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As the world becomes increasingly urbanized, growing populations are exposed

to poor ambient air quality and at risk of the associated health outcomes. Urban air

quality is a�ected both by local sources of air pollution and sources outside city

borders. Policy-makers who develop air quality policies need to know whether

it is most e�ective to focus on local policies or to spend resources fostering

larger regional air quality management cooperation. Identifying the fraction of

air pollution exposure from emissions as a function of distance from the city is a

critical element of air quality management design. We estimate the health burden

associated with exposure to fine particulate matter (PM2.5), ozone (O3), and

nitrogen dioxide (NO2) from county-level anthropogenic sources in and around

14 US cities; this analysis is a test-bed to conduct future global analyses. We use

adjoint sensitivities calculated from the chemical transport model GEOS-Chem,

high resolution satellite-derived surface concentrations of PM2.5 and NO2, and

health impact assessment methods. For the 70.2 million people living in these

cities, we estimate that 27,740 PM2.5- and O3-related premature deaths and

126,600NO2-related new asthma caseswere attributable to air pollution exposure

in 2011. Development within the GEOS-Chem adjoint framework enables sectoral

attribution and policy analysis in addition to the rote assessment of impact. We

find that 70% of deaths and nearly 100% of these asthma cases were attributable

to anthropogenic emissions. There is great variability in the sources of the

anthropogenically-related health impacts; within-urban emissions make up 5%

in Austin to 56% in Los Angeles and Phoenix (median: 31%) of urban premature

deaths and 18% in Austin to 82% in Los Angeles (median: 59.5%) of new asthma

cases, with the remaining portions attributable to emissions fromoutside the urban

area. For each city, we estimate the air quality related health benefits associated

with the adoption of a vehicle-miles-traveled fee in that city and in multiple spatial

regions surrounding the city. The findings suggest that the proportion of urban air

pollution that is regional is greater for premature deaths than new asthma cases

and for the eastern US than the western US.
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1. Introduction

The United States (US) has become increasingly urbanized in

recent years (Balk et al., 2018). Despite reductions in air pollutants

such as fine particulate matter (PM2.5) (Southerland et al., 2022),

ozone (O3) (Seltzer et al., 2020), and nitrogen dioxide (NO2)

(Anenberg et al., 2022), urban populations are still exposed to

poor air quality at levels aboveWorld Health Organization (WHO)

guidelines (World Health Organization, 2016) in many parts of

the country. Exposure to air pollution at unhealthy levels has

been associated with a number of health outcomes including

premature deaths (Jerrett et al., 2009; Burnett et al., 2014; Turner

et al., 2016) and new pediatric asthma cases (Achakulwisut et al.,

2019). For most chemical precursors of air pollutants, emission

rates are greater in cities than in rural areas (Strosnider, 2017);

however, the fraction of urban air pollution-related health impacts

directly attributable to local urban emissions varies from city to city

(Tessum et al., 2022). Variability in this “municipal” contribution

to health impacts is driven by a number of factors (Tessum

et al., 2022) including the city’s size and location, differences in

nearby (non-local) sources, and the overall magnitude of pollutant

concentrations relative to health impact thresholds. The high

degree of variability in municipal contributions to air pollution-

related health impacts poses challenges for local policy-makers. By

better understanding which local and regional sources have the

most impact on urban health, and whether to prioritize local source

control and/or larger regional cooperative action, policy-makers

will be better equipped to design interventions that efficiently

improve in-city air quality.

There are 14 cities in the US, and 97 globally, whose mayors

are members of the C40 Cities Climate Leadership Group, a group

engaged in action to confront climate change through local action

(C40 Cities Climate Leadership Group, 2023) and more recently

to improve urban air quality (Westmancoat, 2023). At the time

of this study, 48 C40 cities (six in the US) have signed the Clean

Air Accelerator agreement (Lopez et al., 2023). The signatory cities

pledge to establish baseline air pollution levels, identify top sources

of air pollution, and design ambitious actions to reduce the sources

under their control within 5 years, all with the aim of achieving

WHO air quality guidelines. The development of these policies

can refer to previous work in the US in assessing the air pollution

impacts of proposed actions. The US Environmental Protection

Agency (EPA) developed the Travel Efficiency Assessment Method

(TEAM) to assess the emission reduction benefits of actions that

improve travel efficiency (US EPA O, 2020). In collaboration with

the Capital Area Council of Governments (CAPCOG), a ten-

county region in and around Austin, TX, the EPA estimated the

emission impacts of travel efficiency improvements for Austin and

the surrounding region in 2040.

To support city-level policy development to reduce air

pollution emissions, it is valuable to relate emission reductions

(on a policy-by-policy basis) with air quality and health impacts.

