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Is ward-level calculation of urban 
green space availability 
important?—A case study on 
Vellore city, India, using the 
histogram-based spectral 
discrimination approach
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How much green space is available for individuals is a major question that city 
planners are generally interested in, and the present study aimed to address 
this issue in the context of Vellore, India, through two approaches, namely, 
the per capita and the geographical area approach. In existing studies, urban 
green space (UGS) was only calculated at the macro level, i.e., for the city as a 
whole. Micro-or ward-level analysis was not attempted before, and the present 
study carried out the same to get a clear picture of the amount of greenery 
available in each ward of a city. For this purpose, a two-step approach was 
proposed where the histograms of Google Earth (GE) images were analyzed 
first to check whether the green cover types such as trees, shrubs/grassland, 
and cropland were spectrally different. Then, classification techniques such 
as ISODATA, maximum likelihood, support vector machine (SVM), and object-
based methods were applied to the GE images. It was found that SVM performed 
well in extracting different green cover types with the highest overall accuracy 
of 93% and Kappa coefficient of 0.881. It was found that when considering the 
city as a whole, the amount of UGS available is 42% of the total area, which is 
more than the recommended range of 20–40%. Similarly, the available UGS 
per person is 97.84 m2, which is far above the recommended 12 m2/person. 
However, the micro-level analysis revealed that some of the wards have not 
satisfied the criteria of per capita and percentage area, though the city as a 
whole has satisfied both the criteria. Thus, the results indicate the importance 
of calculating the urban green space availability at the ward level rather than the 
city level as the former gives a closer look at the surplus and deficit areas. The 
results of terrestrial LiDAR survey at individual tree level revealed that if trees are 
located adjacent to buildings or roads, it results in fewer heat islands compared 
to the case where there are no trees.
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1 Introduction

Developing countries, such as India, have witnessed rapid growth 
in the majority of their cities over the last two decades due to the 
migration of people from village to cities in search of better job 
opportunities and an improved lifestyle. It is predicted that the country’s 
population will increase by 310 million in the next 15 years, and the 
share of urban population alone would be approximately 220 million, 
accounting for more than 70% of the total increase (MoHFW, 2020). 
One of the major effects of urbanization that has a profound 
environmental and social impact on a city is the loss of green cover. 
Urban green space (UGS), which is popularly known in literature, is 
defined as the area which is covered by vegetation that normally includes 
trees, crop lands, and shrubs and these spaces are considered as the last 
vestiges of nature in urban areas (Sathyakumar et al., 2020; Sun et al., 
2022). The presence of a sufficient quantity of UGS in cities is important 
from an environmental and ecological point of view as UGS helps to 
reduce urban heat island (UHI) effects, improve the air and water 
quality, prevent soil erosion, reduce the risk of flooding, and improve 
the biodiversity (Kowe et al., 2021; Kefale et al., 2023; Lind et al., 2023). 
In addition to many environmental and ecological benefits, UGS also 
offers many social advantages. For example, it provides a pleasant 
environment for walking and engaging in physical exercises, which 
leads to low stress levels (Semeraro et al., 2021; Li et al., 2023; Rehman 
et al., 2024). It also provides increased recreational opportunities and 
strengthens neighborhood relationships (Farkas et al., 2023). As there 
are many benefits associated with UGS, several countries in the world 
have stipulated guidelines on how much green space should be available 
in a city on per capita and/or geographical area basis. For example, a city 
should have UGS in the range of 9–50 m2/person, or 20–40% of the city’s 
geographical area must be covered in green (Ramaiah and Avtar, 2019; 
NITI Aayog, 2021; Roy and Fleischman, 2022).

Google Earth (GE), one of the popular remote sensing data 
sources, can be used to extract various green cover types such as 
trees, shrubs, grasslands, and croplands as it contains very high-
resolution satellite images. Several studies have reported the use of 
GE in various applications such as mapping of mangrove species (Li 
et al., 2020), geomorphological landforms (Datta and Sarkar, 2019), 
detonation destruction (Kumar et al., 2022), landslide susceptibility 
(Li et al., 2022), coastal aquaculture (Kurekin et al., 2022), and urban 
settlement mapping (Emeterio and Mering, 2021). Although there 
are many studies reported in other fields, studies on the use of GE 
images for UGS extraction are very limited (Sun et al., 2020; Markovic 
et al., 2021). Most of the researchers have used GE images only for 
assessing the accuracy of the UGS map prepared using low- and 
medium-resolution satellite data such as Landsat TM and ETM+ and 
did not use GE images as a direct data source to prepare the UGS 
map, though one can clearly distinguish various UGS types in GE 
images (Kuang and Dou, 2020; Sun et al., 2020; Markovic et al., 2021). 
Some authors have performed manual digitization of UGS using the 
GE images in the background; however, it is a very cumbersome and 
time-taking process (Lahoti et al., 2019). To overcome the above-
mentioned drawbacks, the present study has proposed a two-step 
approach, where the histograms of red, green, and blue bands of GE 
images were analyzed first to check whether the green cover types are 
spectrally different or not. Then, the classification methods were 
applied, and accuracy assessment was performed to identify the best 
suitable method for automatic extraction of UGS from GE images. 

