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This article provides a systematic literature review on the application of artificial

intelligence (AI) technology for detecting cracks in civil infrastructure, which

is a critical issue a�ecting the performance and longevity of these structures.

Traditional crack detection methods involve manual inspection, which is laborious

and time-consuming, especially in urban areas. Therefore, automatic crack

detection with AI technology has gained popularity due to its ability to identify

degradation of roads in real-time, leading to increased safety and reliability.

This review emphasizes two key approaches for crack detection: deep learning

and traditional computer vision, with a focus on data-driven aspects that rely

primarily on data from training datasets to detect and quantify the severity

level of the crack. The article highlights the advantages and drawbacks of

each approach and provides an overview of various crack detection models,

feature extraction techniques, datasets, potential issues, and future directions.

The research concludes that deep learning-based methods used for crack

classification, localization and segmentation have shown better performance than

traditional computer vision techniques, especially in terms of accuracy. However,

deep learning methods require large amounts of training data and computational

power, which can be a significant limitation. Additionally, the article identifies a

lack of 3D datasets, unsupervised learning algorithms are rarely used to train crack

detection model, and datasets having road images with variety of road textures

such as asphalt and cement etc. as challenges for future research in this field. A

need for 3D and combined texture datasets as challenges for future research in

this field.

KEYWORDS

computer vision, crack detection, deep learning, image processing, segmentation

1. Introduction

Detecting cracks in vital infrastructure such as roads, bridges, and buildings cost millions

of rupees annually. Catching flaws on highways and roads has also been a topic of attention

for health safety to ensure driving safety. Natural calamities, such as foods and earthquakes,

cause significant damage existing infrastructure. Because cracks are the most visible and

widespread expression of civil work structure deterioration, developing operative methods
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for monitoring and treating cracks is critical to maintaining the

structural health of civil engineers (Li et al., 2020; Wang et al.,

2021). One of the biggest problems in the world today is road safety.

Given how frequently it is used, maintaining decent road pavement

is essential to reducing accidents, and consequently, the number of

fatalities. Overloading, seepage, inadequate and poor road surface

drains, absence of appropriate road maintenance, a lack of proper

design, and unsuitable climatic conditions, among other things,

are significant reasons for rutting and degradation. Road distresses

like cracking and disintegration obstruct and have a detrimental

effect on traffic flow and safety, resulting in poor road performance.

Early detection of road cracks is crucial to take adequate corrective

actions before the issue gets out of hand and the pavement worsens.

Maintenance processes typically involve a visible examination and

estimate of the current state to maintain damaged infrastructure’s

structural and functional integrity. These damages could appear

as minor or significant cracks that worsen over time, eventually

leading to the structure’s collapse or destruction. Cracks appear

in many infrastructures (Cao M. T. et al., 2020; Munawar et al.,

2021a; Wang et al., 2021) (tunnels, bridges, roads, pipelines, etc.)

throughout their useful life that can reveal and enhance possible

structural pathologies. Therefore, the detection of these cracks is

vital in inspection work.

In most cases, the inspection is visual and performed by

persons. This manual inspection is laborious, expensive, and

longer duration. Due to the required knowledge, expertise, and

experience, as well as human mistake brought on by fatigue and

inattention, it also has a limited level of dependability, impartiality,

and reproducibility. An accurate and efficient alternative to

the human procedure is to use image recognition to monitor

engineering structures and algorithms for machine learning to

understand the photos and extract the crucial geometric details of

the fracture. Automatic crack detection is essential to safeguard

infrastructure’s effectiveness and durability. Figure 1 depicts the

real-time applications where computer-based crack detection is

needed Chen Y. et al. (2021) suggested machine learning methods

in surface defect detection is a key part in the quality inspection

of industrial products. First, according to the use of surface

features, the application of traditional machine vision surface defect

detection methods in industrial product surface defect detection is

summarized from three aspects: texture features, color features, and

shape features. Secondly, the research status of industrial product

surface defect detection based on deep learning technology from

three aspects: supervised method, unsupervised method, and weak

supervised method. Ali et al. (2021) studied surface cracks on

the concrete structures as a key indicator of structural safety and

degradation. To ensure the structural health and reliability of the

buildings, frequent structure inspection and monitoring for surface

cracks is important. Surface inspection conducted by humans is

time-consuming and may produce inconsistent results due to the

inspectors’ varied empirical knowledge. The employment of deep

learning algorithms using low-power computational devices for a

hassle-free monitoring of civil structures.

Crack detection with digital image processing is the essential

step toward automation in road health monitoring. Research and

business have been discreetly moving toward developing and

applying computerized road surface monitoring systems to reduce

expenses associated with manual inspection. An automated system

for road crack detection must be built in four steps: acquisition of

the image, pre-processing of an image, image segmentation, crack

detection, and classification (Mohan and Poobal, 2018). Each of

these steps has its importance in the system.

Artificial Intelligence (AI) based technology offers a more

sophisticated approach for crack detection, which can execute

various tasks (such as classification or regression) with exceptional

performance. AI-based Crack features can be extracted using hand-

crafted feature engineering with computer vision and automatic

feature extraction with a deep learning approach—AI-based crack

detection categories as computer vision-based crack detection and

deep learning-based crack detection. Morphological operations,

edge detection algorithms, support vector machine (SVM), and

random structured forests (RSF) are the classical approaches

used in the literature to extract hand-crafted features from

asphalt pavement/road images. Wang et al. (2019) analyzed five

classification algorithms, the support vector machines (SVM),

neural networks (NN), random forests (RF), logistic regression

(LR), and boosted tree (BT), to classify rail surface cracks.

However, the practical application of this method is limited due

to its slow convergence, over-fitting, and high computational cost,

etc. Therefore, a fast and automatic deep learning-based feature

extraction algorithm with CNN, transfer learning, and general

adversarial network (GAN) (Zhong K. et al., 2020) are used to

process the considerable monitoring data. Ghaderzadeh et al.

(2022) proposed fully automatic deep learning based system for

Acute Lymphoblastic Leukemia (ALL) diagnosis (ALL) diagnosis

and subtype classification (early pre-B, pro-B, and pre-B ALL).

The system’s overall procedure would entail feeding the network

pairs of segmented and original images, feature extraction using

DenseNet-201, and then use the classification block to predict the

ALL subtype based on the retrieved features. The model learns

the intricate correlations and patterns between the input data

and their corresponding subtypes through training on a sizable

dataset of labeled images. Ghaderzadeh et al. (2021) suggested

a deep learning-based model for COVID-19 identification using

X-ray image. This model has the potential to enhance current

testing strategies and aid in the pandemic response. Hosseini et al.

(2023) study shows the proposed mobile application’s potential

to be an effective screening tool for hematologists and clinical

professionals. The application can accurately detect B-ALL cases

by utilizing preprocessing methods and deep learning algorithms,

which can assist eliminate needless bone marrow biopsy cases and

shorten the time required for B-ALL diagnosis. Gheisari et al.

(2023) highlighted how deep learning (DL) techniques can be

selected based on various issues and uses. It draws attention to

the possibility for future work in developing DL frameworks and

investigating novel applications, like forecasting natural disasters.

1.1. Significance

The importance of AI-based automatic crack detection systems

is rising expeditiously hand in hand with sensor technology and

the internet. Image sensors are economically helpful compared to
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FIGURE 1

Crack detection application domains.

other sensors, which capture real-time images of civil structures.

Crack features extracted from the images can help the timely and

proactive management of structures. Research and business have

been discreetly moving toward developing and applying AI-based

crack detection systems to reduce expenses associated with manual

inspection and ensure greater safety.

1.2. Motivation

There have been many reviews of the literature on image-

based crack detection systems. Still, to our knowledge, challenges

and probable solutions for Computer Vision-based and Deep

Learning based crack detection system have yet to be the subject

of a systematic literature review. Therefore, it is necessary to

consider the systematic reviews of methodologies, datasets, and

evaluation metrics used. This review article presents the challenges

and future scope of the AI-based crack detection system, which

guides researchers in constructing more effective and reliable crack

detection systems in the future.

1.3. Prior research

Crack detection with image processing is a research area with

many literature review articles. To our best knowledge, a systematic

literature review has yet to be written on the data-driven approach

of AI-based crack detection. Indeed, AI models’ performance is

evaluated based on the quality of the input data. With a data-

driven perspective, we studied how data is vital to improving

the performance of AI-based crack detection. Hence, to achieve

reliability and efficiency in crack detection, it becomes sensible to

consider systematic reviews on the data-driven approach in this

survey. Table 1 overviews survey papers studied in crack detection

with image processing.

The study by Nguyen et al. (2022) evaluates the effectiveness

of deep learning-based crack detection algorithms in locating

cracks in asphalt pavement. This study recommends using

pix2pix for crack segmentation, ResNet and DenseNet for crack

classification, and Faster R-CNN for crack object detection.

However, they suggest further research on unsupervised and semi-

supervised learning techniques to improve fracture identification in

asphalt pavement.

In a different article, Hamishebahar et al. (2022) provide

a comprehensive literature review of deep learning-based crack

detection research and evaluate studies that utilize the same

publicly accessible datasets to determine effective crack detection

strategies. Based on the trends and evaluated papers, the report

suggests important avenues for future research in crack detection.

Cao M. T. et al. (2020) provide a comprehensive overview

of techniques for detecting road pavement cracks, including

image processing, machine learning, and 3D imaging. The

article compares and discusses deep learning neural networks

for crack detection based on classification, object detection,

and segmentation approaches, highlighting their significant

improvement in detection performance. The study also evaluates
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Nguyen et al. (2022) X X X X X X X X X X X PathGANs metric is a new

approach with high-grade

results

GPR images can be used to

identify cracks inside the

pavement in depth Supervised

learning GANs should be used

to solve crack segmentation.

Semi supervised and

unsupervised learning should

be focus on

chch Hamishebahar

et al. (2022)

X X X X X X X X X X X Deep edge detection

crack segmentation task in

unsupervised way,

Complexity of the crack

shapes in depth and the

parameter correlations with

the performances of the

different proposed

architectures and loss

functions in the area.

Cao M. T. et al.

(2020)

X X X X X X X X X X X Comparison and analysis on

deep learningmethods and 3D

image based methods

Collecting 3D crack

benchmark datasets will

greatly benefit future study of

the 3D crack detection.

König et al. (2022) X X X X X X X X X X X Semi, weakly and

unsupervised domain in crack

detection will push the

research forward and alleviate

the issues that come with

small datasets and difficult

annotations.
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Li et al. (2022c) X X X X X X X X X X X Analyzed crack detection

through the pixel-level CIS

methods to identify the

improvement directions of

the future work to better use

DL method to enhance the

performance and efficiency of

CIS

Hsieh and Tsai

(2020)

X X X X X X X X X X X ML crack detection

algorithms, reviewing 68

ML-based crack detection

papers to identify the current

development trend, pixel level

crack segmentation.

Performance comparisons

among 8 DL crack

segmentation models were

then conducted using

consistent evaluation metrics

and real-world 3D pavement

images under diverse

conditions

Munawar et al.

(2021b)

X X X X X X X X X X X Need to perform severity

assessment of the detected

cracks

F
ro
n
tie

rs
in

S
u
sta

in
a
b
le
C
itie

s
0
5

fro
n
tie

rsin
.o
rg

https://doi.org/10.3389/frsc.2023.1253627
https://www.frontiersin.org/journals/sustainable-cities
https://www.frontiersin.org


Chakurkar et al. 10.3389/frsc.2023.1253627

the performance of these approaches on widely-used benchmark

datasets and covers performance evaluation measures.