However, the unique combination and large number of sources

of air pollutant precursors in densely-populated regions introduce

complexity in characterizing how any one source contributes to

urban air pollution and the extent of urban air pollution directly

attributable to urban emissions. This complexity, in turn, presents

major challenges in assessing the effectiveness of proposed emission

reductions policies that aim to target common sources of poor air

quality. Source apportionments can be performed to address these

policy needs by characterizing the influence of emission sources on

air pollution in a receptor, e.g., a city. A number of approaches are

used to conduct source apportionments including receptor-based

mass transfer approaches, such as positive matrix factorization

(Sturtz et al., 2014), source-based mass transfer approaches, such as

model tagging (e.g., Goldberg et al., 2016), increment approaches

(Kranenburg et al., 2013), and sensitivity analyses including both

brute force/finite difference (McDuffie et al., 2021) and adjoint

calculations (Nawaz et al., 2021). All of these approaches, in

some way, make assumptions that simplify the complex non-

linear processes involved in the formation of air pollution in

order to characterize the relationships between air pollutants and

the emissions of their chemical precursors. An effective source

apportionment approach will balance simplifying assumptions, to

maintain scientific validity in representing air pollutant formation

and transport processes, while also considering computational

tractability and applicability for policy-makers.

Many studies have performed source apportionments to

characterize the influence of sources on air pollution in the

US at different spatial scales. Considering national-scale PM2.5

concentrations, and their associated health impacts, one study

(Thakrar et al., 2020) applied a reduced complexity model,

InMAP, to PM2.5-related premature deaths in the US and

found that emissions from industry (29%), transportation (29%),

and agriculture (19%) were the leading sources. Another study

(McDuffie et al., 2021), found that emissions from transportation,

industry, energy, and “other fires” (including deforestation, boreal

forest, peat, savannah, and temperate forest fires) were the largest

contributors to PM−2.5 in the US. Regional and state-level source

apportionments (Huang et al., 2019, 2022; Kotchenruther, 2020)

using diverse approaches have been performed to characterize

the sources of PM2.5. More studies have considered the sources

of PM2.5 than O3 or NO2, as exposure to PM2.5 has a greater

association with severe health effects and because the composition

of PM2.5 can indicate source contributions making it more

amenable to different source attribution methodologies; but, some

source apportionments of US O3 have been performed both

nationally (Pappin et al., 2015; Nopmongcol et al., 2017b; Dedoussi

et al., 2020) and regionally (Collet et al., 2014; Goldberg et al.,

2016; Nopmongcol et al., 2017a; Zawacki et al., 2018). In regional

models, O3 formation conditions are identified as either NOx- or

VOC-sensitive in grid boxes and any contribution is attributed to

the limited species. Generally, transportation emissions, primarily

of nitrogen oxides (NOx), have been found to be the dominant

contributor to O3 concentrations at these different scales. Large-

scale regional source apportionment studies of NO2 are rarer

because no US urban area is in non-attainment of the EPA NAAQS

for NO2 despite the substantial health burden of NO2 below the

NAAQS in US cities (Anenberg et al., 2022).

Substantial work has been done to characterize sources of

PM2.5, O3, and NO2 at the urban-scale. For example, we found

in previous work (Nawaz et al., 2021) that vehicle emissions

were among the greatest contributors to PM2.5-, O3-, and NO2-

related health impacts in Washington, DC in 2011. While
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anthropogenically-contributed urban O3 is generally attributed in

large part to transportation emissions of NOx (Anenberg et al.,

2022), recent work has identified that the emissions of volatile

chemical products are an underrepresented source (McDonald

et al., 2018) specifically in Los Angeles but with implications for

all cities. Urban NO2 is primarily associated with transportation

emissions (Borge et al., 2014; Pepe et al., 2019; Nawaz et al.,

2021) and is generally contributed to by emissions within or near

cities (Wang et al., 2020) due to its short atmospheric lifetime

(Seinfeld and Pandis, 2016). Many studies have also focused

on assessing the effectiveness of enacted or proposed emission

reduction scenarios, sometimes leveraging source apportionment

approaches (Fann et al., 2012; Zhang et al., 2017; Yang et al., 2019).

One study leveraged reduced form models to identify ZIP Code-

level health impacts of city-wide policy scenarios including fleet

electrification and congestion pricing and estimated reductions in

PM2.5 concentrations resulting in health and monetary benefits

(Shukla et al., 2022) that varied at the neighborhood scale.

Another recent study identified changes in vehicle miles traveled

by clean buses in New York City and noted reductions in annual

concentrations of NO,NO2, and BC between 2009 and 2014 (Lovasi

et al., 2022). A third study (Pan et al., 2023) used the CMAQ air

quality model and BenMAP health impact assessment tool in the

US to quantify the impacts of large-scale electric vehicle use by 2050

and estimated that thousands of premature deaths could be avoided

across 30 metropolitan areas.