The availability of adequate green space in a city is a major concern 
for planners and policymakers, and the present study aimed to 
address this issue through two approaches: one based on the per 
capita and the other one based on the geographical area by utilizing 
UGS data extracted through the proposed histogram-based spectral 
discrimination approach. In most of the studies, UGS was calculated 
based on the population or geographical area but at the macro level, 
i.e., for the city as a whole (Badiu et al., 2016; Hwang et al., 2020) or 
at the district level (Pouya and Majid, 2022). Only limited studies 
were carried out at micro- or ward-level for analysis (Shekhar and 
Aryal, 2019). As we  can easily obtain ward-wise population 
information based on electoral rolls, the same can be used to calculate 
ward-wise UGS per capita. The results would be useful to find out the 
wards where UGS is surplus or deficit, and such information would 
help the civic authorities in developing action plans to improve the 
greenery in wards where UGS is deficit. Although we can utilize the 
GE images for UGS extraction and mapping, we can only calculate 
the areal extent of UGS at a two-dimensional scale, and information 
at the individual tree level is not possible. To overcome this limitation, 
the present study has explored the three-dimensional LiDAR data to 
obtain green space information at the individual tree level, including 
attributes such as height, diameter, and crown area. The temperature 
of trees was also calculated using LiDAR data and compared with the 
temperature of adjacent buildings and roads, to determine whether 
green space is beneficial in lowering the temperature of the 
surrounding. The objectives of the present study are (1) to perform 
histogram-based spectral discrimination and classification of green 
cover types using Google Earth images, (2) to calculate how much 
green space is actually available for individuals based on per capita 
and geographical area and compare it with the standards (3), To 
utilize 3D LiDAR data to extract information at the individual tree 
level and check whether green space is beneficial in lowering the 
temperature of the surrounding.

2 Materials and methods

2.1 Details about the study area

Vellore Corporation, which is the administrative headquarter of 
Vellore district, is selected as the study area for the present research 
work and a map of the same is shown in Figure 1C. It is located on 
the northern part of Tamil Nadu state in India, as shown in 
Figure 1B. It spreads over an area of 95.52 km2 (Figure 1C) and has a 
population of nearly 0.4 million. Vellore has a well-connected road 
network with two major national highways (NH), NH-48 and 
NH-234, passing through it. In addition, it is well connected by the 
railway network to all major stations in the country. Though Vellore 
is one of the preferred locations for tourism and education, the only 
drawback in the city is the high temperature that prevails during the 
summer season. It is one of the hottest cities in the state with 
temperature shooting up to 42°C in summer months such as April–
May. One way to reduce these heat islands is to have more green 
cover in the city, and in order to achieve it, thousands of saplings are 
planted every year and many parks have been constructed in and 
around the Vellore city. The assessment of prevailing green cover in 
the city through GE images and LiDAR data would not only help 
authorities to check whether the city has met the nation’s standards 
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on green cover but also help to identify the open spaces which can 
possibly be converted to UGS in future.

2.2 Data used

The present study is based on the Google Earth (GE) satellite 
images, and the first step is to check for the availability of satellite 
imagery which is free from clouds because even a small patch of 
clouds in the GE image may affect the classification results. Finally, 
the cloud-free GE images covering the study area of Vellore, India, 
were downloaded using an open-source software, namely, the “Smart 
GIS” (Elshayal, 2023). The maximum possible zoom level was set in 
software, and the GE images covering the study area were then 
downloaded. A total of 496 tiles of GE images which have a size of 
approximately 4.75 GB were finally downloaded. The downloaded 
images were then pieced together to form one single image, which 
was clipped within the Vellore Corporation. The downloaded image 
was in geographic coordinate system (decimal degrees), and the 
same was converted to projected coordinate system (m) in ArcMap 
using Universal Transverse Mercator (UTM) projection zone 
44 N. The pixel size of the clipped image was found to 
be 0.53 × 0.53 m, which indicates that the images from GE are of very 
high resolution. The true color composite (TCC) of the projected GE 
image is shown in Figure 2. As evident from Figure 2, one can clearly 
identify the green cover types such as trees, grassland, and crop land 
in the GE image. It is necessary to check whether the red (R), green 
(G), or blue (B) values of pixels covering these green areas differ 
from each other and also from other land covers such as buildings, 
roads, and water so that we can differentiate UGS from other land 
covers in the GE image and easily extract it. The procedure to check 
the same is explained in the following section.