Golding et al. (2022) propose using convolutional neural

networks (CNN) as a deep learning-based technique for fracture

detection in infrastructure and comparing grayscale and RGB

models using various image processing methods. The results

indicate that DL crack identification does not rely on color, as

grayscale models perform similarly to RGB models, thresholding,

and edge detection models performworse than RGBmodels. König

et al. (2022) discuss the importance of early surface crack detection

and monitoring for structural health monitoring and provide a

review of deep learning-based crack analysis algorithms. The study

covers a range of tasks, including crack classification, detection,

segmentation, and quantification, and offers thorough analyses

of current fully, semi-, and unsupervised techniques. The review

also includes measures used to assess algorithm performance and

well-known datasets used for cracking.

Hu et al. (2021) discuss using deep learning models to identify

asphalt pavement cracks, highlighting the issues with conventional

artificial detection systems. They show that pavement fracture

detection using the YOLOv5 series deep learning model has

produced positive results, with the YOLOv5l model having the

best detection accuracy (88.1%) and the YOLOv5s model having

the quickest detection time (11.1ms per image). In the study

published by Li et al. (2022a) examine the importance of fracture

detection in transportation infrastructure and the growth of deep

learning-based techniques for crack image segmentation (CIS).

They conduct a thorough analysis of over 40 papers on DL-based

CISmethods released in the previous three years, categorizing them

into ten themes based on backbone network design, including FCN,

U-Net, multi-scale, attention mechanism, transformer, and weakly

supervised learning, among others.

In this study, Hsieh and Tsai (2020) provide a thorough analysis

of recent machine learning-based crack detection algorithms,

with a special focus on pixel-level crack segmentation. They

evaluate eight ML-based models using standardized evaluation

criteria and 3D pavement photos with various conditions, showing

that deeper backbone networks and skip connections improve

performance in FCN models. The suggested algorithm tackles the

false-positive issue as a necessary first step to enhance ML-based

crack detection models.

1.4. Research goals

This systematic literature review (SLR) aims to understand

recent developments in the field of computer vision-based road

crack detection techniques and identify unresolved problems and

obstacles within. The AI-based crack detection system survey’s

research goals are listed below.

• What are the different artificial intelligence-based approaches

used for crack detection?

• What are the different datasets available for research purposes

in AI-based crack detection?

• How to accurately measure the segmented crack parameters to

assess the cracks’ severity?

• What performance evaluation indicators are

employed to assess the effectiveness of the AI-based

crack-detecting system?

• How to optimize AI-based crack detection models be

implemented with limited computational resources?

1.5. Work’s contribution

The following are the critical findings of this in-depth

literature review:

• To conduct a literature study integrating deep learning and

computer vision-based crack detection systems.

• To provide a depth summary of the existing research on

deep learning and computer vision-based crack detection

systems with an emphasis on methods, data sets, applications,

challenges, and future directions.

• We also provide an overview of publicly available datasets that

can support research in the crack detection domain.

• To evaluate this method’s potential applications for automatic

road health monitoring, as well as its current advantages

and disadvantages.

This article is a comprehensive and well-structured study on

image-based road crack detection, covering various aspects such as

a literature review on data-driven AI approaches, computer vision

techniques, challenges, and future scope.

2. Research strategy

Published research is accessible based on core metrics used

in the bibliometric analysis. As part of this process, we attempt

to select the most well-known or active researchers and their

affiliations, collaborative patterns, frequently used phrases, and

numerous articles about them. We termed the initial step of

our research process as “image-based crack detection.” “The

phrase crack-detection” is used in civil and structural sectors

such as tunnels, bridges, and railway tracks for structural

health monitoring.

2.1. Database selection and query
formulation

This research aims at finding the use of artificial intelligence

in the image-based crack detection domain; we started with

bibliometric analysis for image-based crack detection as a primary

keyword ANDing with “Computer Vision,” “Deep Learning,”

“Machine Learning,” Artificial Intelligence,” as a secondary keyword

in the research space. As a result, these primary and secondary

keywords are used to frame the query, and relevant articles were

initially gathered from the Scopus database. The primary and

secondary keywords used in questions to select the data from

Scopus databases using AND and OR Boolean operators are

shown below.
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TITLE-ABS-KEY (crack detection) and ((computer vision)

or (deep learning) or (machine learning) or (artificial

intelligence)) and(image).

After that, the filtration technique is used for the article

collection to enhance the outcomes that satisfy our main objectives.

This procedure’s steps are removing duplication, applying exclusion

and inclusion criteria, filtering based on titles and abstracts, and

full-text screening. Inclusion criteria used to filter the relevant

documents, such as

• Publication Articles must be published between the years 2012

to 2022.

• The subject area should be Computer science, decision

sciences, material sciences, and multidisciplinary articles.

• The article should match a minimum of one of the

search terms.

• The article type should be conference papers or review articles.

Exclusion criteria are foreign language research articles and

articles unrelated to research questions.

2.2. Analysis of the information

In this review article, bibliometric analysis was done

on filtered reports from the Scopus database using various

parameters, including:

• Subject area

• Research trends in AI-based technologies

• Documents by country

• Keyword co-occurrences.

2.2.1. Subject area
To begin with, an analysis of the data revealed that the

keyword “image-based crack detection” is most frequently

utilized within the domain of Computer Science, followed

by Engineering and Material Science. Material science is

essential to the field of structural health monitoring (SHM)

because of how much it affects a structure’s performance,

dependability, and durability. Since image-based crack detection

is primarily a computer vision problem, it is unsurprising to

observe the highest concentration of research activity within

the Computer Science subject. This trend is visually represented

in Figure 2.

2.2.2. Research trends in AI-based technologies
As shown in Figure 3, the graph demonstrates the trends

that focus on the number of research articles retrieved from

the Scopus database with primary keyword image-based crack

detection with secondary keywords such as computer vision

(CV), machine learning (ML), deep learning (DL), and artificial

intelligence (AI). The number of research papers focusing on

FIGURE 2

Analysis of AI-based crack detection research in various subject

areas.

crack detection using CV keywords increased from below 50

in 2018 to over 150 in 2022, with more than 50 research

papers already published in 2023. Similarly, AI keyword usage

increased from around 20 research papers to approximately 50

in 2022, with about 30 published in 2023. ML keyword usage

rose from 30 research papers in 2018 to over 100 in 2022,

and around 60 were published in 2023. Notably, DL keyword

usage increased from approximately 30 research papers in 2018

to 350 in 2022, and it has been used in over 160 research

papers in 2023. These trends indicate a growing interest in

and utilization of CV, AI, ML, and DL techniques in crack

detection research.

2.2.3. Documents by country
The graph shown in Figure 4 represents a country-wise

distribution of research papers focusing on AI-based crack

detection. Among the countries mentioned, Hong Kong

is associated with around 100 research papers, India with

approximately 400 research papers, and notably, China with over

2600 research papers. The graph indicates a significant research

output in AI-based crack detection from these countries. While the

specific numbers for other countries are shown above, it is evident

that multiple nations, including Italy, Germany, Japan, Australia,

Canada, the United Kingdom, South Korea, and the United States,

are actively engaged in this field. However, China has emerged as a

dominant player with many research papers, showcasing its strong

presence and advancing AI-based crack detection.

2.2.4. Keyword co-occurrences
Analysis of co-occurrence is performed on phrases

using a VOS viewer. Keywords occurring with more

than 50 are only considered for the analysis. 13,242

keywords out of 66 met the criteria. Keyword co-occurrence

network visualization is shown in Figure 5 below and

identifies terms that can be utilized more frequently in

this research.
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FIGURE 3

Research trends in image-based crack detection with di�erent AI-based technologies.

FIGURE 4

Country-wise distribution of research papers focusing on AI-based crack detection.

3. Data-driven AI-based imaging
system for crack detection

Data is crucial in AI research, especially for image processing

and crack detection tasks. Obtaining high-quality data is vital

because the accuracy and effectiveness of AI models heavily rely on

the data they are trained on Figure 6. Highlighted crack detection

process from the data perspective, and the survey is presented in

different data-oriented aspects used for crack detection.

Figure 6 shows an AI-based data-driven crack detection

process. The process can be broken down into four stages, each of

which is essential in detecting cracks. The first stage involves data

collection, labeling, and dataset building. Data is collected using

UAV-mounted cameras and handheld devices. The collected data

is labeled at the pixel, object, and image levels, and private and

public datasets are used. This stage is critical for ensuring that

the data used for crack detection is accurate and reliable. Data

augmentation, preprocessing, and learning algorithms are used in

the second stage. Data augmentation is done using Generative

Adversarial Networks (GANs), which help generate synthetic data

and improve the system’s accuracy. Preprocessing is done using

Histogram Equalization Filters, which normalize the images and

improve their contrast. Learning algorithms such as supervised,

weakly supervised, and unsupervised are used to train the system.

The third stage involves crack classification, object detection, and

segmentation. Transfer learning techniques such as VGG and

MobiNet are used to develop the crack classification model. Crack

object detection uses techniques such as YOLO, FASTER RCNN,

and SSD.

Crack segmentation is performed using FCN, DEEPV LAN,

and encoder-decoder techniques. These techniques are used to

identify and locate cracks in the images accurately. The fourth

and final stage uses evaluation metrics, attention techniques, and

crack severity qualification. Evaluation metrics such as IOU, MAP,

and AUC are used to assess the system’s performance. Attention

techniques such as SENET, CBAM, ECANET, and COORD ATT

are used to improve the system’s accuracy. Finally, crack severity

qualification is done by measuring the detected cracks’ length,

width, and depth. This information can then be used to prioritize

repairs and maintenance.
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FIGURE 5

Network visualization diagram for keyword co-occurrence.

Overall, this approach leverages AI-based techniques for

efficient and accurate crack detection, which can be applied in

various industries and infrastructures, such as roads, bridges, and

buildings, to ensure their safety and longevity.

4. Literature survey on data-driven
AI-based imaging system for crack
detection

The term “Image-based crack detection system” describes the

full spectrum of activities, from taking images to classifying cracks

according to their severity. This system provides the economic

and engineering analysis tools required for making cost-effective

maintenance, rehabilitation, and reconstruction decisions. A smart

road monitoring system based on Industry 4.0 was developed. In

addition to video, mobile data, weather data, and other sensor data,

the monitoring system collects substantial amounts of data from

the road environment infrastructure. Monitoring systems collect

data on road environment defects that provide road environment

safety data.

Consequently, road environment monitoring systems may

include pavement and bridge crack detection. Internal, invisible

faults and surface apparent defects include pavement and bridge

defects. Surface obvious crack faults have been a long-standing issue

that endangers public safety. The photographs of the road crack

were taken in different lighting conditions (round the clock). A

few of them included undesirable things, e.g., random particles,

textures, heterogeneity, uneven lighting with variations in the road’s

surface, lines, boisterous environment, shadows, water, tire prints,

oil slicks, etc. The result is a challenging problem in choosing

a uniform threshold building. A successful preprocessing stage

is crucial for getting good results because of the segmentation

step. This action involves bringing edges, borders, or contrast to

sharper focus analysis (Fu et al., 2020). There are numerous types

of image enhancement like fuzzy edge removal, noise reduction,

magnification, contrast stretching, filtering, artificial interpolation

coloring, transform operations, histogram modeling, and fake

color etc.