In this study, we apply our recently developed source

apportionment framework (Nawaz et al., 2021) that leverages

GEOS-Chem adjoint sensitivities, satellite-derived data, and

current health impact assessment methods to the 14 C40 cities

in the US; this analysis serves as a test-bed to conduct future

analyses globally. We estimate the overall health impacts in

each city from PM2.5, O3, and NO2 exposure and determine

the fraction of pollution-related premature deaths attributable to

anthropogenic emissions specifically. Additionally, we identify the

dominant anthropogenic regional and sectoral emission sources

that contribute to PM2.5- and O3-related premature deaths and

to NO2-related new pediatric asthma cases in each of these 14

study cities and identify characteristics among cities with common

sources. We then apply our adjoint sensitivities by combining them

with hypothetical emission reductions from the aforementioned

TEAM assessment to estimate air quality-related health benefits,

in the form of deaths and asthma cases avoided. We consider

the accrued benefits associated with progressively larger areas

implementing a proposed vehicle miles traveled fee policy to

identify the extent to which different cities and pollutants require

cooperative regional action, compared to isolated local action, to

address their air pollution-related health burden.

2. Materials and methods

In this study, we assess the accrued benefits associated with

an increasing area of policy implementation by leveraging adjoint

sensitivity calculations and health impact assessment methods.

First, we conduct adjoint sensitivity calculations to perform source

apportionments of air pollution-related premature deaths and new

asthma cases in each of the 14 study cities. Then we estimate the

air pollution-related health benefits, in the form of deaths and

cases avoided, from proposed emission reductions associated with

improvements in travel efficiency by combining these emissions

reductions with the adjoint calculations. Both steps of this analysis

largely follow the methodological framework described in our

previous study (Nawaz et al., 2021). The focus of this section is to

summarize the methodological approach while highlighting areas

of our analysis that differ from this previous study; for more details

on the methodology, we refer to this previous work.

2.1. Air quality modeling

The first step of our analysis is to simulate the formation of

PM2.5, O3, and NO2 in the 14 study cities. To do this we perform

a simulation using the chemical transport model, GEOS-Chem

(Bey et al., 2001) version 35n of the adjoint (Henze et al., 2007)

corresponding to version 10 of the standard forward model with

additional updates to include formation processes of anthropogenic

secondary organic aerosols (Nault et al., 2020). Throughout this

work we will refer to the GEOS-Chem simulation of these air

pollutants as the “forward model.” We conduct this simulation in

the nested US domain at a resolution of 0.5◦ × 0.667◦ with 47

vertical layers. Our simulation is driven by GEOS-5 meteorological

fields from the NASA Global Modeling and Assimilation Office

(NASA, 2023). For all 14 cities we conduct 2-month simulations for

each of the three pollutants for each month that contributes to the

time-scales of the pollutant exposures we use in our health impact

assessment discussed in section 2.4; overall we conduct 473 unique

2-month forward model simulations and adjoint calculations.

Our forward model configuration is thus similar to our

previous work (Nawaz et al., 2021) with the following noteworthy

difference. In addition to the standard NEI 2011v2.1 (US EPA

O, 2015) emissions we have used previously, we now include

emissions of volatile chemical products (McDonald et al., 2018)

to more accurately simulate the formation of urban pollution,

specifically of O3. In doing so we better characterize emissions

of anthropogenic volatile organic compounds (VOCs) that impact

PM2.5 and O3 formation.

2.2. Pollutant exposures and adjoint
calculations

Once we complete the forward model simulations, we define

the “response-functions” used in the adjoint calculation, for

each of the 14 cities and three pollutants. For this analysis the

response-functions are equivalent to “pollutant exposures” used

in epidemiological studies to relate pollution exposure to health

impacts and are consistent with the metric defined in the Global

Burden of Disease (GBD) 2019 study (Murray et al., 2020).

To calculate these exposures, we population-weight simulated

pollutant concentrations, apply a mask to identify the city of

interest, and, for PM2.5 andNO2, incorporate satellite-derived data.

For the latter step, we characterize fine-scale spatial variability at

a horizontal resolution of 0.01◦ × 0.01◦ by taking the ratio of

the satellite-derived surface-level concentrations for PM2.5 (van
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Donkelaar et al., 2021) and for NO2 based on a previous study

(Cooper et al., 2020) compared to the same satellite-derived

products averaged to our model resolution. Additionally, for our

PM2.5 calculation we apply a bias correction based on the ratio

of the model simulated PM2.5 to the satellite-derived PM2.5 for

2011. To perform the population-weighting we use the Gridded

Population of the World version 4 (GPWv4) product (Center

for International Earth Science Information Network - CIESIN -

Columbia University, 2017). In our previous study we applied a

mask corresponding to the district boundaries of Washington, DC;

in this work we have appliedmasks derived from the Global Human

Settlement (GHS) Settlement Model Grid (SMOD) (Florczyk et al.,

2019) dataset consistent with recent health impact assessments

(Anenberg et al., 2022; Malashock et al., 2022; Southerland et al.,

2022) to define the city boundaries for each of the 14 study

cities. These masks define the city extent beyond the municipal

boundaries and are more representative of the metropolitan area.