2.3 Histogram-based spectral 
discrimination analysis to check the 
applicability of GE image for UGS 
extraction

Before calculating the histograms, it is necessary to first 
identify the representative areas for each class from the GE image 
and then plot the histogram for each of its bands (R, G, and B) 
from the selected representative area. A total of six classes were 
taken, namely, trees, shrubs/grassland, crop land, built-up, open 
land, and water bodies. Among the six classes, the first three will 
come under UGS and the remaining are named as “others.” For 
each class, a representative area was identified in the GE image. 
A point was placed on the center of the representative area (for 
example, crop land), and then, a buffer was created for a radius 
of 30 m. The GE image within the buffer was then clipped for all 
the six representative classes, as shown in Figure  2. For each 
buffered image, three images corresponding to R, G, and B bands 
were obtained, with each band having 10,216 pixels. By using the 
pixel values and their corresponding count (number of pixels 
with the same pixel value), the histograms were then plotted. A 
total of 18 histograms were plotted as there were 6 classes with 3 
bands in each. The histograms were then analyzed to check 
whether any significant difference existed among them. If any 
significant difference is found between the histograms of each 
class, it indicates that the image classification methods can 
be applied to the GE image to extract the UGS as the pixel values 
of UGS differ from each other (trees, shrubs/grassland, and crop 
land) and also from other land cover classes. Once the first step 
of the histogram analysis to find the suitability of GE images for 
UGS extraction was over, the next step of image classification was 
performed as explained below.

FIGURE 1

Map showing (A) Tamil Nadu state in India, (B) Vellore district and Vellore corporation in Tamil Nadu state, (C) Study area of Vellore Corporation.
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2.4 Details of UGS classification methods 
and calculation of available UGS

Popular image classification methods such as supervised, 
unsupervised, and object-based were used to classify the GE images into 
four classes, namely, trees, shrubs/grassland, crop land, and others 
(built-up, open land, and water bodies). Each of these classification 
methods has been briefly explained below. For supervised classification, 
two popular methods, namely, support vector machine (SVM) and 
maximum likelihood (ML) were applied using the “Image Classification” 
toolbar of ArcGIS software. For supervised classification, it is essential 
to give the training polygons for each land cover class considered, and 
generally, it is recommended to use 15–20 polygons for each class (ESRI, 
2023). In the present study, 60 polygons, which is three times more than 
the recommended amount, were given for each class, namely, trees, 
shrubs/grassland, crop land, built-up, open land, and water bodies. In 
the SVM method, once the GE image and the training polygons were 
provided as input, the classifier tool generated an ESRI Classifier 
Definition (.ecd) file, which was then used again with the GE image to 
obtain the final classified image with six classes. This process took 
almost 4 h as the image is of a very high resolution with training 
polygons which contain approximately 2.1 billion pixels. Once the 
classified image was classified, it was then reclassified into four classes, 
namely, trees, shrubs/grassland, crop land, and others, as the study 
focused mainly on UGS extraction. The reclassified raster image was 
then used for accuracy assessment using 300 points randomly 
distributed throughout the study area. According to Congalton and 
Green (2019), 50 random points per land use/land cover class are 

generally sufficient for accuracy assessment. As the reclassified output 
has 4 classes, 200 points may be sufficient; however, the present study 
considered 300 random points, which closely works out to 3 points/km2 
as the study area is approximately 95 km2. The ground truthing of 300 
points was manually conducted by observing the GE image as we can 
clearly notice which class a given point belongs to. Once the ground 
truthing was given for all the 300 points, it was then compared with the 
classified output using the “Compute Confusion Matrix” tool of ArcGIS 
to calculate the Overall Accuracy (OA) and Kappa coefficient. In the 
maximum likelihood (ML) method, the same training polygons were 
used for classification, and based on the probability function, the tool 
has assigned each pixel to one of the six classes which has the maximum 
likelihood or probability. Similarly, the accuracy assessment was carried 
out using those 300 random points, and OA and Kappa were 
then identified.