Automated image-based crack feature extraction methods can

be divided into deep learning and traditional approach. The

conventional systems mainly include the threshold approach,

wavelet transform, the minimum path, etc. Traditional visual

methods primarily rely on hand-craft features, with distinguishing

abilities in the images, such as the grayscale, texture, and

contour shape of defects, because of the road’s intricacy,

variety of topology, random forms, and sizes, as well as oil

stains, weed stains, and other significant disruptions. Hand-craft

features tend to fail, and the algorithm needs to be redesigned.
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FIGURE 6

Overview of data-driven AI-based crack detection.

Therefore, traditional crack feature extraction methods have

weak generalization ability and low efficiency for different road

images in complex situations. Hence, research requirement is

still active due to low robustness and fluctuating environment.

Deep learning can resolve complex problems automatically

with the help of AI. Various methods of detecting road

cracks using deep learning have been classified according to

their accuracy:

Patch level crack detection – likely to be binary or multi-

crack classification.

Object Level-Likely to be boundary box regression.

Pixel-level crack detection - likely to be a semantic

segmentation task

In recent studies, several methods for crack detection have been

proposed using deep learning. The process may be based on the

detection of objects or the segmentation of blocks of images. AI

based crack detection process consists of four steps: data collection,

data pre-processing, dataset modeling and crack classification as

shown in Figure 7.

4.1. Data collection

The data collection is the initial stage that feeds the input images

to the entire crack detection cycle. Automating data acquisition

has led to the development of complete systems carried out by

vehicles (or, more recently, on devices such as smartphones or

crewless aerial vehicles) for visual surface surveying. A computer,

a Global Positioning System (GPS) sensor, and imaging sensors

are all installed in the car. Several sensing technologies, sensor

positions, and vehicles have been deployed to collect data to

evaluate surface conditions. Table 2 summarizes the sensor systems

for data collection.
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FIGURE 7

AI-based crack detection tasks and algorithms.

To ensure the safety, maintaining structural integrity, and

lowering maintenance costs, cracks should be found and examined.

Conventional techniques of fracture detection can be costly,

time-consuming, and frequently necessitate stopping operations.

However, the advent of AI-based data-driven crack detection

systems, which can be quickly and precisely identify cracks, is a

result of technological breakthroughs. Data collection, which uses

sensor systems for fracture detection, is the basis of these systems.

UAVs, camera-mounted vehicles, and handheld devices are just

a few of the crack-detection sensor systems available for data

collection. Each of these methods has its benefits and drawbacks,

and choosing one depends on several considerations, including the

level of accuracy that is sought, the difficulty of the terrain, and the

available budget.

One of the most often used sensor systems for crack detection

is crewless aerial vehicles (UAVs). They have cameras, sensors, and

GPS and can take pictures at different angles and heights (Li et al.,

2023). Depending on the type of camera and sensors being utilized,

UAVs can capture both 2D and 3D images (Khaloo et al., 2018).

The visual view can be in the top, front, or both directions at once.

An ordinary UAV-based crack detection system typically consists

of the UAV itself, a camera or sensor payload, a GPS, and a ground

control station. A pilot controls the flight path and camera settings

while controlling the UAV remotely. The application and required

level of precision can influence the camera or sensor payload.

High-resolution cameras and sensors are frequently utilized to take

precise surface images for crack identification (Byrne et al., 2017).

The UAV’s location is tracked using GPS, ensuring reliable data

collection. The ground control station tracks the UAV, gathers data,

and performs data processing.

The capacity of UAVs to capture images from various angles

and heights, which can give a more thorough perspective of the

surface being investigated, is one benefit of employing them for

data collection. UAVs can check substantial infrastructure projects

like highways and bridges since they can swiftly and effectively

cover large regions (Munawar et al., 2021a). However, the cost of

purchasing and operating UAVs can be high, and their usage might

be prohibited in some places due to laws or safety concerns.

Another alternative for gathering data on crack detection is

a vehicle with surveillance cameras. Typically, they include a car

with cameras or sensors that take pictures of the examined surface

(Montero et al., 2015). Depending on the camera and sensors

utilized, camera-mounted vehicles can record both 2D and 3D

images. The top view, front view, or a combination of the two

can be the image view. The car, a camera or sensor payload, and

a computer system for data processing make up a conventional

camera-mounted vehicle-based crack detection system. The driver,

who controls the vehicle’s direction and speed, is in charge of it.

The application and required level of precision can influence the

camera or sensor payload. High-resolution cameras and sensors

are frequently utilized to take precise surface images for crack

identification. The computer system does the data collection and

processing. Data collecting with camera-mounted vehicles has the

benefit of minimal energy usage and simple control. They are

appropriate for checking both horizontal and vertical surfaces and

can rapidly and effectively cover huge regions (CaoW. et al., 2020).

The usage of camera-mounted vehicles, however, can be restricted

in some situations, such as enclosed locations, and they might not

be able to take pictures from specific angles or heights.

Another form of sensor system for crack detection uses

handheld devices. An operator can use these portable tools to

take pictures of surface cracks (Sony et al., 2019). Mobile devices

with high-resolution cameras, such as smartphones and tablets,

are the most often utilized handheld devices for crack detection.

These tools can take pictures of the cracks in 2D and 3D (Chen

et al., 2014). The portability and simplicity of use of mobile devices

are advantages. They are a practical choice for small-scale crack

detection applications because they are reasonably priced and easily

accessible. The drawback of handheld equipment is that an operator

is needed to take the images. This indicates that gathering data
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can take a long time and may need to be more practical for large-

scale projects. The accuracy of the crack identification algorithms

may also need to be improved by the lower image quality of

handheld devices compared to UAVs or vehicles with mounted

cameras (Jordan et al., 2018). Terrestrial Laser Scanning (TLS) is

used to assess road surface conditions. A laser line scanner, High-

resolution, continuous 3D road surveys were produced by using a

laser scanner or digital camera placed on a moving vehicle. Zhong

M. et al. (2020) showed a multi-sensor, laser scanning approach

for crack identification by merging to generate a 3D simulation

of the highway, laser line scan data was combined with video that

recognized fissures as small as a few centimeters in depth as well as

their location.

Hassan et al. (2022) proposed three-dimensional

reconstruction systems, the LCMS system (Laser Crack

Measurement System), consisting of two three-dimensional

laser profile-meters capable of measuring the cross-sectional

profiles of a road with a resolution of 1mm. This system

collects intensity information, as well as geometric report of

the road surface, which allows for characterizing and displaying

images together with the shape (texture) of the road. The

crack’s depth, which is regarded as a crucial primitive, can

be calculated with the use of the image’s 3D representation.

This feature is used to categorize crack types as small,

moderate, or severe. With the advent of 3D road scanners,

it is anticipated that, in the near future, a higher level of

accuracy can be attained by utilizing the depth information

from the collected 3D model of the road pavement. Since

there are currently no benchmark datasets for 3D crack

identification, collecting these datasets will be very helpful

for future research.

Ultimately, data collection for AI-based crack detection systems

relies on crack detection sensor systems. UAVs, vehicles with

cameras placed on them, and handheld gadgets are the three

most often employed sensor systems. Due to their swift ability

to cover broad regions, UAVs are well-suited for large-scale

projects, although they can be expensive to operate and require

trained operators. Mid-scale projects can benefit from camera-

mounted vehicles since they are convenient, inexpensive, and

straightforward. Handheld devices offer a cost-effective alternative

for small-scale projects, but they need an operator to take the

pictures. The choice of which sensor system to utilize relies on

the scope and complexity of the project. Each sensor system has

advantages and limits. The project’s size, complexity, and resource

availability all affect the sensor system that will be used to collect

data. AI-based crack detection technologies could revolutionize

our ability to detect and maintain infrastructure, guaranteeing that

our buildings, bridges, and roads are secure and safe for years

to come.

4.2. Data labeling and dataset generation

Data labeling is the key to training the detection model,

and the quality of labeling determines the accuracy. The three

tracks of classification, detection, and segmentation are distinct

and require different methods of data labeling. Image classification
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annotation involves assigning a binary label to indicate the presence

or absence of an object in the image at a high level. In pavement

damage classification, a standard method is dividing a large

image into smaller sub-images, called patch-level classification.

Object detection annotation is done at the level of individual

objects, requiring the identification of the object’s category and

its position in the image, typically represented by a bounding

box. Segmentation annotation involves labeling each pixel in the

image with its corresponding category or background and is

done at a pixel-level granularity. Patch-level classification and

object-level detection provide information about the localization of

objects. Table 3 summarizes the datasets specified in the literature

for crack detection with the level of annotations used. For

data labeling, the labeling tools were studied in the literature

to manually create image labels to produce a crack dataset in

PASCAL VOC data format. The labeling tool will generate XML

files based on the rectangular boxes, including crack category,

size, and location. We should avoid other objects entering the

rectangular box during the data labeling, leading to a high false

detection rate. For many years, road crack detection systems

have been a study issue. There are several public datasets

available to assist us in conducting improved research. Shi et al.

(2016) this study advances the field of road cracking detection

through presenting a new annotated dataset (Crack Forest Dataset)

and an effective detection technique that surpasses competing

options in terms of noise reduction and processing time. The

study’s emphasis on two evaluation indicators, the “Continuity

index (CI)” and “Crack detection accuracy” to assess accuracy,

ensures an accurate assessment of the suggested method’s efficacy.

Liu et al. (2019) study makes a substantial contribution to

crack detection and segmentation by presenting the DeepCrack

benchmark dataset, a ground-breaking public benchmark aimed

at promoting standardized evaluation and method comparison.

The dataset includes several, thoroughly hand-annotated crack

images in a variety of scales and settings. In contrast to earlier

studies, which relied on limited, narrow evaluation datasets, the

new benchmark database, which consists of 537 RGB color photos

with manual annotations. Arya et al. (2021) proposed RDD2020

dataset to facilitate the development and improvement of deep

learning algorithms in order to advance automatic road damage

identification. It stimulates academics to look into cutting-edge

methods for precisely identifying and locating road damage.

The RDD2020 dataset is rigorously built to contain a varied

collection of incidents of road damage, recorded across various

road types, conditions, and environmental factors. Bounding

boxes that exactly define sections of road damage are carefully

inserted to each image in the dataset. For the sake of testing and

refining deep learning algorithms, these annotations serve as the

ground truth.

4.3. Data preprocessing in crack detection

Road image preprocessing is essential in automated pavement

crack detection using image processing and deep learning

algorithms. This process involves various techniques that

aim to enhance image quality, reduce noise, and improve the

visibility of cracks in the image. One of the primary steps

is converting the colored image into grayscale, simplifying

the image analysis process. Histogram equalization balances

the brightness and contrast of the grayscale image, making

cracks more visible to algorithms. Filters like Gaussian,

Median, and Sobel are commonly applied to remove noise

and highlight edges, making it easier for algorithms to detect

cracks. Morphological transformation using techniques like

erosion, dilation, opening, and closing helps to remove unwanted

objects and enhance essential features. The ultimate goal of road

image preprocessing is to improve the accuracy of automated

pavement crack detection systems by highlighting the elements

of interest, such as cracks, in the input image. The process can

significantly improve the efficiency of assessing road conditions

and ensuring safety.