Lastly, we have updated the satellite-derived product for PM2.5

from the older one (van Donkelaar et al., 2016) we used in

our previous work to the most up-to-date dataset at the time

of this analysis (van Donkelaar et al., 2021). This new product

had an improved correlation with out-of-sample cross-validated

observations (R2 = 0.99) compared to the older product (R2 = 0.81)

based on evaluation in the study (van Donkelaar et al., 2021). We

present gridded maps of the exposures at 0.01◦ × 0.01◦ resolution

in Figure 1; we linearly interpolate the simulated O3 concentrations

to this resolution from the coarse model resolution. These products

agree well with ground level observations as evaluated in section

3.1. The exposure values used in the adjoint calculations are

provided in Figure 1.

After the exposure values (Figure 1) are calculated we conduct

the adjoint calculation. During the adjoint simulation we calculate

the sensitivities of these scalar exposures to emissions of their

chemical precursors. For PM2.5, we consider sensitivities to

emissions of black (BC) and organic carbon (OC), ammonia

(NH3), NOx, sulfur dioxide (SO2), and VOCs. For O3, we

consider sensitivities to emissions of NOx, VOCs, and carbon

monoxide (CO). For NO2 we present sensitivities to emissions of

NOx (sensitivities with respect to emissions of other species are

calculated by default in the adjoint model, but are not significant,

unsurprisingly, for NO2). Corresponding to the forward model

simulations, we conduct 473 2-month adjoint calculations for 2011

and aggregate the monthly calculations to get 42 unique sets of

adjoint sensitivities for each of the three pollutant exposures in

each of the 14 study cities. These 2-month calculations are done in

parallel for each month of the year for each city; the first month is

included as a spin-up period and to assess the impact of emissions

from the prior month on the formation of pollutants. The adjoint

characterizes the sensitivity of pollutant exposures to emissions

from precursor species for each day and model grid cell. We refer

to our previous work (Nawaz et al., 2021) for explicit definitions of

the exposures and adjoint sensitivity calculation.

For all 14 cities, we perform several 2-month adjoint

calculations to capture the influence of emissions from the

previous month on the current month’s air pollution exposures.

In Supplementary Table S1.1 we present the percentage of the

total contributions that are captured when considering days prior

to the current month. Based on the results across the 14 US

FIGURE 1

The exposures for all of the three pollutants, along with population

data for each of the 14 study cities. Cities are labeled to the left of

each row, and, for the first three columns, pollutants are labeled at

(Continued)
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FIGURE 1 (Continued)

the top of each column; a legend for the three letter abbreviations is

included as part of Table 2. The mask files used are indicated by the

black borders around the products. Numbers in the bottom left

indicate the population-weighted concentrations or “pollutant

exposures” for PM2.5, O3, and NO2 for the first three columns and

the population in millions with the under 20 years old population in

parenthesis for the last column.

cities, for O3, PM2.5, and NO2 we find that a 9-, 5-, and 1-day

integration beyond the adjoint forcing window captures an average

of 99.5, 99.7, and 99.7% of all contributions, respectively. These

recommended integration windows are most appropriate for urban

simulations. We note that simulations across larger spatial scales or

for exposures with much lower pollutant concentrations will likely

need more lag days than suggested here.

The adjoint model calculates the local-linear sensitivity of the

exposures to emissions of its chemical precursors. This local-

linear sensitivity characterizes the linear response of a pollutant

with respect to a precursor species under the chemical conditions

and emissions levels for which the forward model simulation

was conducted. When applying these local-linear sensitivities to

characterize changes in emissions that are notably different from

this emissions magnitude, substantial uncertainty related to non-

linear relationships can be incurred (Nawaz et al., 2023). To

reduce the uncertainty introduced by these non-linear effects

in the O3 adjoint calculation with respect to NOx, we apply a

second-order contribution calculation derived from these local-

linear sensitivities and from additional forward model simulations

following the framework outlined in our previous work (Nawaz

et al., 2023) for all other pollutant concentration emission

relationships we only consider the local-linear sensitivities as the

second-order effects are less pronounced; to elaborate, the response

in NO2 concentrations is linearly related to NOx emissions and

the response in PM2.5 concentrations is linearly related to primary

carbonaceous aerosol emissions. For PM2.5, there are some second-

order effects involved in the formation of secondary inorganic and

organic aerosol; however, based on our previous analysis (Nawaz

et al., 2021) these are less pronounced than the relationship between

O3 and NOx.

2.3. Source apportionment calculation and
emission scenario projection

Once we have calculated the adjoint sensitivities we can

estimate the source contributions following the framework

introduced in our previous work (Nawaz et al., 2021). In a general

sense, we do so for the first order calculation as:

dJs = λs × Es (1)

We calculate the exposure contribution dJ from a specific source s

by multiplying the adjoint sensitivities associated with that source

λs by the emissions associated with that source Es. Specifically, we

consider adjoint sensitivities to emissions from unique days, grid

cells, and precursor species and combine them with emissions from

the corresponding days, grid cells and species; we can also further

disaggregate emissions by sector to estimate sectoral contributions.

The second order contribution calculation is described in our

previous work (Nawaz et al., 2023).