In the case of unsupervised classification, one of the popular 
techniques called ISODATA classification was applied to the GE image 
to prepare the UGS map. As the name “unsupervised” suggests, this 
method does not require any training polygons, and only the number 
of classes in the output map needs to be specified. In general, it is a 
good practice to specify more number of classes for running the 
algorithm, and later, it is reduced to the required number of classes. 
Since the GE image is of very high resolution, the ISODATA algorithm 
is capable of spectrally discriminating various types of earth features 
on it if we specify more classes. Hence, 25 classes were specified while 
running the algorithm in ArcGIS software, though we needed finally 
the UGS map with four classes (trees, shrubs/grassland, crop land, and 
others). Once the output was generated with 25 classes, reclassification 

FIGURE 2

True color composite of the GE image (left) and the six representative classes (right).
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was performed. This involved assigning the polygon of each class to a 
particular class of interest, i.e., either trees, shrubs/grassland, crop 
land, or others. This was carried out manually by observing the 
background GE image where one can clearly observe and differentiate 
various earth surface features. Similar to SVM and ML, accuracy 
assessment with 300 points was carried out to report OA and Kappa. 
Object-based classification which is based on geometry and spectral 
characteristics of the objects was also attempted in the present study. 
ENVI, one of the popular image processing software packages, was 
used for this purpose. Similar to supervised classification, the same 
training samples which were used earlier were utilized. Similar to the 
previous methods, accuracy assessment was carried out, and OA and 
Kappa were noted down. Once the classification was carried out, the 
best performing method was then found based on OA and Kappa 
values. To evaluate whether the best-performing classification method 
is effective for other areas also in extracting UGS from the GE image, 
two wards from Warangal city in Telangana having considerable UGS 
extent were selected. The best classification method was applied, and 
accuracy assessment was carried out to check the performance of the 
classification method.

Once the classification performance was assessed and UGS maps 
were prepared, the next step was to analyze the amount of greenery 
available. The present study has applied both per capita and percentage 
area approaches to analyze the UGS availability both at the city level 
(macroscopic) and ward level (microscopic). For the per capita 
approach at the macroscopic level, the total green covered area of the 
city was divided by the total population to get the per capita availability 
of the UGS at the city level, whereas at the microscopic level, the green 
covered area of each ward was divided by the population of that ward 
to get the per capita availability of UGS in that ward. In the case of the 
geographical area approach at the macroscopic level, the total green 
covered area of the city was divided by the total area of the city to get 
the percentage of area covered by green considering the whole city. At 
microscopic level, each ward’s UGS area was divided by the total area 
of the ward to calculate the percentage of area covered by green in that 
particular ward. Similarly, for all the 60 wards, the per capita and 

percentage of UGS availability were then calculated and visualized in 
GIS to get an idea of how the available UGS varies when we look at 
macroscopic and microscopic levels.

2.5 Use of 3D LiDAR data for UGS 
information at tree level

The present study showed how we can extract urban green space 
information at the individual tree level by utilizing the 3D LiDAR 
data. For this, the ground-based LiDAR survey was carried out within 
our campus, as shown in Figure 3. A total of 12 trees were considered, 
and their 3D model was extracted from the point cloud data. Using 
the 3D model, individual tree parameters such as type of tree, height, 
diameter, crown area, and temperature were noted down. In the case 
of temperature, a random sample of 30 temperature values for each 
tree were taken and then averaged. The temperature of adjacent 
buildings and roads was also noted down to check whether green 
space is helpful in reducing the temperature of the surrounding objects.

3 Results and discussion

The results and discussion section have been divided into three 
parts. The first part discusses the results of the histogram analysis 
followed by UGS extraction using different image classification 
methods. The results of UGS availability at city and ward levels using 
per capita and geographical area approaches are presented in Section 
3.2. The results of UGS information at tree level using 3D LiDAR data 
are presented in Section 3.3.

3.1 Histogram analysis and UGS extraction

The plot of histograms for all the six classes is calculated using the 
R, G, and B values of representative areas (circular buffers in Figure 2), 

FIGURE 3

Sample photo showing the ground-based LiDAR survey of trees.
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as shown in Figure  4. The histogram plots clearly show that the 
brightness values (0–255) of pixels in each band (R, G, and B) and 
their frequency distribution (count) are varying among the classes. It 
can be observed from Figure 4 that the UGS classes have mean pixel 
values (average of R, G, and B) in the range of 57–71, whereas the 
built-up, open land, and water bodies have mean values of 130, 180, 
and 23, respectively. This indicates that the UGS classes can easily 
be extracted from the GE image as they have distinct pixel values 
when compared with non-UGS classes such as built-up, open land, 
and water bodies. As shown in Figure 4, built-up land has pixels with 

values falling almost in the entire range of 0–255 (minimum 3 and 
maximum 255), and that is why the histogram is flat too. Open land 
has a very bright tone in the GE image of Figure 2, and that is why, it 
showed high pixel values (average pixel value of 180) when compared 
with histograms of other land cover classes (Figure 4). Water body, on 
the other hand, has very low pixel values in the range of 11–37 as it 
appeared dark in the GE image, as shown in Figure  2. Thus, the 
analysis of histograms revealed that the built-up, open land, and water 
bodies have distinct pixel values and counts, i.e., built-up has pixel 
values has spread throughout the range with very less pixel count; 

FIGURE 4

Plot of histograms for red band (left), green band (middle), and blue band (right) of the GE image for (A) tress, (B) shrubs/grassland, (C) cropland, 
(D) built-up, (E) open land, (F) waterbody.
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open land has high pixel values but with a count of less than 500; water 
bodies have low pixel values but with a very high count of 2,500. Thus, 
the pixel values and counts of non-UGS classes indicate that they can 
easily be differentiated when compared with UGS classes in the GE 
image and thus make the UGS extraction easier when image 
classification methods are applied on the GE image.