Yang Z. et al. (2022) have developed a method for pavement

crack localization and segmentation algorithms that aims to

automate the detection of cracks on roads, improve safety, and

reduce maintenance costs. The proposed technique involves a

three-stage algorithm based on digital image processing and

deep learning, which includes a two-dimensional discrete wavelet

transform to obtain low and high-frequency coefficients of the

wavelet, Retinex algorithm, guided filtering based on wavelet

transform, and soft threshold filtering for denoising. The ultimate

goal of this approach is to enhance the accuracy and efficiency of

pavement crack detection and segmentation algorithms. On the

other hand, Chen et al. (2022) proposed a crack detection method

using image processing techniques to improve road safety and

reduce maintenance costs. The method involves a potential crack

region method that uses multiple thresholds for crack detection,

in which histogram equalization is used to adjust the grayscale

value distribution and enhance local contrast for better distinction

between the crack and background. The technique also uses mean

filtering to remove noise and improve image quality, which aims

to improve the accuracy and efficiency of crack detection on

road surfaces.

In the study, Li et al. (2022a) propose a new technique

that combines convolutional neural networks and hybrid image

processing to improve the accuracy of crack classification and

segmentation on concrete bridge images. To achieve this, they

use a bilateral filtering technique to sharpen the crack details and

highlight their characteristics while minimizing the influence of

factors such as rain or stains. The processed images are then

converted to grayscale and subjected to contrast enhancement

to enhance visual performance. This proposed technique aims

to make the maintenance of concrete bridges more efficient

and cost-effective. Similarly, Parrany and Mirzaei (2022) offer

an image processing strategy that uses the Contrast Limited

Adaptive Histogram Equalization (CLAHE) algorithm and non-

linear diffusion filtering techniques to improve the accuracy and

efficiency of surface crack identification in building structures,

especially under non-uniform illumination conditions.

Automated crack segmentation aims to increase the precision

and efficiency of detecting cracks in building structures. Nnolim

(2020) proposes a method that uses saturation channel threshold,

area classification, and a modified level set segmentation fusion

with Canny edge detection. The studied article use global histogram

equalization to normalize the distribution of intensities and the
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TABLE 3 Summary of datasets used for crack detection.

Dataset Basic features Advanced features Dataset Basic
features

Advanced
features

Image/
Sample no.

Resolution Colored Image/
Sample no.

Resolution Environmental or
other interfering
factors

Crack forest dataset

(CFD)1

118 480× 320 Crack Forest

Dataset (CFD)1

118 480× 320 Lane lines, shadows, noise like

oil stain

For Non-commercial

research purposes only ·

iPhone5 China

AigleRN2 38 991× 462 311×

462

AigleRN2 38 991× 462 311

× 462

Pre-processed to reduce the

non-uniform illumination

With more complex

texture than CFD,

·Similar small data sets

like ESAR and LCMS

Professional

Camera

French

Crack5003 500 2000× 1500 Crack5003 500 2000× 1500 Lane lines, oil/wet stain, tire

brake marks, speckle noise,

etc.

·Covers almost all kinds

of features except for

shadow

LG-H345 Cell

Phone

US

GAPs3 1969 1920× 1080 GAPs3 1969 1920× 1080 Little noise like oil stain,

asphalt and rails, lane

– JAI Pulnix TM2030

monochrome

cameras, Kodak

KAI2093

Germany

Cracktree2003 206 800× 600 Cracktree2003 206 800× 600 only shadow & lane lines – Unknown –

G454 122 2048× 1536 G454 122 2048× 1536 Brightness change, oil stain,

tire brake marks, speckle

noise, etc.

·4 types: transverse,

longitudinal, block, and

alligator cracks

Unknown China

EdmCrack6005 600 1920× 1080 EdmCrack6005 600 1920× 1080 Weather, illumination,

shadow, texture

difference

·Only for

academic research

·Perspective image taken

from the rear camera of

a car

Rear Camera of Car

– GoPro 7

Canada

JapanRoad6 9053 600× 600 JapanRoad6 9053 600× 600 Real street view perspective

images captured from the

front

windshields of a car

·License: CC BY-SA 4.0

·For road

defect detection

·PASCAL VOC

annotation format

Front windshields

of Car LG-5X

Japan

SDNET20187 230 (Cropped

to 56092)

4096x3840 (256×

256)

SDNET20187 230 (Cropped

to 56092)

4096x3840 (256×

256)

with a variety of obstructions,

including shadows, surface

roughness, scaling, edges,

holes, and background debris

·License: Creative

Commons

Attribution 4.0 ·54

bridge decks, 72 walls,

104 pavements ·Crack

size: 0.06-25mm

16-MP Nikon

camera

US

Concrete crack

images for

classification 8

458(cropped

to 40000)

4032× 3024 (227×

227)

Concrete crack

images for

classification 8

458(cropped

to 40000)

4032× 3024 (227×

227)

Shadows, lighting spot,

blurred, including thin &

close-up cracks

·Similar to SDNET2018,

images collected from

METU Campus

Buildings

Professional

Camera

Turkey

F
ro
n
tie

rs
in

S
u
sta

in
a
b
le
C
itie

s
1
4

fro
n
tie

rsin
.o
rg

https://doi.org/10.3389/frsc.2023.1253627
https://www.frontiersin.org/journals/sustainable-cities
https://www.frontiersin.org


Chakurkar et al. 10.3389/frsc.2023.1253627

wavelet-based enhancement algorithm to enhance crack detection

by amplifying detail coefficients, suppressing approximation

coefficients, and increasing contrast and sharpness. This method,

known as the modified HSI-based crack detection, aims to

improve crack detection accuracy and efficiency. On the other

hand, Yu et al. (2022) propose a deep learning-assisted image

processing technique. The approach involves using a mask filter to

remove handwritten marks and a ratio filter to eliminate speckle

linear noise from the input images. The use of deep learning

algorithm is to classify images, identify regions of interest, then

segment the images using threshold techniques, and perform

crack quantification using image features. The proposed method

aims to enhance the accuracy and speed of crack detection and

quantification in concrete bridges.

The study proposes an advanced deep-learning fusion model

(Feng et al., 2020) for more precise pavement crack detection

and segmentation. The process starts with applying median

and bilateral filters to eliminate noise, followed by contrast

enhancement to improve the quality of the images by highlighting

crack information. The fusion model combines convolutional

neural networks and fully connected networks to achieve better

results. Its main goal is to enhance the efficiency and accuracy of

pavement crack detection and segmentation algorithms.

4.3.1. Data augmentation
Data augmentation techniques can be highly beneficial

when you have limited training data for tasks like artificial

crack detection. Data augmentation involves applying various

transformations or modifications to existing data to create

additional training examples, effectively expanding the dataset

without the need for new annotations. This process helps improve

the model’s performance by providing more diverse and varied

examples. Data augmentation is a machine learning technique

that artificially generates additional synthetic training data through

label-preserving transformations (Bayer et al., 2023). Though data

augmentation techniques have achieved great success in computer

vision applications, Data augmentation is performed by rotating

the images with different angles, adding some noise, etc. The

CrackNet, a deep-learning framework for crack detection and

classification leverages data augmentation techniques to improve

the model’s performance and demonstrate the effectiveness of

CrackNet on the CFD2014 dataset.

In order to improve the amount and quality of a training dataset

and create a more effective deep learningmodel, data augmentation

is an essential deep learning technique. In order to overcome the

scarcity of training data and eliminate overfitting, Islam et al.

(2022) used data augmentation and transfer learning. The first

suggested data augmentation strategy is the Random-Resized-Crop

Method, which randomly selects a section of the image to crop and

resizes it to the required size. The second method, known as the

Random-Rotation Method, rotates the image across a variety of

random angles. Angles between 15 degrees and +15 degrees are

chosen for our training dataset. The Color-Jitter Method, which

randomly modifies the brightness, is the third data augmentation

technique employed.

4.4. AI-based classification algorithms in
crack detection

AI-based crack classification strategies employ various

techniques to identify and classify image cracks accurately. One

approach is image patch crack classification, where the image

is divided into smaller patches, and each patch is analyzed

independently to determine if it contains a crack. Another

strategy involves boundary box regression, which aims to

detect the presence of cracks by predicting the bounding boxes

that encompass them. This allows for precise localization and

identification of crack objects within the image. Additionally,

semantic segmentation is employed to classify each pixel in

the image as either crack or non-crack, enabling a fine-grained

understanding of crack distribution. By combining these strategies,

AI systems can detect, classify, and analyze cracks, facilitating

efficient and reliable inspection and maintenance in various

domains such as infrastructure, manufacturing, and construction.

4.4.1. Image patch classification
In recent years, there has been a growing interest in data-

driven approaches for various applications. This approach utilizes

machine learning techniques to analyze data and make predictions

or decisions based on the insights generated from the data. In

this summary, we will discuss several papers that focus on data-

driven approaches and their applications. Table 4 represents the

different parameters that affect the accuracy of the AI-based crack

detection system.

The paper by Hammouch et al. (2022) proposes an automated

methodology for detecting and classifying cracks in Moroccan

flexible pavements using Convolutional Neural Networks (CNN)

and transfer learning. The periodic inspections of Moroccan

roads using high-resolution cameras and GPS/DGPS receivers

have been conducted since 2011, but the manual processing of

pavement surface image sequences is complex, time-consuming,

and subjective. The proposed approach shows good crack detection

and classification results using both the CNN and pre-trained

VGG-19 models. The study demonstrates the potential of data-

driven approaches, specifically CNN and transfer learning, in

automating crack detection and classification to diagnose road

networks effectively.

The paper by Amhaz et al. (2016) proposes a new algorithm

for automatic crack detection from 2D pavement images using

minimal path localization. The approach selects a set of minimal

paths and introduces two post-processing steps to improve

detection quality. The algorithm considers pavement images’

photometric and geometric characteristics and is validated on

synthetic and natural images from different acquisition systems.

The proposed method is compared to five existing methods and

is found to provide very robust and precise results in a wide

range of situations in a fully unsupervised manner, surpassing

the current state of the art. The study highlights the potential of

data-driven approaches in improving crack detection in pavement

images. The survey of Padsumbiya et al. (2022) proposes a method

for automatic crack detection on concrete surfaces using a simple

Convolutional Neural Network (CNN) and compares it with a
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TABLE 4 AI based classification techniques for crack detection.

References Data size Algorithm Layer and
epoch

Evaluation
metric used

Classification
result

Diversity in
images

Silva and Lucena

(2018)

3,500 samples CNN 16 layers, 48 epoch,

3 parameters

Accuracy Crack, No crack Yes

Amhaz et al. (2016) 269 real images Dijkstra NA-layers,

NA-epoch,5

parameters

DICE similarity

coefficient

transverse cracks,

longitudinal cracks,

and alligator cracks

No

Padsumbiya et al.

(2022)

40,000 CNN 4 layer, 5 epoch,

954,241 parameters

Precision, recall, and F1

score

Crack, No-crack Yes

Ali et al. (2021) 25,000 samples CNN 3 layers,20

epoch,2.7 million

paramters

Accuracy, precision,

recall, and F1-score

Crack, No-crack Yes

Gopalakrishnan

et al. (2017)

760 samples VGG-16 DCNN 24 layers, 50 epochs,

144 million

parameters

Accuracy, precision,

recall, F1-score and

Cohen’s Kappa score

Crack, No-crack No

Kim et al. (2021) 40,000 images CNN 7 layers,20 epochs,5

parameters

Accuracy score,

precision, recall, and

F-Measure

Crack, No-crack No

Maniat et al. (2021) 48,000 images CNN 22 layers,100

epoch,20 million

parameters

Precision, Recall,

F1-Score

Transverse cracks,

longitudinal cracks,

and alligator cracks

No

Chen C. et al.

