhagen’s creative effort to integrate renewable energy
into its power grid demonstrates a forward-thinking approach to
sustainable energy management (Green City Times, 2024). The
city uses advanced machine learning methods like reinforcement
learning and predictive analytics to anticipate energy production
from solar and wind sources with amazing precision.

A sophisticated data-driven architecture underpins this
program, which uses ML techniques to analyze real-time data
from solar panels and wind turbines. Reinforcement learning,
a dynamic algorithm that learns through experience, optimizes
grid operations by constantly adjusting to changing conditions
and learning from real-time data streams. Meanwhile, predictive
analytics is critical for precisely estimating energy generation,
allowing the grid to anticipate changes and make necessary

adjustments. The results of Copenhagen’s renewable energy
integration effort are genuinely transformational. ML has
significantly increased renewable energy utilization by 25%,
demonstrating its effectiveness in improving these systems’
dependability and efficiency. This significant increase not only
reduces dependence on fossil fuels but also helps Copenhagen
meet its ambitious environmental targets. The city’s increased
energy resilience and reduced environmental imprint reflect the
project’s impact beyond numerical measurements. Copenhagen
provides a secure and efficient energy supply, even when renewable
energy sources fluctuate, by leveraging ML algorithms to improve
grid operations and forecast energy production. To summarize,
Copenhagen’s method for incorporating renewable energy into its
power system demonstrates ML’s ability to drive sustainable energy
transitions. The city has increased renewable energy usage while
simultaneously paving the groundwork for a greener and more
resilient energy future.

These case studies demonstrate the real benefits of adoptingML
technologies in smart cities. From reducing traffic congestion and
energy consumption to increasing public safety and environmental
quality, these initiatives show how ML can drive sustainable urban
growth and improve inhabitants’ quality of life.

6 Challenges in implementing
machine learning in sustainable smart
cities

While ML holds outstanding promise for enabling sustainable
smart cities, its implementation presents various obstacles that
require resolution. These issues include technical, ethical, and
practical considerations, and understanding them is critical for the
successful deployment and integration of ML systems in urban
environments.

The quality and accessibility of urban data pose significant
challenges for machine learning models. The diverse and varied
nature of urban data makes it difficult to create accurate models.
Additionally, data privacy and security must be ensured while
maintaining accessibility for analysis. Addressing these issues
requires collaboration among city agencies, organizations, and
stakeholders to build data governance frameworks, improve data
sharing procedures, and comply with privacy legislation. Investing
in data infrastructure and quality assurance techniques can help
mitigate these issues and enable more powerful ML solutions.

Interpreting and explaining machine learning models,
particularly in urban applications like transportation and energy
management, is a significant challenge. Complex models, like
deep neural networks, often operate as "black boxes," making
it difficult to understand their predictions or choices. In urban
settings, a lack of model interpretability can lead to suspicion and
hinder the adoption of AI solutions. To build trust and encourage
responsible AI use, methods like feature importance analysis,
model visualization, and decision explanation are essential.

Scalability is crucial for deploying machine learning algorithms
in sustainable smart cities, especially in large urban areas
with millions of interconnected systems. Implementing scalable
solutions, however, is difficult due to resource constraints such

Frontiers in SustainableCities 21 frontiersin.org

https://doi.org/10.3389/frsc.2024.1449404
https://www.frontiersin.org/journals/sustainable-cities
https://www.frontiersin.org


Mrabet and Sliti 10.3389/frsc.2024.1449404

as processing resources, bandwidth limitations, and energy
consumption. To overcome these issues, researchers must explore
novel methodologies like distributed computing, edge computing,
and resource-efficient algorithms, as well as invest in infrastructure
and technology to support scaled ML deployments.

Bias and fairness are crucial in smart city programs to prevent
unforeseen outcomes and promote equity. Biases in training
data or algorithmic decision-making can worsen social inequities,
particularly in housing, employment, and law enforcement.
To ensure fair, transparent, and responsible machine learning
systems, careful consideration of data collection techniques,
feature selection, algorithm design, and continuous monitoring is
necessary.

The deployment of ML algorithms in sustainable smart
cities faces challenges in navigating regulatory frameworks and
ethical issues. Urban data governance, privacy rules, and ethical
principles for data collection, usage, and sharing are complex
and vary by state. Ensuring compliance with legal requirements
and ethical standards while encouraging innovation requires a
multidisciplinary approach and collaboration between politicians,
technologists, and urban stakeholders. Proactive collaboration
with legislators, legal experts, and civil society is necessary
to provide clear regulatory frameworks and ethical principles.
Building community trust and increasing public acceptance of
ML technologies is crucial for their long-term success. Engaging
individuals in the design, development, and deployment of ML
solutions, presenting their benefits, hazards, and limitations, and
overcoming challenges like the digital gap, language barriers, and
unequal access to information and resources are essential.

Addressing these difficulties requires a collaborative and
interdisciplinary strategy that includes the government, industry,
academia, and civil society sectors. ML can play a revolutionary
role in developing sustainable and inclusive smart cities for the
future by addressing technical, ethical, and practical problems while
also encouraging collaboration and innovation. These case studies
demonstrate the concrete benefits of using ML technologies in
smart cities. These projects demonstrate how ML can promote
sustainable urban development and improve inhabitants’ quality of
life by lowering traffic congestion and energy consumption while
also increasing public safety and environmental quality.