Among the three UGS classes, the histograms differ in terms 
of pixel values and counts as shown in Figure 4. For example, trees 
have pixel counts less than 200, whereas shrubs and crop land have 
pixel counts of 400 and 1,000, respectively. The UGS histograms 
differ from each other in terms of shape also due to their varying 
pixel values. For example, trees are widespread (mean standard 
deviation of 35) and shrubs are medium-spread (mean standard 
deviation of 30), and crop lands are low-spread (mean standard 
deviation of 21). Though by visual observation, we can say that the 
histograms of all six classes are different, but it would be good if 
we do the relevant statistical test and confirm that the differences 
between the histograms are statistically significant. One of the 
popular tests for the histogram comparison called the 
“Kolmogorov–Smirnov (KS)” test was conducted using “Real 
Statistics” software (Zaiontz, 2023) in MS EXCEL. “One-Sample 
KS” test was used to find whether a sample comes from a 
population which has been normally distributed. The “Two-Sample 
KS” test was used to determine whether two samples come from 
the same population or not. As the objective was to check whether 
the histograms were significantly different from each other, the 
“Two-Sample KS” test was applied. The null hypothesis was that 
both samples come from a population with same distribution, and 

the alternate hypothesis was that they are not from the same 
population and do not have identical distributions. The test 
basically calculates the maximum distance between the cumulative 
distributions of two samples and then checks it with the critical 
value. If the test statistic is more than the critical value, the null 
hypothesis will be  rejected, and alternate hypothesis will 
be  accepted. In the present study, all the histograms shown in 
Figure 4 were compared with each other using the KS test, and the 
results are shown in Table 1. It can be seen that in all the cases, the 
test statistic is more than the critical value of 0.018, and thus, the 
null hypothesis can be rejected at 0.05 level of significance. Thus, 
the KS test confirms that the histograms in Figure 4 are not same, 
and the differences between them are statistically significant. 
Hence, it can be concluded that the GE image can be used for UGS 
extraction as pixel values of UGS classes differ from each other and 
also from other land cover classes. The maps of UGS for Vellore 
extracted using different classification methods are shown in 
Figure 5, and the corresponding accuracy assessment results are 
shown in Table 2. It can be observed from Table 2 that among all 
the methods, support vector machine (SVM) performed extremely 
well with an overall accuracy (OA) of 93% and Kappa coefficient 
of 0.881. Other methods such as maximum likelihood (ML), 
unsupervised, and object-based achieved only 69, 73, and 49%, 
respectively. In general, OA of more than 85% is considered to 
be the acceptable one. Based on this, it can be said that only SVM 
produced the acceptable results in extracting the UGS for Vellore 
using GE image. It is also evident from Figure 2 that on the south-
western part of Vellore Corporation where the Bagayam reserved 

TABLE 1 Results of the Kolmogorov–Smirnov (KS) test.

Trees Shrubs/grassland Crop land Built-up Open land Water bodies

(a) Red band

Trees NA 0.474 0.276 0.670 1 0.601

Shrubs/grassland 0.474 NA 0.750 0.634 1 0.972

Cropland 0.276 0.750 NA 0.748 1 0.770

Built-up 0.670 0.634 0.748 NA 0.934 0.945

Open land 1 1 1 0.934 NA 1

Water bodies 0.601 0.972 0.770 0.945 1 NA

(b) Green band

Trees NA 0.831 0.350 0.545 1 0.764

Shrubs/grassland 0.831 NA 0.909 0.315 0.998 0.999

Crop land 0.350 0.909 NA 0.643 1 0.999

Built-up 0.545 0.315 0.643 NA 0.853 0.942

Open land 1 0.998 1 0.853 NA 1

Water bodies 0.764 0.999 0.999 0.942 1 NA

(c) Blue band

Trees NA 0.717 0.284 0.622 0.999 0.551

Shrubs/grassland 0.717 NA 0.863 0.492 0.999 0.996

Crop land 0.284 0.863 NA 0.712 1 0.653

Built-up 0.622 0.492 0.712 NA 0.750 0.912

Open land 0.999 0.999 1 0.750 NA 1

Water bodies 0.551 0.996 0.653 0.912 1 NA
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forest is located, it was correctly classified by the SVM method as 
trees and shrubs (Figure 5A) while the other methods could not 
(Figures 5B–D). The reason why SVM performed well is that it 
creates an optimal hyperplane from infinite number of decision 
boundaries by maximizing the distance between the classes and 
minimizing the misclassification errors. The reasons why other 
methods have not performed well were also analyzed. It can 
be  observed from Table  2 (B, C) that 18 and 36 trees were 
misclassified as others by ML and ISODATA methods, respectively, 