(2021)

NA SVM NA Accuracy Transverse cracks,

longitudinal cracks,

and alligator cracks

Yes

Tabassum (2022) 370 Images CNN 7 layers, 30 epoch,

813,475 parameters

Mean absolute error

(MAE), mean square

error (MSE), root mean

squared error (RMSE),

and r 2 value

Multiclass damage No

Hammouch et al.

(2022)

3,287 images CNN VGG19 19 layers,40 epoch,

2,00,996,51

parameters

Precision, Recall,

F1-Score

Longitudinal crack,

transverse crack,

alligator crack

Yes

Feed-Forward Fully Connected Neural Network. Using low-pixel

density images, the proposed CNN is trained to detect and segregate

cracked and non-cracked concrete surfaces. The model uses Max

Pooling and optimization techniques and achieves a final accuracy

of 97.8%. The study confirms the impact of Artificial Intelligence

in Civil Engineering, where a simple neural network can carry

out automatic crack detection, eliminating the need for high-cost

digital image-capturing devices.

Ali et al. (2021) present a customized convolutional neural

network (CNN) for crack detection in concrete structures

and compare its performance with four existing deep learning

methods based on training data size, data heterogeneity, network

complexity, and number of epochs. The proposed CNNmodel and

VGG-16 outperformed the other methods in terms of classification,

localization, and computational time on a small amount of data.

The evaluation considered various measures such as accuracy,

precision, recall, and F1-score. The results indicate that increasing

the training data size and reducing diversity reduced generalization

performance and led to overfitting. The proposed CNN model and

VGG-16 demonstrate superior crack detection and localization for

concrete structures. The paper by Gopalakrishnan et al. (2017)

suggests using a Deep Convolutional Neural Network (DCNN)

trained on ImageNet to automatically detect cracks in Hot-Mix

Asphalt (HMA) and Portland Cement Concrete (PCC) surfaced

pavement images, which also contain non-crack anomalies and

defects. The study aims to train a classifier on combined HMA-

surfaced and PCC-surfaced photos that have different surface

characteristics. A single-layer neural network classifier (with

“Adam” optimizer) trained on ImageNet pre-trained VGG-16

DCNN features yielded the best performance.

Kim et al. (2021) propose a shallow convolutional neural

network (CNN) for surface concrete crack detection that can be

employed using low-power computational devices. The proposed

LeNet-5 architecture is optimized and trained using 40,000

images in the METU dataset, achieving a maximum accuracy of

99.8% with minimum computation. The model’s hyperparameters

are optimized for crack detection, and its performance is

compared with various pre-trained deep-learning models. The

study concludes that the proposed method can be incorporated

with autonomous devices, such as crewless aerial vehicles, for real-

time inspection of surface cracks. In this paper, Prasanna et al.

(2014) present a new automated crack detection algorithm called

the STRUM classifier, which is used to detect cracks on concrete

bridges. The algorithm uses machine learning classification and

multiple visual features that are spatially tuned to potential crack

regions, and it employs robust curve fitting to spatially localize

likely crack regions even in the presence of noise. The algorithm

is demonstrated using a state-of-the-art robotic bridge scanning
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system and actual bridge data from hundreds of crack regions

over two bridges. The results show that the STRUM classifier

outperforms a more typical image-based approach, with a peak

performance of 95% accuracy. The crack density map for the bridge

mosaic, provides a computational description and a global view of

the spatial patterns of bridge deck cracking.

The study of Maniat et al. (2021) investigates using Google

Street View (GSV) pavement images to evaluate pavement quality.

A convolutional neural network (CNN) is developed to perform

image classification on GSV pavement images by dividing them

into smaller image patches and classifying them into different

categories of pavement cracks. The study compares the results of

the CNN with those of a commercial visual inspection company

and shows that GSV images can be effectively used for pavement

evaluation. The designed CNN is able to classify pavement images

into different crack categories. The paper by Amhaz et al. (2016)

presents a new algorithm for automatic crack detection from

2D pavement images, which relies on localizing minimal paths

within each image. The proposed approach selects a set of minimal

tracks and introduces two post-processing steps to improve the

detection quality. Compared to five existingmethods, the algorithm

is validated on synthetic and natural images from five different

acquisition systems. The results show that the proposed algorithm

provides very robust and precise results in a wide range of situations

in a fully unsupervised manner, which is beyond the current state

of the art.

The article by Silva and Lucena (2018) describes the

development of a machine learning-based model to detect

cracks on concrete surfaces using a deep learning convolutional

neural network (CNN) image classification algorithm. The model

is intended to increase the level of automation on concrete

infrastructure inspection when combined with crewless aerial

vehicles (UAV). A relatively heterogeneous dataset with 3500

images of concrete surfaces, balanced between images with and

without cracks, were used for this work. The model’s accuracy

were recorded for different experiments, and the best investigation

yielded a model with an accuracy of 92.27%, showing the potential

of using deep learning for concrete crack detection.

4.4.2. Boundary box regression in crack detection
Object detection is another crucial aspect of AI-based crack

detection systems. It involves identifying and localizing objects

of interest in an image or video. In the case of crack detection,

the thing of interest is the crack itself. Object detection is

usually performed using deep learning models such as YOLO

(You Only Look Once) and Faster R-CNN (Faster Region-based

Convolutional Neural Networks). These models use convolutional

neural networks (CNNs) to extract features from the input image

and then use these features to identify and localize the crack. Table 5

represents the review articles published on crack detection with an

object detection approach.

Fang et al. (2020) present a hybrid approach to detecting

cracks in raw images using deep learning models and Bayesian

probabilistic analysis. The technique involves retraining an object

detector to identify crack patches with a suitable signal-to-

noise ratio, generating ground truths of crack patches using

a semi-automatic method, and using a Bayesian integration

algorithm to suppress false detections. The algorithm uses a

deep CNN to recognize the orientation of the crack segment in

each detected patch, computes a Bayesian probability based on

the accumulated evidence from seen adjacent patches within a

neighborhood, and suppresses the patch lacking local supports

as false detection. The proposed approach is evaluated on a

comprehensive dataset of crack images and outperforms the state-

of-the-art baseline approach on deep CNN classifier. Ablation

experiments are conducted to demonstrate the effectiveness of the

proposed techniques.

Hu et al. (2021) addressed the challenges in detecting cracks

on asphalt pavement using traditional methods, which can be

inefficient and miss detection. The study proposed using object

detection based on the deep learning model YOLOv5 for pavement

crack detection. The researchers collected 3,001 images of crack

pavement with varying severity levels and used the YOLOv5 series

models for training and testing. The results showed that the

YOLOv5l model had the highest detection accuracy of 88.1%, and

the YOLOv5smodel had the shortest detection time of only 11.1ms

per image. The proposed approach could effectively detect cracks

on asphalt pavement, which can improve road safety by identifying

and repairing these cracks in time. Machine learning-based models

can be difficult to generalize for various cracks, requiring the

artificial design of pavement crack characteristics.

Li et al. (2019) propose a new method for crack inspection

in aircraft structures, as existing methods are time-consuming

and inaccurate. Their approach, called YOLOv3-Lite, utilizes

depth-wise separable convolution, feature pyramids, and YOLOv3

to improve crack detection. By using depth-wise separable

convolution, crack features are extracted, and parameters are

reduced. The feature pyramid joins semantically strong features

at high resolution for rich semantics, while YOLOv3 is used for

bounding box regression. The results show that YOLOv3-Lite is

50% faster than YOLOv3 without any loss of detection accuracy,

making it a state-of-the-art performance crack detection method

for aircraft structures such as fuselage or engine blades.

Wan et al. (2021) introduce a solution to the issues of

complex models and computational time-consuming problems in

current deep learning-based methods for road damage detection.

The proposed YOLO-LRDD model is a lightweight version of

YOLOv5s that incorporates Shufe-ECANet with an ECA attention

module as a new backbone network and utilizes BiFPN for reliable

detection. The Focal-EIOU approach is applied in the training

phase to obtain higher-quality anchor boxes, and the RDD2020

dataset is augmented with Chinese road scene samples for testing.

Experimental results demonstrate that YOLO-LRDD outperforms

several state-of-the-art object detection techniques in terms of

accuracy and efficiency. Compared to YOLOv5s, YOLO-LRDD

reduces model size by 28.8%, improves single image recognition

speed by 22.3%, and is easier to implement in mobile devices due to

its smaller and lighter model.

The paper by Hong et al. (2022) introduces the AugMoCrack

network, a new method for detecting cracks at the level of

bounding boxes. This approach focuses on identifying the

location of crack objects through a morphological perspective,

which sets it apart from other methods that require pixel-level
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TABLE 5 Review of road crack object detection methods.

Author Types of cracks Algorithm Additional
features

Advantage Limitations

Hu et al. (2021) Fatigue crack, longitudinal

crack, and transverse crack:

object detection

YOLOv5 series Backbone modules

include Focus and CSP

structures (neck modules

include FPNs and PANs).

The prediction module

uses GIOU_Loss

Detection accuracy of

>85%.

Model can be enhanced by

combining semantic

segmentation technology.

Anchor-free object detection

is not used

Li et al. (2019) Aircraft cracks YOLOv3-Lite Combines depth wise

separable convolution,

feature pyramids, and

YOLOv3

It can run on a mobile

device due to its

light-weight

characteristics,

YOLOv3-Lite is 50%

faster than YOLOv3

Detection accuracy is less

compared to YOLOv3

Wan et al. (2021) Longitudinal cracks, lateral

cracks, alligators, and

potholes

YOLOv5 Shuffle-ECANet by

adding an ECA

attention, BiFPN

Focal-EIOU in order to

get higher-quality anchor

box.

Sample imbalance

treatment enhances the

detection ability of the

model for Small objects

to a certain extent

Optimizing the sample

imbalance processing method,

can improve the sensitivity to

small objects

Hong et al. (2022) Cracks:, Patch, segmentaion YOLOv5

Frequency

Augmentation

Morphological

Filtering

Morphological

attention loss

A weakly supervised

crack detection method

with data augmentation.

LossCA, which considers

the connectivity of the

detected crack, and

LossPA, which helps in

the strict box detection

of the proposed method

Tightly detecting the

bounding box area while

reducing false duplicate

detections. Excellent

crack-detection

performance even with

little crack-training data

Not efficient for handling the

road images with different

textures

Ren et al. (2022) Longitudinal crack, transverse

crack, alligator crack, and

pothole:

YOLOV5-CoordAtt The main novelty of the

proposed method is that

various attention

modules were

introduced into the

original networks to

improve the ability of

extracting the features of

pavement cracks.

Precision of this method

is 4.36% higher than the

original model

The confidence scores of

pavement cracks are not

so high. Increase in

computational load

Fang et al. (2020) Images are night view, wet

pavement, distance view,

marble base,

Faster-RCNN A DCNN is introduced

to recognize the crack

orientation. A two-phase

Bayesian integration

algorithm is proposed to

verify the connected true

detections and suppress

false detections

To retain high sensitivity

to small cracks, the dense

outputs of overlapping

patch detections from

Faster R-CNN are

employed.