We assess the pollutant exposure impacts of proposed emission

reductions in 2040 relative to 2011 by adopting an approach similar

to Equation 1. In this step of the analysis, we use the adjoint

sensitivities corresponding to a unique source; however, instead of

combining themwith emissions from a specific source, we combine

themwith emissions from a proposed emission scenario perturbing

emissions corresponding with the grid cells, days, and precursor

species of the adjoint sensitivities:

dJ = λs × 1E (2)

A benefit of this approach is that we can consider proposed

emission scenarios (1E) through variations of all of the sources we

identified in the source apportionment calculation. In other words,

we can consider emission changes corresponding to distinct grid

cells, seasons, chemical precursor species, and emissions sectors.

We consider a number of emission reductions associated with

proposed travel efficiency improvements described in detail in the

EPA TEAM analysis (US EPA O, 2020) that specifically target

emissions from on-road light-duty vehicles at the annual time-scale

(Table 1). We identify the health benefits associated with areas of

policy implementation using concentric circles of different radii.

We iteratively increase the circle radius, centered around a city, by

a fixed amount and combine the adjoint sensitivities with emissions

from all of the 0.1◦ × 0.1◦ that have center points within the circle.

We combine the adjoint sensitivities with emissions from larger and

larger spatial areas to estimate the accrued benefits of applying these

proposed scenarios to larger areas of implementation.

This approach is simple and makes two major simplifications

that introduce uncertainty into our analysis: (1) we apply the

percent emission reductions across all on-road vehicle emissions,

including both light and heavy-duty vehicles; (2) these scenarios

were developed specifically for Austin, TX so when we apply them

to other cities we do not account for city-specific differences that

could impact emission reductions including urban density, transit

networks, sidewalks, and bike lanes. The first simplification is done

because the on-road vehicle emissions used in our modeling set-

up are not separated into light and heavy-duty vehicles; this likely

leads to a high bias in our estimates of premature deaths avoided

from the proposed scenarios. The second simplification is done

because detailed EPA TEAM assessments have not been completed

for most of the other study cities. We also note that the results that

are presented in this work only consider the impact of the proposed

travel efficiency improvement plans; we do not consider the greater

reductions that have been or could be achieved from fleet turnover

and current regulations, and vehicle electrification.

2.4. Health impact calculation

After calculating the contributions to pollution exposure from

specific sources we assess the associated health impacts following

the framework of our previous study (Nawaz et al., 2021) based

on methods from the GBD 2019 study (Murray et al., 2020). For
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TABLE 1 Percent reductions in on-road light-duty vehicle emissions by 2040 compared to 2011 emissions of primary PM2.5, NOx, and VOCs associated

with four proposed travel e�ciency improvement plans in 2040 in the EPA TEAM analysis.

Scenario PM2.5 NOx VOCs

Scenario 1: Improved transit frequency and travel times −0.09% −0.09% −0.08%

Scenario 2: Region-wide transit frequency improvements −0.35% −0.39% −0.31%

Scenario 3: Public sector worker transit subsidy −0.98% −1.00% −0.96%

Scenario 4: Region-wide vehicle-miles traveled pricing −4.33% −4.21% −4.47%

PM2.5, the GBD 2019 study provides exposure to relative risk (RR)

look-up tables which relate PM2.5 exposure to the relative risk of

premature death from six outcomes: ischemic heart disease, stroke,

lung cancer, acute lower respiratory illness, type II diabetes, and

chronic obstructive pulmonary disorder. We linearly interpolate

between exposures and risks as they are provided at discrete

intervals. For O3 and NO2, we apply the log-linear model used in

previous works (Turner et al., 2016; Achakulwisut et al., 2019) to

relate 6-month peak averaged MDA8 population-weighted O3 and

annual averaged population-weighted NO2 to the relative risk of

premature death from chronic obstructive pulmonary disorder and

new pediatric asthma cases, respectively.

RR = eβX (3)

where X refers to the concentration above the counterfactual value

and β is the concentration response factor; values are given in

associated works for both pollutants (Achakulwisut et al., 2019;

Murray et al., 2020). We use low-concentration thresholds of 37.6

ppbv and 2 ppbv for O3 and NO2, respectively, in line with our

previous study (Nawaz et al., 2021).

To assess the overall health impacts of pollutant exposures we

use population data at the urban level (Southerland et al., 2022) and

apply age-stratifications from the state-level (Murray et al., 2020)

as the relative risk exposure relationships for certain outcomes are

age-dependent. For NO2 we use pediatric populations exclusively

(Anenberg et al., 2022) and do not apply this age stratification.

We use disease rates from the GBD 2019 study (Murray et al.,

2020) at the state level; the city boundaries of Portland, New

York City, Chicago, Philadelphia, andWashington, DC extend into

multiple states, for these cities we use the state where most of

the population resides in, noting that bordering states generally

have similar disease rates in these cities. For Washington, DC we

apply state values from Virginia. We estimate the health impacts

associated with some relative risk exposure relationship as:

Health Impacts = Population × Baseline Disease Rate

×

(

1−
1

RR

)

. (4)

We perform this assessment for each relative-risk health outcome

and each age bracket across all three pollutants.