and that is why the producer accuracy (PA) went low which finally 
resulted in less OA. Those misclassified trees were examined 
carefully in the GE image, and it was found that the shadow of the 
trees appeared black in color in the GE image (Figure 6A), and due 
to which, the ML and ISODATA classified it as water bodies (comes 
under “Others” category) rather than UGS. Similarly, the vice versa 
scenario also took place where the actual water bodies were 
misclassified as trees. For example, 15 and 12 accuracy assessment 
points actually fall in the “Others” category but were wrongly 

FIGURE 5

Maps showing UGS for Vellore extracted using (A) SVM, (B) maximum likelihood, (C) ISODATA, (D) object-based classification.
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classified as trees by ML and ISODATA, respectively, as shown in 
Table 2 (B,C). The same can be observed in Figure 6B, where the 
presence of algae in a lake within our campus resulted in the water 
body to appear greenish in color in the GE image, and thus, it led 
to the misclassification as trees by ML and ISODATA, respectively.

In addition to the accuracy assessment, a field survey was also 
carried out to check whether SVM has correctly classified the 
UGS classes, namely, trees, shrubs/grassland, and crop land. 
Otteri Lake Park located in the south eastern part of Vellore was 
considered, and its GE image and the corresponding SVM output 
are shown in Figure  7. Three locations were identified for 
verification and are shown in Figure 7. The actual photos taken at 
those three locations are shown in Figure 8. There is a pedestrian 
footpath at location-1 with trees on both the sides, and this has 
been classified correctly by SVM as observed from Figure  7B 

(location-1). One of the branches of a tree was intersecting the 
footpath (Figure 8), which was captured by the SVM classification 
as shown in Figure 7B. In between the lake water and trees, shrubs 
were noticed in the field, which also was correctly classified by 
SVM, as shown in Figure 7B (location-1). This clearly indicates 
that the SVM performs well in differentiating the trees and shrubs 
in the GE image. To confirm this, one more location where only 
one single tree surrounded by shrubs was selected (location-2 of 
Figure 8), and it was found that the SVM correctly classified the 
tree and shrubs, as shown in Figure  7B location-2. The 
performance of SVM in classifying the crop land (location-3 of 
Figure 8) was also checked, and as expected, the SVM performed 
well in classifying the crop land, as shown in  location-3 of 
Figure 7B. The coconut trees located on the upstream side of crop 
land was correctly classified as trees by SVM. Thus, the results of 

TABLE 2 Results of accuracy assessment.

Class Trees Shrubs Crop land Others Total User accuracy Kappa

(a) Supervised classification by Support Vector Machine (SVM)

Trees 49 1 0 5 55 0.891 0

Shrubs 0 45 0 1 46 0.978 0

Crop land 2 11 12 0 25 0.480 0

Others 0 0 1 173 174 0.994 0

Total 51 57 13 179 300 0 0

Producer accuracy 0.961 0.789 0.923 0.966 0 0.93 0

Kappa 0 0 0 0 0 0 0.881

(b) Supervised classification by Maximum Likelihood (ML)

Trees 17 4 0 15 36 0.472 0

Shrubs 1 20 1 24 46 0.435 0

Crop land 7 9 5 9 30 0.167 0

Others 18 4 0 166 188 0.883 0

Total 43 37 6 214 300 0 0

Producer accuracy 0.395 0.541 0.833 0.776 0 0.693 0

Kappa 0 0 0 0 0 0 0.404

(c) Unsupervised classification by ISODATA

Trees 21 1 0 12 34 0.618 0

Shrubs 1 20 4 2 27 0.741 0

Crop land 3 8 2 0 13 0.154 0

Others 36 13 1 176 226 0.779 0

Total 61 42 7 190 300 0 0

Producer accuracy 0.344 0.476 0.286 0.926 0 0.73 0

Kappa 0 0 0 0 0 0 0.445

(d) Object–based classification

Trees 25 10 0 36 71 0.352 0

Shrubs 6 15 0 21 42 0.357 0

Crop land 5 7 3 20 35 0.086 0

Others 22 24 3 103 152 0.678 0

Total 58 56 6 180 300 0 0

Producer accuracy 0.431 0.268 0.5 0.572 0 0.487 0

Kappa 0 0 0 0 0 0 0.174
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the field survey confirmed that SVM can be  used to extract 
various UGS types in a GE image.