Bayesian integration increases

the computational cost

Zhao et al. (2022) Longitudinal, transverse, and

bifurcation cracks

Faster-RCNN Combined with sparse

representation and

compressed sensing, the

dataset was

preprocessed, and

various preprocessing

algorithms were

compared

Crack detection effects in

complex situations such

as road marking

interference, shallow

cracks multiple cracks,

and ambiguity were

significantly improved.

Type and severity of damage

(cracking) is not considered

segmentation. The Poisson blending and high-frequency discrete

cosine transform-based features to augment their training data.

The network also employs morphological attention loss functions,

considering neighbor connectivity and box area border to enhance

detection accuracy. The researchers trained their network using

two datasets and achieved a 4.5 and 2.5% increase in mean

average precision (mAP) in the concrete crack and Crack500

datasets, respectively, compared to the baseline architecture. In

a weakly supervised learning environment where training data

is limited, the AugMoCrack network outperforms state-of-the-art

crack detection methods.

Ren et al. (2022) present a pavement crack detection method

that employs YOLOv5 as the base model for real-time inspection.

Attention modules were added to improve the accuracy of deep

learning-based methods since these methods typically need help

to achieve high accuracy when dealing with small-sized pavement

cracks. The proposed method used self-built datasets from Linyi

city, and the results demonstrated that YOLOv5-CoordAtt with
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attention modules had a precision of 95.27%, which was higher

than other conventional and deep learning methods. The proposed

method proved accurate in detecting pavement cracks in various

situations. In another study, Zhao et al. (2022) offer a deep

learning-based approach to seeing road cracks that utilize image

sparse representation and compressed sensing to preprocess the

datasets. This method achieves high accuracy and efficiency in

crack identification and is robust when dealing with various road

crack images. Themethodwas evaluated using different algorithms,

and the results showed that it outperforms the original method by

increasing the mean average precision (mAP) by up to 5%.

4.4.3. Semantic segmentation in crack detection
Segmentation is dividing an image into multiple segments or

regions based on predefined criteria such as color, texture, or shape.

In the case of crack detection, segmentation is used to identify

and highlight the crack region in an image. Several segmentation

techniques are available, such as thresholding, edge detection,

and deep learning-based segmentation methods, such as U-Net

and Fully Convolutional Networks (FCNs). Table 6 illustrates the

segmentation methods used in the literature with a combination

of convolutional and deconvolution layers to generate a pixel-wise

segmentation map, which can be used to quantify the severity of

the crack.

Fan et al. (2021) propose a pothole detection approach using

single-modal semantic segmentation, employing a convolutional

neural network to extract visual features, a channel attention

module to enhance consistency, and an atrous spatial pyramid

pooling module to integrate spatial context information. They also

use a multi-scale feature fusion module to reduce the semantic gap

between different feature channel layers. Qu et al. (2021) present

a network model for automatically detecting cracks with uneven

strength from a complex background, which uses hierarchical

feature fusion and connected attention architecture to recover

lost details and incomplete extracted cracks. The model uses

an improved DCA-SE-ResNet-50 as the backbone network and

combines depthwise separable convolution and dilated convolution

for crack feature fusion. Moreover, they design an attention layer

to integrate feature map2 with feature map4 and incorporate

feature maps of the low and high convolutional layers in the

side network to assist in obtaining the final prediction map. The

proposed method achieves state-of-the-art performances with the

best F-score over 0.86 and 12 FPS on CFD, Crack500, and DCD

datasets, and experimental results demonstrate the effectiveness of

both methods.

Ai et al. (2018) proposed a new automatic pavement

crack detection method that leverages multi-scale neighborhood

information and pixel intensity using a probabilistic generative

(PGM) based practice. The PGM calculates the probability of a

crack for each pixel, and a fusion algorithm merges the probability

maps fromPGMand SVMapproaches into a fusedmap that detects

cracks more accurately than any of the original probability maps.

Additionally, a weighted dilation operation is proposed to improve

crack continuity. The proposed method outperforms state-of-

the-art pavement crack detection algorithms regarding precision,

recall, f1-score, and receiver operating characteristics. In contrast,

Yang et al. (2019) address the challenge of automatic pavement

crack detection by proposing a new network architecture called

Feature Pyramid and Hierarchical Boosting Network (FPHBN)

that integrates context information with low-level features and

uses nested sample reweighting during training to balance the

contributions of easy and hard samples to the loss. The paper also

introduces an average intersection over union (AIU) measurement

for crack detection evaluation.

Lin et al. (2023) proposed a deep learning based end-to-

end segmentation approach focusing on the contextual semantic

information and edge information on crack images. Three factors,

including the extraction of multi-scale feature information, the

spatiotemporal attentionmechanism, and pyramidal pooling (PSA-

Net), were used to construct this technique. Without expanding the

number of network parameters, PSA-Net is a compact pavement

crack detection model. By layered sample weighting to equalize

the loss caused by simple and complex samples, it increases the

accuracy of autonomous road crack detection.

4.5. Crack quantification

Crack quantification is the critical step after the crack skeleton

is obtained from road image processing. Crack parameters such as

length, width, and depth can be calculated to estimate the severity

of the crack. Estimating crack severity will guide road maintenance

officers to take the necessary actions to avoid mishaps. Figure 8

shows the crack severity categorization as low, medium, or high

depending on the calculated values of the crack’s length, width, and

depth. These severity levels help in evaluating how the crack might

affect the structural integrity of the civil infrastructure.

• Low severity: The absence or presence of relatively few

interconnecting cracks with a width of 6mm and a distance

between cracks of <0.328m. This type of crack can be so

tight that determining its diameter might be difficult, if

not impossible.

• Medium severity: The affected road section has a

comprehensive, interconnected network of cracks. Crack

widths range from 6mm to 19mm; they can also relate to any

damage with an average width of <19mm and near a pattern

of mild severity cracking. The distance between cracks in this

group is no more than 150mm.

• High severity: The road area’s crack pattern comprises

moderately or severely developed linked cracks. Cracks bigger

than 19mm or any crack wider than 19mm but near to

medium to high-severity random cracking are associated with

high severity.

Pavement cracks are a common problem on roads and

highways, and their monitoring and quantification are essential for

maintaining safe and efficient transportation networks. However,

the complex texture of these cracks and the potential for noise

and illumination to interfere with measurement accuracy have

made traditional crack quantification methods challenging. The

article by Sun et al. (2022) proposes a road crack monitoring

and quantification method based on vehicle video to overcome
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TABLE 6 Review of crack semantic segmentation[[Inline Image]] methods.

Author Types of
cracks

Algorithm Additional features Advantage Limitations

Fan et al. (2021) Pothole: semantic

segmentation

Encoder Decoder Unet with ResNet

as Backbone Channel

attention module Multi scale

feature fusion model

The quantitative comparisons

method achieves the

state-of-the-art (SoTA)

performance on both RGB

images and transformed

disparity images,

outperforming three SoTA

single-modal semantic

segmentation networks

Cost is more Crack

parameters not calculated

Qu et al. (2021) Cracks: semantic

segmentation

DCA-SE-ResNet-50 Feature fused (FF) module

Attention layer

Deeply-Supervised

Nets (DSN)

Insensitive to noise crack

marking, and can effectively

distinguish stains and

obstruction

Not very effective in detecting

thin cracks

Ai et al. (2018) Cracks-pixel level

segmentation

A probabilistic

generative model

(PGM).

Support vector machine

(SVM) multi-scale

neighborhoods Information,

Fusion Algorithm weighted

Dilation to optimize the

detected cracks

Maintains the continuity of

crack

Produces fewer noise

Li et al. (2022b) Transversal and

longitudinal cracks,

alligator Cracks:

Segmentation

U-shaped network

with the ResNet

encoder

EDA: the high-efficiency dual

attention module Multiscale

attention hesitant fuzzy set

(HFS) for crack

severity classification

More suitable for the

detection of crack images with

unbalanced aspect ratios

Necessary to improve the

attribute index and optimize

the classification method of

crack images, especially for

classifying massive cracks and

cracked cracks.

Yuan et al. (2022) Cracks:

Segmentation

Encoder Decoder Residual detail

attention (RDA) Attention

gating strategy Cross-entropy

loss function

Accuracy of crack extraction

is improved with suppressed

background artifacts

This method fails to achieve

the desired results when

dealing with fine cracks

Integrity of fracture

segmentation (e.g., blind

inpainting), can be improved

to extract more accurate and

complete features

FIGURE 8

Crack severity levels.

the limitations of traditional methods. The method includes

automated vehicle-mounted equipment withGPS signals to capture

crack images with location information, extracting morphological

features of dynamic road cracks, and a calculation algorithm

based on the United Kingdom scanning grid and projection

method. The proposed method also improves the crack distress

evaluation method through the analysis of different crack grades.

The experimental results indicate strong reliability and adaptability

with high-frequency and wide-range road detection, and the

proposed method has the potential to improve the monitoring

and quantification of pavement cracks and ensure the safety and

longevity of transportation infrastructure.

On the other hand, Matarneh et al. (2023) developed

an automated tool using the Hough transform algorithm for

detecting and classifying pavement cracks to optimize road

maintenance and prevent possible failures. The article reviews

existing attempts to use the algorithm and proposes a simple,

low-cost method that achieves high accuracy for detecting and

classifying vertical, diagonal, and horizontal cracks. The article

suggests that this low-cost image processing method has the
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potential to automate pavement crack detection and guide long-

term pavement maintenance decisions, which can reduce costs for

highway agencies. The originality of the article lies in its successful

testing of the Hough transform algorithm for automated cracks and

distresses classification.

The article by Avendaño (2020) discusses the challenges of

manual inspections for assessing damages in civil engineering

structures. It highlights using image-based checks using cameras

or crewless aerial vehicles (UAV) combined with image processing

to overcome these challenges. The article presents an approach

combining different aspects of the inspection, from data acquisition

through crack detection to quantifying essential parameters. A

convolutional neural network (CNN) is used to identify cracks,

and different quantification methods are explored to determine

the width and length of the damages. The results demonstrate

a low to no false negative rate for crack identification using

the CNN and the highest accuracy estimation for 0.2mm cracks

during quantification.

Similarly, Deng et al. (2023) propose an integrated framework

for automatically detecting, segmenting and measuring road

surface cracks. The approach involves using the YOLOv5 algorithm

for crack detection and amodified Res-UNet algorithm for accurate

segmentation at the pixel level—a novel crack surface feature

quantification algorithm to determine the width and length of the

cracks. The proposedmethod is validated using a road crack dataset

containing complex environmental noise, and it shows higher

accuracy for crack segmentation under complex backgrounds

compared to other methods. The developed crack surface feature

algorithm has an accuracy of 95% in identifying the crack length

and a root mean square error of 2.1 pixels in identifying the crack

width, with the accuracy being 3% higher in length measurement

than that of the traditional method.

Ha et al. (2022) propose an integrated framework for the

automated detection, classification, and severity assessment of road

cracks to optimize pavement management systems. The proposed

system expands the number of detected crack types to five (alligator,

longitudinal, transverse, pothole, and patching). It includes the

assessment of crack severity, which typically needs to be improved

in related studies. The studied research article uses SqueezeNet,

U-Net, and Mobilenet-SSD models to achieve an accuracy of

91.2% for both crack type and severity assessment. The proposed

system uses U-Nets for linear and area cracking to improve

object detection performance and automate the evaluation of crack

severity. The suggested automated pavement management system

better reflects each country’s requirements for various crack types

and severity standards.