To characterize the health impacts associated with a specific

contribution or emission reduction we perform the health impact

assessment framework described above twice: once using exposures

at the baseline levels (Figure 1) and a second time by multiplying

this baseline estimate by the fraction attributable to the specific

source sector. The latter is calculated by taking the difference

between the exposure and the contribution from the source sector,

divided by the total exposure value. By differencing these two values

we estimate the health impacts attributable to a source or the health

benefits associated with an emission reduction. We apply relative

changes in baselinemortality rates, age distribution, and population

data from the GBD foresight project (IHME, 2018) to account

for changes in demographics by 2040. We do not project asthma

incidence rates as changes in incidence rates are not considered in

the GBD foresight project.

3. Results

3.1. Evaluation of pollutant concentrations

We characterize uncertainty in our exposure estimates

by performing an agreement assessment between ground-level

observations from the US EPA Air Quality System (AQS) and

the pollutant exposures. This comparison is done for 2011

at the exposure time-scales: annual averages of daily average

concentrations for PM2.5 and NO2 and the 6-month peak

average of the average maximum daily 8-h concentrations for O3.

Observations from monitors that recorded fewer than 200 days

for PM2.5 and NO2 and fewer than 100 days in the 6-month

peak season for O3 are excluded from our assessment. Applying

this filtering, we are left with observations from 319, 1283, and

370 unique monitors for PM2.5, O3, and NO2, respectively, which

are located throughout the US and that cover most of the study

cities. The exposures we compare against these observations are

satellite-derived concentrations for PM2.5 (van Donkelaar et al.,

2021) and NO2 (Nawaz et al., 2021), and GEOS-Chem simulated

concentrations for O3. We characterize the agreement between the

exposures and observations both throughout our domain and in the

study cities specifically; to do so we consider the correlation (R2),

normalized mean bias (NMB) calculated as the exposure values

minus observations divided by observations, and the root mean

square errors (Figure 2). Biases for individual cities for all three

pollutants are presented in Supplementary Table S1.2.

Performance of the satellite-derived product used for PM2.5

(Figure 2A) is discussed in great detail at the global scale in its

corresponding study. There were PM−2.5 monitors with sufficient

days of observation located within all of the study cities, shown in

Figure 1, excluding Austin. Across all monitors located in our study

cities the satellite-derived product agrees well with observations,

with a correlation of R2 = 0.63 and an NMB of −0.6%. When

we compare satellite-derived concentrations in individual cities to

monitors we find that NMB values range from−29.4% in Portland

to +15.8% in Miami. The cities with the greatest agreement were
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FIGURE 2

Evaluation of the exposures of PM2.5 (A), O3 (B), and NO2 (C) compared to US EPA AQS observations. Results for monitors across the entire domain

are given in red while comparisons for only the study cities are given in gray.

New York and Washington, DC with NMB values of −1.3 and

−2.4%, respectively.When comparing observations to the exposure

values for PM2.5 in individual cities we note that monitor sparsity

could impact our assessment. Some cities only have one or two

ground-level monitors; if they are located near a major source, not

resolved by our exposure estimate, we would expect the exposures

to be biased low. This sparsity would have an even greater effect on

the shorter-lived NO2; this is less of a consideration for O3 given its

longer atmospheric lifetime.

The only pollutant exposure that we calculate exclusively using

simulated concentrations is O3 (Figure 2B). Chemical transport

model simulations of O−3 have been biased high (Canty et al., 2015;

Travis et al., 2016) in general in the US, with among the largest

high biases occurring in the south-eastern US. Due to the long

atmospheric lifetime of O3 we anticipate that less local features

would be captured in our simulated concentrations than for the

other, shorter-lived pollutants. With concentrations spanning a

smaller dynamic range than PM2.5 and NO2 we also expect worse

correlation. In the study cities we find a correlation of R2 = 0.42

and bias of +13.2% for O3. Unlike for PM2.5, there were monitors

with sufficient observations in all of our study cities; in these cities,

biases ranged from−6.7% in Austin to+25.8% in Boston. Overall,

the cities in which simulated O3 concentrations best agreed with

observations were Austin and Portland with a +7.6% bias, and

Phoenix with a−8.9% bias.

Of all three pollutants, the location of ground level monitors is

the most important for NO2 due to its short-atmospheric lifetime.