The results of UGS extraction discussed so far pertained to 
only the GE image covering Vellore city in Tamil Nadu. It would 
be  better if we  check whether SVM could perform well and 
produce similar results for other cities also. Hence, two wards 
numbered 28 and 36 measuring an area of 1.9 sq.km and 5.94 
sq.km, respectively, in Warangal city of Telangana state in India 
were selected. The reason for taking these two wards is that in these 
wards, there is a mix of both UGS and various other classes such 
as built-up and water, as observed from the GE images shown in 
Figures 9A,B. The best performing SVM classification was applied, 
and the results are shown in Figures 9A,B. As the wards have been 
occupied majorly with educational institutions such as Kakatiya 
Medical College in ward 28 and National Institute of Technology 
in ward 36, crop land was absent, and only two UGS classes, 
namely, trees and shrubs/grassland were present. Accuracy 
assessment was carried out with 50 random points, and it was 
found that the OA was 98 and 91% for wards 28 and 36, respectively. 
It was evident from the classification results (Figures 9A,B) that 
SVM has correctly classified the UGS classes and “Others” when 
we compare the raw GE image and the classified output. Thus, the 
classification results clearly indicate that the GE image can be used 
to extract the green cover by using the SVM technique.

3.2 Calculation of available UGS

Once the UGS map is prepared, the amount of available 
greenery based on per capita or geographical area can be calculated 
and checked against the standards. The present study carried out 

FIGURE 6

GE image showing (A) tree and its shadow (B) presence of algae in a 
lake.

FIGURE 7

(A) GE image of Otteri Lake Park (B) SVM classified output of Otteri Lake Park.
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FIGURE 8

Actual photos taken at locations 1, 2, and 3 in Otteri Lake Park and its surroundings.

FIGURE 9

(A) GE image of ward 28 in Warangal, India (left), and the corresponding SVM classification output (right). (B) GE image of ward 36 in Warangal, India 
(left), and the corresponding SVM classification output (right).
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the same at ward level, and the results are shown in Figures 10A,B 
for per capita and percentage of geographical area, respectively. In 
India, the recommended UGS is 10–12 m2 per person, and in terms 
of geographical area, it is recommended that 20–40% of the city’s 
geographical area should be covered by green (NITI Aayog, 2021; 
Roy and Fleischman, 2022). Hence, the per capita results in 
Figure 10A are shown in three categories, namely, <10m2, 10–12 m2, 
and >12 m2/person. Similarly in Figure 10B, the results are shown 
in three categories, i.e., <20, 20–40, and >40% of total area. The 
results revealed some interesting results regarding how the amount 
of greenery should be calculated in a city. For example, if the whole 
Vellore city in Figure  10 is considered, the percentage of UGS 
available is 42% [(UGS area (38.39 sq.km)/Total area (92.40 
sq.km)) × 100], which is more than the recommended range of 
20–40%. Similarly, if we consider the whole city, the available UGS 
per person is 97.84 m2/person [(UGS area (38.39 sq.km)/
Population (392434)) × 1,000,000], which is far above the 
recommended 12  m2/person. However, if we  do micro-level 
calculation, i.e., at the ward level as shown in Figures 10A,B, some 
of the wards (red colored) have not satisfied the criteria of per 
capita and/or percentage area, though the city as a whole has 
satisfied both the criteria. The red-colored wards numbered 28, 29, 
32, 33, 34, 35, 38, and 55 which have not satisfied both the criteria 
are located in the old town of Vellore city, where one can observe 
mostly the commercial establishments and wholesale markets with 
dense built-up area without any green cover. This was the reason 
why those wards could not meet both the criteria though the city 
as a whole has satisfied. The results clearly indicate that the amount 
of greenery should be calculated at the micro or ward level rather 
than the macro or city level as the former gives more closer look 

into the surplus (green colored) and deficit (red colored) areas. The 
advantage of this ward-level analysis is that now the civic 
authorities can frame action plans to increase the greenery in 
red-colored wards so that all the 60 wards of the city can satisfy 
both the criteria of per capita and percentage area.

3.3 UGS information at tree level using 3D 
LiDAR data

Though GE images can be used to extract UGS information, it is 
not possible to obtain individual tree level data such as height and 
diameter with GE. Hence, the present study used LiDAR data also to 
extract the individual trees in the campus, and the results are shown in 
Figure 11. The 3D models that are shown in Figure 11 were used to 
extract individual tree information such as height, diameter, and crown 
area, and the results are presented in Table 3. The height of trees was 
found to vary between 5 and 12 m, and the diameter varies from 0.1 to 
0.7 m. The minimum and maximum crown areas of trees were measured 
as 19 and 164 sq.m, respectively. Such tree level information as observed 
in Table 3 is possible only with 3D LiDAR data. In addition, the tree 
health can be inferred using LiDAR data. For this, the Leaf Area Index 
(LAI) was calculated for each tree using the individual 3D model of 
trees extracted from the LiDAR data. LAI which is basically the ratio of 
the leaf area to the corresponding ground area is one of the major 
indicators of tree health and also helps to understand the green coverage 
of a tree. In general, the desert ecosystems would have LAI of less than 
1, whereas the LAI can be  as high as 9 for dense tropical forests 
(Campbell, 2023). In the present study, the LAI for the trees was found 
to vary from 2.094 to 8.2. This LAI is not a fixed one and is susceptible 