Moreover, Carrasco et al. (2021) suggest a novel automated

method for measuring the width of surface cracks in civil

engineering infrastructure. The traditional visual inspection

method and manual measurement with a crack-width comparator

gauge are time-consuming and error-prone. Although algorithms

for automatic crack detection have been developed, most still

need to address the problem of crack width evaluation. The

proposed method consists of three stages: anisotropic smoothing,

segmentation, and stabilized central points by k-means adjustment.

It allows the characterization of both crack width and curvature-

related orientation and has been validated by assessing the surface

cracking of fiber-reinforced earthen construction materials. The

preliminary results show that the proposal is robust, efficient,

and highly accurate at estimating crack width in digital images,

effectively detecting natural cracks as small as 0.15mm width

regardless of the lighting condition.

4.5.1. Method for calculating the road segment
severity index

Boucetta et al. (2021) suggested three indices combined in

the severity index computation unit: the alligator cracks index

(ACI), the transverse cracks index (TCI), and the longitudinal

cracks index (LCI). These indices are calculated based on the cracks

observed in the gathered photos. The road network creation stage

entails creating a graph from the collected road network data. The

weighted network creation step generates a weighted graph based

on the collected severity indices and road data. The severity indices

are calculated using the edge weights of the road network

The road segment severity index (SI), is a composite of three

indices: the ACI (Eq. 2), TCI (Eq. 3), and LCI (Eq. 4) of the same

segment. Each of the three indices takes into account the number of

cracks discovered in a road segment and their severity level, which

is enabled by the suggested detection and classification methods

discussed in the preceding divisions.

SI (i) =
ACI(i)+ TCI(i)+ LCI(i)

3
(1)

ACI (i) =
Cf1 × LAC + Cf2 ×MAC + Cf3 ×HAC

∑3
j=1 Cfj

(2)

LAC,MAC, andHAC denote the number of low, medium, and high

severity alligator cracks in road segments, respectively.

TCI (i) =
Cf1 × LTC + Cf2 ×MTC + Cf3 ×HTC

∑3
j=1 Cfj

(3)

LTC, MTC, and HTC denote the number of low, medium, and

high severity transverse cracks in road segments, respectively.

LCI (i) =
Cf1 × LLC + Cf2 ×MLC + Cf3 ×HLC

∑3
j=1 Cfj

(4)

LLC, MLC, and HLC are the counts of the low, medium, and

high severity longitudinal cracks in road segments, respectively,

and are coefficients associated with each cost parameter in

each equation independently. Experts in the area are in charge

of verifying the values of these coefficients to improve the

optimization of the weight calculation algorithm.

5. Learning algorithms for crack
detection

Learning algorithms are an essential part of AI-based crack

detection systems. The primary goal of learning algorithms is

to provide the system with the ability to learn from a training

dataset to recognize and classify the crack images. There are three
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types of learning algorithms: supervised, unsupervised, and semi-

supervised. In supervised learning, the system is trained using

labeled data, whereas, in unsupervised learning, the system is

trained without labeled data. In semi-supervised learning, the

system is trained with labeled and unlabeled data. The choice of

learning algorithm depends on the availability of labeled data and

the type of problem to be solved.

5.1. Supervised learning

Qu et al. (2022) introduce a new method for detecting

cracks in concrete structures using deep learning and multiscale

fusion techniques. The use of modified U-Net architecture

achieves high accuracy rates of up to 98.67% on a diverse

dataset of concrete images with various types of cracks. The

study emphasizes the potential of combining deep learning and

multiscale fusion techniques for accurate and efficient crack

detection in concrete structures. Zou et al. (2018) proposed an

end-to-end deep learning-based approach for crack segmentation

in pavement images.VGG-16 and U-Net networks extract and

refine hierarchical features for precise crack segmentation. The

proposed method outperforms traditional methods and achieves

state-of-the-art results on benchmark datasets. The study highlights

the potential of deep learning-based approaches for accurate

and efficient crack segmentation in pavement images. Zhang

et al. (2016) present an automatic crack detection method for

concrete images using a convolutional neural network (CNN).

CNN architecture with two convolutional and two fully connected

layers achieves a high accuracy rate of 94.4% on a dataset

of concrete images with cracks. The study demonstrates the

potential of deep learning-based approaches for automatic crack

detection in concrete images. Chen Y. et al. (2021) and Sun et al.

(2021) comprehensively review image processing-based techniques

for crack detection in concrete pavements. The studied article

examines crack detection techniques, including thresholding, edge

detection, texture analysis, and machine learning-based methods.

The study emphasizes the importance of developing efficient and

accurate techniques for crack detection in concrete pavements to

ensure their safety and durability. It provides insights for future

research in the field.

5.2. Unsupervised learning

Unsupervised learning is a machine learning technique

involving training models on data without explicit supervision

or labeled data. Several studies have explored unsupervised

learning techniques for various applications. Duan et al. (2020)

proposed an unsupervised deep-learning framework for anomaly

detection in industrial processes. The use of generative adversarial

network (GAN) to learn the normal data distribution and

identify anomalous samples. The proposed method outperformed

traditional anomaly detection techniques and achieved high

accuracy rates. The study demonstrates the potential of

unsupervised learning techniques for anomaly detection in

industrial processes.

Similarly, Li et al. (2021) proposed an unsupervised deep

learning-based approach for anomaly detection in power systems.

The variational autoencoder (VAE) learn the expected behavior

of the power system and identify anomalies. The proposed

method outperformed traditional anomaly detection techniques

and achieved high accuracy rates. The study highlights the potential

of unsupervised learning techniques for anomaly detection in

power systems. Wu et al. (2021) proposed an unsupervised deep-

learning framework for image classification. An autoencoder-

based clustering approach group images with similar features and

achieved high accuracy rates on benchmark datasets. The proposed

method outperformed traditional clustering techniques and

demonstrated the potential of unsupervised learning techniques for

image classification.

Mubashshira et al. (2020) proposed an unsupervised learning-

based approach for feature extraction in human action recognition.

Use of a stacked denoising autoencoder (SDAE) to learn

discriminative features from raw sensor data and achieved

high accuracy rates on benchmark datasets. The proposed

method outperformed traditional feature extraction techniques and

demonstrated the potential of unsupervised learning techniques for

human action recognition.

Methods for supervised crack detection today mainly rely

on labeled data. Li et al. (2022b) presented an unsupervised

reconstruction-based concrete crack detection approach based on

nnU-Net. This approach works better when the normal sample

distribution’s variance is modest. In this instance, while the

abnormal image cannot be entirely learned from the semantic

information of the normal sample, the normal image can be

improved rebuilt. In order to rebuild the original image, the input

image first goes to the trained model, and the output image is then

utilized as the input image of the final model. Following study, he

suggested a reconstruction approach, and his selection of the loss

function encourages the network to better rebuild the system.

Li et al. (2021) study’s main goal is to address the weak

generalization and low intelligence issues with crack detection.

Considering efficiency and model simplicity, the studied article

proposes a fused deep neural network model architecture with the

K_means clustering algorithm. The K_means clustering technique

is utilized to generate the pseudolabels that the AlexNet model uses

to train its model, and this architecture is based on the original

AlexNet model. This fused architecture’s key benefit is that it

avoids the disadvantages of supervised learning techniques by not

requiringmanually labeled ground truth images for model training.

This model performs satisfactorily after being trained on cracked

images acquired from cellphones and automated cars in a variety of

environmental scenarios with different image quality.

5.3. Semi-Supervised learning

Semi-supervised learning is a machine learning approach that

uses labeled and unlabeled data to improve model accuracy. In

pavement evaluation and maintenance planning, detecting cracks

is a critical task. The paper by Tang et al. (2022) discusses using

Artificial Neural Networks (ANNs) for crack detection in pavement

evaluation and maintenance planning. Most existing models use
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the Fully Supervised Learning (FSL) approach, which relies on

high-quality annotation for reasonable accuracy. However, this

approach is costly and time-consuming, especially for complex

networks. This paper proposes a Weakly Supervised Learning

U-Net (WSL U-Net) for pavement crack segmentation. This

approach uses weakly labeled images to train the network,

significantly reducing the labor cost and human involvement in

image annotation. The experimental results show that WSL U-

Net outperforms some Semi-Supervised Learning (Semi-SL) and

WSL methods and achieves comparable performance with its FSL

version. The dataset cross-validation also demonstrates that WSL

U-Net is more robust with fewer overfitting concerns and better

generalization capability.

Detecting cracks at the pixel level is vital for building

and road inspections, but it requires time-consuming pixel-

level annotations. Previous work proposed a weakly-supervised

approach but struggled with lighter-colored cracks and non-

crack targets. Inoue and Nagayoshi (2023) proposed a data-driven

annotation refinement approach, which is effective regardless of

a dataset’s pixel brightness profile. The method speeds up the

annotation process by factors of 10 to 30 while maintaining

detection accuracy on three crack segmentation datasets and one

blood vessel segmentation dataset.

Zhu and Song (2020) present a weakly supervised approach for

detecting and segmenting cracks in asphalt concrete bridge decks,

which are challenging to detect using conventional methods due

to their dark color and complex nature. The proposed method

uses an autoencoder to differentiate data and highlight unlabeled

data features for weakly supervised learning. K-means clustering is

used to classify features, and semantic segmentation is performed

under weak supervision to identify cracks. The proposed method

is evaluated on a dataset of six types of defects on asphalt

concrete bridge decks and outperforms existing methods reported

in the references.

6. Challenges and future scope

In this article, we reviewed various road imaging methods

focusing on the data that transforms through different image

processing phases and outputs the segmented crack with its severity

level. With a data-driven approach, we studied pre- and post-

processing techniques used to improve image quality. We also

looked at learning techniques used for based crack classifications.

The following problem areas related to crack detection are majorly

discussed in Table 7 with their future scope.

Furthermore, future dataset collection efforts will prioritize

accuracy in computer vision tasks. Attention modules will enable

models to focus on relevant features, while multiscale feature

fusion will capture information at different levels of detail. Dataset

creation will also facilitate the integration of object detection with

segmentation. By emphasizing these aspects, dataset collection

efforts can drive advancements and enhance the accuracy of

computer vision applications in crack detection.

Moreover, addressing computational costs in object detection

algorithms will be crucial in future dataset collection. This

may involve exploring anchor-free techniques as alternatives

to reduce computational complexity. Using unsupervised deep

TABLE 7 Challenges and future scope in crack detection.

Problem area Challenges in crack
detection

Future
direction

Dataset Imbalance image data samples Transfer learning

and

semi-supervised

GAN

Heterogeneity in data samples Extreme Learning

Machine

3D dataset 3D-Point-Cloud-

Based Deep Neural

Network

Lacking labeled/annotated

datasets

Deep active

learning

Accuracy Accuracy is compromised in

varied road conditions like

shadow, stains, oil spots etc.

Attention Modules

Multi scale feature

Fusion

Combine object

detection with

Segmentation

Computational cost Labeling cost Models are very

large and heavy. It takes a lot of

time and computing power

to run Number of possible

combinations for bounding

boxes is huge, and these

networks tend to be

computationally demanding.