7 Future directions and
recommendations

As ML evolves, there are various possible routes for
expanding its use in sustainable smart cities. Cities should
maximize the potential of ML to address urban difficulties and
create more sustainable, resilient, and inclusive communities by
addressing critical concerns, harnessing emerging technology, and
encouraging collaboration.

To address data quality and accessibility issues, cities
should prioritize strengthening data governance structures and
encouraging stakeholder participation. This includes establishing
data sharing agreements, encouraging open data initiatives, and
creating interoperable data standards to allow for simple data
transmission between various local agencies, organizations, and

sectors. Collaborative data governance models can promote data
sharing while safeguarding privacy and security, allowing for more
complete and accurate data-driven decision-making.

To solve scalability and resource restrictions, cities should
investigate advances in edge computing and the integration of IoT
devices. Edge computing technologies allow data processing and
analysis to take place closer to the data source, lowering latency and
bandwidth needs. Cities can use ML models on edge devices and
IoT sensors distributed throughout the city to optimize resource
allocation, improve decision-making, and improve service delivery
in a variety of domains, such as transportation, energy, and public
safety.

To address bias and fairness concerns, cities should emphasize
the creation and implementation of ethical AI principles and
bias reduction techniques. This includes integrating fairness-aware
algorithms, bias detection techniques, and model auditing tools
into ML pipelines to detect and eliminate biases in training
data and algorithmic decision-making. Furthermore, cities should
promote diversity and inclusivity in AI research and development,
guaranteeing the creation and testing of ML systems that consider
diverse perspectives and stakeholders.

To address regulatory and ethical concerns, cities should
cooperate with legislators, regulators, and legal experts to create
strong legislative and regulatory frameworks for the responsible
use of ML technologies. This includes developing principles and
standards for data governance, privacy, algorithmic transparency,
and accountability. By connecting legislative frameworks with
ethical principles and best practices, cities may foster innovation
while protecting individual rights and social values.

To enhance community trust and public adoption of ML
applications, cities should invest in capacity-building efforts and
engagement tactics. This includes raising public awareness about
the potential benefits and risks of ML technology, providing
educational resources and training programs for AI literacy and
digital skills, and involving residents in the co-design and co-
creation of smart city solutions. By empowering citizens to
participate in decision-making processes and ensuring the use of
ML technologies for public benefit, cities can foster amore inclusive
and participatory urban government environment.

Furthermore, as the integration of machine learning in smart
cities progresses, it is essential to consider future advancements and
recommendations for optimizing ML models, particularly in the
context of edge computing. Edge computing plays a pivotal role
in smart cities by enabling real-time data processing and decision-
making at the periphery of the network. However, the deployment
of ML models on edge devices with limited computational
resources presents significant challenges. Future research should
prioritize model compression techniques, including pruning,
knowledge distillation, and weight sharing, to reduce the size and
computational demands of ML models, making them suitable for
edge devices. Pruning eliminates redundant weights or neurons,
knowledge distillation transfers knowledge from larger models
to smaller ones (Han et al., 2015; Hinton et al., 2015), and
weight sharing decreases unique parameters, enhancing model
efficiency in resource-constrained environments (Courbariaux
et al., 2015). Additionally, the application of quantization methods,
such as fixed-point and floating-point quantization, can reduce
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precision, memory requirements, and inference times, optimizing
ML models for edge computing (Jacob et al., 2018; Rastegari
et al., 2016). Incorporating these advancements will make ML
models more effective and efficient for real-time smart city
applications, supporting broader goals of sustainability and
operational efficiency in smart urban systems, aligning with the
objectives of advancing smart city technologies (Khan et al., 2020).

Finally, by adopting these future objectives and
recommendations, citiesmay leverageML’s revolutionary capability
to handle difficult urban challenges, increase sustainability, and
improve the quality of life for all citizens. Cities that prioritize
collaboration, transparency, and accountability may build more
resilient, egalitarian, and successful communities for the future.

8 Conclusion

This paper highlights the potential of ML in advancing
sustainable smart cities by enabling data-driven decision-making,
optimizing resource allocation, and improving urban systems
and services. ML algorithms can be used to address complex
urban challenges, such as transportation, energy management,
waste reduction, public safety, and environmental monitoring. By
using advanced analytics and AI tools, cities can gain valuable
insights from urban data, allowing them to make informed
decisions in real time. ML can optimize traffic flow, reduce
energy consumption, improve waste management, increase public
safety, and decrease environmental consequences, resulting in
more efficient, resilient, and livable urban environments. ML
is also critical to achieving the United Nations Sustainable
Development Goals, including SDG 11: Sustainable Cities and
Communities. Cities can use ML to assess progress, impact,
and performance metrics, allowing for evidence-based decision-
making and accountability. However, key challenges must be
addressed, such as data quality, accessibility, model interpretability,

scalability, resource constraints, bias, regulatory and ethical
considerations, and community engagement and trust. By adopting
a multidisciplinary approach, encouraging collaboration, and
stressing ethical and responsible AI activities, cities can pave the
way for a more sustainable and prosperous future.
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