FIGURE 10

Ward-wise available greenery calculated through (A) Per capita approach (B) Percentage of total area approach.
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to seasonal changes. It will be highest during the spring season and may 
be lowest when leaves started shedding. Thus, with the help of LiDAR 
data, one can assess the tree health periodically based on whether the 
LAI is increasing or decreasing. The results of temperature in Table 3 
reveal an interesting fact that when trees are nearby, the buildings and 
roads exhibit comparatively lesser temperature in the range of 31–34°C, 
whereas if trees are not there in the surrounding, buildings and roads 
exhibit higher temperature in the range of 34–44°C. Moreover, this 
highlights the need for having more green cover in cities which are 
covered with mostly of concrete structures that generally lead to high 
surface temperatures and strong heat islands. The main purpose of 

using LiDAR data is to show that if trees are adjacent to buildings or 
roads, it results in lesser heat islands when compared to the case where 
there are no trees.

4 Concluding remarks

Urbanization in developing countries such as India has resulted 
in the loss of precious green cover and demands the calculation of its 
extent periodically to check whether the city has sufficient green 
cover or not. As one can clearly observe the different types of green 

FIGURE 11

Individual 3D model of trees from LiDAR data. 1Kakawate; 2Kigelia; 3Kigelia; 4Azadirachta indica; 5Bignonia; 6Azadirachta indica; 7Albizia Chinensis; 
8Millingtonia hortensis; 9Albizia chinensis; 10Millettia pongamia/pinnata; 11Tectona grandis; 12Tectona grandis.
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cover in GE images, the same can be utilized to obtain information 
on how much green space is actually available in a city or town. The 
present study attempted the same through histogram-based 
classification approach, where the histograms were analyzed first to 
check whether the green covers are spectrally differentiable when 
compared with other land covers, and then, various classification 
methods were applied to extract the green covered area from GE 
images. The results showed that SVM performed well with the highest 
accuracy in extracting green covered areas when compared with 
other methods. The extracted green cover was then used to check 
whether sufficient greenery was available or not at each ward of the 
city through per capita and percentage area methods. The results 
suggested that the existing practice of calculating the greenery by 
considering the city as a whole might not be sufficient as some wards 
do not meet the criteria. Moreover, the ward level analysis was found 
to be  more suitable to identify the deficit and surplus areas. The 
LiDAR survey was also carried out, and the results showed the 
reduction in temperature due to the presence of green cover and thus 
highlighted the importance of green cover in a city in reducing the 
urban heat islands. The present study will be very useful to urban 
planners to map green cover from GE imagery, assess whether the 
city has sufficient quantity of green cover or not, calculate the loss in 
green cover due to urbanization and check whether green covered 
areas help in reducing the heat islands in a city.
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TABLE 3 Information about individual trees, buildings, and roads from LiDAR data.

Sl. no Type of object Height (m) Diameter (m) Crown 
area (Sq. 

m)

Temperature (°C)

Min Max Average

1 Trees Kakawate 10.776 0.211 19.068 31.47 37.52 36.048

2 Kigelia 12.517 0.601 107.009 33.111 35.495 34.260

3 Kigelia 11.417 0.746 71.825 26.297 35.531 35.546

4 Azadirachta indica 11.853 0.274 143.432 34.315 35.676 34.836

5 Bignonia 5.168 0.103 22.104 26.562 36.587 34.02

6 Azadirachta indica 12.613 0.182 106.965 35.523 37.005 36.135

7 Albizia Chinensis 11.178 0.366 93.965 34.12 37.456 36.027

8 Millingtonia hortensis 10.728 0.398 99.645 33.29 37.159 35.835

9 Albizia chinensis 10.301 0.252 94.538 33.968 35.812 34.911

10 Millettia 

pongamia/pinnata

11.76 0.381 164.27 32.299 35.603 34.391

11 Tectona grandis 14.106 0.233 97.719 31.66 32.734 32.222

12 Tectona grandis 11.191 0.14 101.044 31.283 32.07 31.667

13 Building with trees adjacent to it 30.714 31.764 31.181

14 Road with trees adjacent to it 32.597 34.261 33.675

15 Building without any trees adjacent to 

it

32.773 35.226 34.203

16 Road without any trees adjacent to it 39.762 45.956 43.998
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