Although the satellite-derived approach we use to characterize

fine-scale variability compares well against observations (Cooper

et al., 2020, 2022; Nawaz et al., 2021) we note that this approach

may be unable to capture smaller hotspots of NO2 concentrations

(associated with road systems and point sources). Beyond the

inability of our approach to capture fine-scale variability in

the NO2 concentrations discussed above, the overall low bias

could be attributable in part to overestimates of NO2 from

chemiluminescent monitors (Lamsal et al., 2008) that attribute

concentrations of other reactive nitrate species to NO2. Isolating

our evaluation to just the study cities, excluding Austin and Seattle

which had no monitors with sufficient observations, we find a

correlation of R2 = 0.63 and a low bias of +6.2%. There is a high

degree of variability in biases for NO2 at the city level that is likely

attributable to the reasons given above: biases ranged from−63.4%

in Boston to +19.4% in Portland. The cities in which the satellite-

derived NO2 concentrations had the lowest biases compared to

observations were Washington, DC with a bias of +0.3%, Chicago

with a bias of+5.9%, and Phoenix with a bias of+8.2%.

3.2. Air quality health impacts in all US C40
cities

We next estimate the overall health impacts associated with air

pollution exposure in all of our study cities (Table 2). Across these

14 cities, about 70.2 million people were exposed to air pollution in

2011; these exposures result in an estimated 24,380 PM2.5-related

deaths, 3,350 O3-related deaths, and 126,600 NO2-related new

pediatric asthma cases in that year.

For individual cities, PM2.5-related annual premature deaths

ranged from 290 in Austin to 5,830 in New York City. Despite

New York City having below average PM2.5 as compared to

the other study cities (Figure 1), demographic characteristics like

population number, the age distribution of population, and baseline

disease rates led to it having the highest number of PM2.5-related

premature deaths. Similar to how urban air pollution is not entirely

dependent on urban emissions, air pollution health burdens are

not entirely driven by exposure levels; it is important to consider

differences in disease rates and population when comparing

air pollution-related health impacts across cities. For example,

Washington, DC and Philadelphia have similar PM2.5 exposures

and populations; however, there are 1.3 times as many PM2.5-

related premature deaths in the former due primarily to differences

in baseline disease rates and age demographics. Additionally,

Washington, DC and New York City have similar PM2.5 exposures

but substantially different populations which leads to 5.0 times as

many PM2.5-related premature deaths in New York City in 2011.
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TABLE 2 Population, under 20 years old population, PM2.5- and O3-related premature deaths, NO2-related asthma cases, and the anthropogenic

component of PM2.5- and O3-related premature deaths for each of the study cities.

City Code Population
—total

(thousands)

Population
—pediatrica

(thousands)

Premature deaths Asthma
cases

Anth.
fraction

PM2.5 O3 NO2 Deaths

Austin, TX AUS 1,029 262 292 33 377 0.59

Boston, MA BOS 2,115 453 636 102 1,697 0.72

Chicago, IL CHI 6,931 1,701 2,841 346 12,153 0.64

Houston, TX HOU 4,628 1,297 1,472 205 4,598 0.65

Los Angeles, CA LOS 14,183 3,626 4,956 773 33,417 0.78

Miami, FL MIA 5,306 1,164 1,852 294 1,283 0.53

New Orleans, LA NOL 767 172 349 63 582 0.68

New York City, NY NYC 16,180 3,698 5,827 733 48,684 0.71

Philadelphia, PA PHL 3,294 782 1,530 232 5,379 0.68

Phoenix, AZ PHX 3,434 912 1,205 197 5,359 0.57

Portland, OR POR 1,644 384 482 15 1,524 0.88

San Jose, CA SJO 4,657 1,014 1,198 109 4,779 0.84

Seattle, WA STL 2,684 612 574 48 2,788 0.75

Washington, DC WAS 3,390 757 1,169 202 3,978 0.65

TOTAL 70,243 16,834 24,383 3,352 126,598 0.70

aPeople under 20 years old.

Premature deaths related to O3 exposure were always

substantially smaller than those from PM2.5, consistent with

previous health impact assessments (Cohen et al., 2017; Murray

et al., 2020), due to a less severe relationship between exposure and

relative risks (Burnett et al., 2014; Turner et al., 2016). Overall, O3-

related deaths ranged from 20 in Portland to 770 in Los Angeles.We

note that low O3 concentrations in Portland, Seattle, and to a lesser

extent San Jose combined with a high degree of uncertainty in the

health impact assessment could mean that the estimated O3-related

premature deaths are not significantly above zero. Comparing

PM2.5- and O3-related premature deaths in the two most populous

of our study cities, there are more PM2.5-related deaths in New

York City than Los Angeles, but the inverse is true for O3-related

premature deaths; this is attributable in part to higher O3 exposure

in Los Angeles (59.7) than New York City (54.2) despite the larger

population of the latter.

For individual cities, asthma cases related to NO2 exposure

vary substantially on a city-by-city basis, more so than PM2.5- and

O3-related premature deaths. For example, comparing the health

impacts in the city with themost premature deaths (NewYork City)

to the city with the least (Austin), there were 129 times as many

NO2-related asthma cases in New York City, but only 20 times as

many PM2.5- and O3-related premature deaths; the latter is more

consistent with the population ratio of these two cities of around 16.

City-by-city variability in NO2 exposures is greater than for PM2.5

and O3 exposures and areas of low and high NO2 concentrations

are generally aligned with areas of low and high population.