Anchor Free Object

Detection

Unsupervised deep

learning models can

be used

Real time system Improve the performance in

real time crack localization

Need huge amounts of training

data and powerful

computational infrastructure

Distributed

Lightweight Deep

Learning Models

Crack

quantification

Calculating the crack width,

length, and depth Crack

categorization based on severity

learning models can also help mitigate annotation overhead and

computational requirements. By focusing on these objectives,

dataset collection efforts can lead to developing more efficient

object detection models without compromising accuracy and

performance in crack detection applications.

Integrating distributed lightweight deep learning models

will play a significant role in the future of real-time systems

for crack detection. These models, designed for resource-

constrained devices, will enhance the efficiency and responsiveness

of real-time applications, particularly in road pavement. By

leveraging distributed computing and lightweight architectures,

real-time systems can achieve improved performance, low-latency

processing, and benefit domains such as edge computing and

IoT devices.

Lastly, advancements in image analysis techniques, automated

detection systems, and the integration of non-destructive

evaluation methods will shape the future of crack quantification.

The aim is to enhance accuracy, automate the quantification

process, and enable real-time monitoring for proactive

maintenance and improved infrastructure safety in road pavement.
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6.1. Future scope

In the context of crack detection in road pavement, the future

scope of dataset collection is expected to drive advancements

in research and application. Specialized datasets will support

emerging techniques such as transfer learning, semi-supervised

GANs, extreme learning machines, 3D-point-cloud-based deep

neural networks, and deep active learning. These datasets will

be diverse and domain-specific, covering many complexities. The

aim is to leverage pre-trained models, explore advanced learning

algorithms, and advance the field of 3D deep learning while

reducing the effort required for labeling. This focus on dataset

creation holds the potential to foster innovation and progress in

machine learning and artificial intelligence, specifically for crack

detection in road pavement.

6.1.1. Deep active learning
Deep active learning for crack detection combines deep

learning models with active learning strategies to improve the

efficiency and effectiveness of crack detection. It involves iteratively

selecting the most informative samples from an unlabeled pool,

annotating the samples by experts, and incorporating the labeled

data into the training set to update the model. This process reduces

annotation effort, improves model performance, and lowers

labeling costs. Deep active learning provides flexibility, adaptability,

and opportunities for exploring different active learning strategies

to enhance crack detection. Overall, it enables efficient and accurate

crack detection by leveraging deep and active learning strengths. Lv

et al. (2020) developed an active learning architecture to minimize

the labeling work required for flaw identification. An iteration

pattern is used to train the detection model in the proposed system.

An uncertainty sampling approach chose input photos based on

their uncertainty levels for annotation of image data. Also, they

developed an average margin approach to determine the sample

ratios among defect categories to verify the sampling number

for annotations.

6.1.2. Generative adversarial networks
GANs can be used for crack detection by generating realistic

synthetic crack images and training a discriminator to differentiate

between genuine and artificial cracks. The adversarial training

process improves the accuracy of crack detection models. GANs

can augment training data, enable unsupervised learning, assist

in domain adaptation, and support semi-supervised learning.

By leveraging the generative and discriminative capabilities of

GANs, crack detection models can be enhanced for more

effective infrastructure analysis and maintenance. Shim et al.

(2020) proposed an automatic method for detecting cracks in

concrete structures that combines transfer learning and data

augmentation techniques. Their approach achieved high accuracy

rates of 96.3 and 94.3%, respectively and is more efficient than

traditional methods. The study highlights the significance of data

augmentation and transfer learning in enhancing the accuracy and

robustness of their proposed approach. The suggested technique

can be valuable for engineers and practitioners working in crack

detection in concrete structures.

6.1.3. Meta-learning
Meta-learning, known as “learning to learn,” can enhance

crack detection systems by enabling models to adapt to new

crack types rapidly, learn from limited labeled data, and transfer

knowledge across different structures or materials. It facilitates

the efficient adaptation of crack detection models to changing

crack patterns, optimizing hyperparameters, and guiding active

learning and sample selection. With meta-learning, models can

quickly generalize from previous crack detection tasks, allowing

for effective crack identification and classification with minimal

training data. The ability to learn empowers crack detection

systems to leverage prior knowledge and experiences, accelerating

their performance in novel scenarios. While the application of

meta-learning to crack detection is still in its early stages, these

principles hold promise for improving crack detection systems’

efficiency, adaptability, and accuracy, contributing to safer and

more reliable infrastructure management. Mundt et al. (2019)

research contributes to the field of concrete defect recognition

by introducing new meta-learning approaches and highlighting

their effectiveness in finding optimized CNN architectures. These

architectures demonstrate improved accuracy and parameter

efficiency performance, addressing the challenges posed by the

complex and varied nature of concrete defects in real-world

scenarios. Further research and exploration in this area can unlock

the full potential of meta-learning in crack detection.

6.1.4. Attention module
In recent studies, attention mechanisms have been utilized to

improve the accuracy of automatic pavement crack detection using

deep learning models. Xiang et al. (2020) proposed an end-to-

end trainable deep convolution neural network that incorporates

attention mechanisms to detect pavement cracks accurately. The

network architecture includes a pyramid and spatial-channel

combinational attention modules to refine crack features. At the

same time, dilated convolution is used to avoid losing crack details

during pooling operations. In addition, the Lovász hinge loss

function is used to train the model on the CRACK500 dataset

and evaluate it on three pavement crack datasets. The results show

that the proposed method outperforms other methods regarding

experimental precision.

Jing et al. (2022) proposed the AR-UNet network model to

improve further the accuracy of crack detection, which introduces a

convolutional block attention module (CBAM) in the encoder and

decoder of the U-Net. The CBAM allows for effectively extracting

global and local detail information, while the basic block prevents

network degradation and layer growth. The method is tested on

multiple datasets and achieves higher crack detection accuracy than

existing methods.

Furthermore, Yu et al. (2022) proposed a U-shaped encoder-

decoder network, RUC-Net, for automatic pavement crack

detection. The scSE attention module and focal loss function were

incorporated into the network to enhance detection accuracy.

The proposed method was evaluated on three public datasets,

demonstrating superior performance to other methods such as

FCN, Unet, and SegNet. Additionally, studies were conducted on

the CFD dataset to compare the effectiveness of different scSE
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modules and their combinations in improving the performance of

crack detection.

Wan et al. (2021) proposed CrackResAttentionNet, an

encoder-decoder network-based architecture with position and

channel attention modules to accurately detect pavement cracks

with complex textures and different lighting conditions. The

architecture outperformed popular models such as ENet, ExFuse,

FCN, LinkNet, SegNet, and UNet regarding precision, mean IoU,

recall, and F1 for both public and self-developed datasets. Ren

et al. (2022) proposed an automatic pavement crack detection

method using YOLOV5 as the base model and employing attention

modules to improve detection accuracy for small cracks. The

proposed CoordAtt module selectively attends to relevant features

for better crack detection. The proposed method was evaluated

on self-built datasets and outperformed conventional and deep

learning methods, with a precision of 95.27%. Adding attention

modules can effectively enhance the ability of crack detection under

various situations.

7. Discussion

Detecting cracks in civil structures is a critical task to ensure

the safety and longevity of our infrastructure. The development of

advanced image processing technologies has made it possible to

detect and analyze cracks non-invasively. In this study, we reviewed

various image processing technologies and investigated the crack

detection method based on image processing.

One of the main challenges in crack detection is data collection.

Sensor systems such as UAVs, camera-mounted vehicles, and

smartphones can be used to collect high-quality data. However,

the 3D dataset is not widely available, so we are limited to

using 2D data for our research. Furthermore, road image data

can have a lot of noise, including uneven illumination, road

lanes, stains, etc. Therefore, it requires preprocessing techniques

such as grayscale conversion, histogram equalization, filtering,

morphological operations, etc. Although this process can be

time-consuming, obtaining high-quality data for effective crack

detection is necessary. Labeling the data is another crucial aspect

of crack detection. It can be done at image, block, or pixel levels,

and it can be a tedious task. Moreover, combining textures such

as asphalt and cement in datasets is often tricky, and there is a

lack of small datasets available for Indian roads. Therefore, we

plan to generate a combined textures dataset that includes Indian

roads. Kanaeva and Ivanova (2021) diversity of road image data

comprises images of various road surfaces, such as asphalt, cement,

etc. Models canmore easily generalize to situations in the real world

when synthetic datasets are quickly modified to include a diverse

variety of road picture data. In order to generate a robust and

diversified dataset containing damaged and undamaged instances,

synthetic dataset generation is a technique that is frequently used

in machine learning and computer vision. Researchers can produce

synthetic images that reflect the traits of the damage they seek

to identify by employing a variety of techniques, including data

augmentation, generative models, or simulations.

Learning algorithms play a significant role in crack detection

and supervised learning algorithms such as CNN VGG16, Google

net, transfer learning, and semi-supervised learning algorithms

that require partial labeling can be used. Unsupervised learning

algorithms were rarely used in this field. Our research uses a semi-

supervised learning approach to train our models effectively. Crack

data augmentation is necessary to deal with the limited availability

of small datasets. Generative adversarial networks (GANs) can

be used to generate synthetic data for training, improving the

models’ accuracy.

Different crack classification approaches can be used at

different levels, such as object detection with YOLO, Faster

RCNN, segmentation thresholding, edge detection, and Unet

FCN DEEPVLAB. However, real-time crack detection is still

challenging, and accuracy is a significant problem due to the

computational cost involved. To overcome this challenge, we plan

to use object detection followed by segmentation, which has proven

more effective.

Crack quantification is another essential aspect of crack

detection. Crack parameters such as length, width, and depth need

to be evaluated to determine the severity of the crack. However,

depth calculation is complex, and there is a need for further

research in this area. Finally, performance evaluation metrics such

as F1 score, mean average precision (MAP), recall, precision, IOU,

AUC, etc., are used to assess the accuracy of the models. We plan to

use MAP and AUC as our evaluation metrics.

Hence, image processing-based crack detection is a promising

technique for detecting and analyzing cracks in civil structures.

Our research will address the challenges related to data

collection, labeling, learning algorithms, crack classification,

crack quantification, and performance evaluation metrics. Our

findings will contribute to developing more accurate and efficient

crack detection methods in the future.

8. Conclusions

This article comprehensively reviews AI-based image-

processing technologies for crack detection in civil structures.

The study explores and investigates the challenges in data-driven

aspects of crack detection methods. The researchers carefully

selected relevant research articles on crack detection systems

and analyzed them in this review. The review first examines the

element of data collection and dataset analysis. Researchers were

observed to use camera-type images for research predominantly,

and authentic datasets were predominantly utilized. This ensured

efficiency and ease of implementation. The accuracy and error

levels of the analyses were thoroughly assessed. The review

also highlights methods relevant for future research in image

processing-based crack detection systems. Machine learning (ML)

and deep learning (DL) techniques have become mainstream

technologies in developing more advanced pavement crack

detection algorithms. DL-based approaches such as image patch

classification, crack semantic segmentation, and boundary box

regression models were compared using uniform evaluation

metrics. Crack segmentation is identified as a significant research

area in engineering, particularly in the field of image recognition

technology. It plays a crucial role in extending the service life of

civil structures and reducing safety hazards. While convolutional

neural networks (CNNs) have achieved remarkable results in the

segmentation and detection of road cracks, further improvements
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are still necessary. The article extracts challenges in crack detection

and suggests future directions for research. One area of focus

is exploring methods to compress the network scale without

compromising segmentation accuracy. Additionally, the physical

quantification of structural cracks is an important aspect for

further investigation.
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