In the final column of Table 2, we present the anthropogenic

fraction of PM2.5- and O3-related premature deaths in each

of the study cities. This anthropogenic fraction represents the

fraction of overall PM2.5- and O3-related premature deaths that

are attributable to anthropogenic emissions. Across all cities, about

70% of PM2.5- and O3-related premature deaths are attributable to

anthropogenic emissions, and this fraction is relatively consistent

ranging from 53% in Miami to 88% in Portland. Across all of

these cities a majority of air pollution-related health impacts are

attributable to anthropogenic emissions. We do not include an

anthropogenic fraction for NO2-related asthma cases because, on

average, anthropogenic emissions of NOx contribute more NO2

exposure than actual levels in the cities. This result is due to

the removal of NO2 by other chemical species, most notably

reactions with hydroxyl radicals to form nitric acid, nighttime

chemical reactions between NO2 and nitrates, and the formation

of peroxyacetyl nitrate and alkyl nitrates (Seinfeld and Pandis,

2016). Overall, we estimate that anthropogenic emissions of NOx

contribute on average 1.08 times the NO2 exposure levels, ranging

between 0.94 in Austin and 1.18 in New Orleans with the values>1

indicating NO2 removal from other chemical species.

Across all of the study cities, the ratio of PM2.5-related

premature deaths to overall PM2.5- and O3-related premature

deaths, from both PM2.5 and O3 exposures, was consistent. Overall,

about 88% of all PM2.5- and O3-related premature deaths were

attributable to PM2.5 exposure ranging from 85% in New Orleans

to 97% in Portland. As expected, due to the higher association

between PM2.5 exposure and premature death than O3 exposure

and premature death, PM2.5 exposure is responsible for most of

the PM2.5- and O3-related premature deaths in all of these cities.

Lastly, considering premature deaths and asthma cases per capita

allows for additional insight into the extent to which pollutant

exposures and disease rates drive overall health impacts. The city

with the highest per capita premature deaths was NewOrleans (0.54

deaths per 1,000 people) and the city with the lowest was Seattle
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(0.23). Although PM2.5 and O3 exposures are substantially larger

in New Orleans than in Seattle they are only 1.7 and 1.6 times

greater indicating that baseline disease rates and non-linearities

in the relative risk exposure relationships play a key role in the

per capita health impacts. For NO2, the highest per capita cases

occurred in New York City (13.2 cases per 1,000 children) and the

lowest per capita cases occurred in Miami (1.1).

3.3. Regional source apportionment of
pollution-related health impacts

From our results in the previous section, we conclude that

the health burdens associated with exposure to PM2.5, O3, and

NO2 in our study cities are substantial and that a majority of

these health burdens are attributable to anthropogenic emissions.

Characterizing the regional influences of anthropogenic emissions

on these air pollution-related health impacts is a useful step toward

developing effective pollution mitigation policies. To address this,

we estimate the regional contributions to urban PM2.5- and O3-

related premature deaths and new asthma cases (Figure 3). For

each city, we consider regional contributions at three levels. First,

we consider the municipal contribution of the city, i.e., the extent

to which emissions in a city contribute to air pollution-related

health impacts in that city. Second, we consider contributions

from all individual counties within the state the city is located

in, excluding the municipal contribution; there is one exception,

for Washington, DC we consider county-level contributions from

Virginia. Lastly, we consider state-level contributions from the

rest of North America, excluding prior city-level and state-level

contributions. In breaking down contributions in this manner we

not only characterize the extent to which emissions from a city, its

state, and the rest of North America contribute to the air pollution-

related health impacts in a city, but also consider the unique

county-level and state-level contributions that make up these larger

regional contributions.

Focusing first on PM2.5- and O3-related premature deaths, we

consider the impact of emissions from within each city on that city;

this is the “municipal” contribution. The municipal contribution

varies greatly from city-to-city. For example, in Austin only 5%

of PM2.5- and O3-related premature deaths are attributable to

emissions from Austin; however, in Los Angeles and Phoenix the

municipal contribution makes up over half of all PM2.5- and O3-

related premature deaths. While a number of factors influence

this variability in the municipal contribution, perhaps the most

important is the city size. On average, the four smallest cities

(Boston, Portland, New Orleans, and Austin) had an average area

of 1,257 km2 and an average municipal contribution of 20%.

Contrasting this with the four largest cities (New York City,

Houston, Chicago, and Los Angeles), which had an average area of

8,636 km2 and an average municipal contribution of 37%, it is clear

that smaller cities contribute less to their own air pollution-related

health burden than larger ones. Note that the combined local and

state contributions in these small cities are generally similar to

the combined local and state contribution in larger cities in the

same region.

The second factor that influences variability in municipal

contribution is one of the most important for determining the

overall breakdown of city, state, and domain-level contributions

to urban PM2.5- and O3-related premature deaths: the geographic

location of the city. In the western US, municipal, state, and domain

contributions to PM2.5- and O3-related premature deaths make

up, on average, 38, 40, and 22%, respectively, compared to the

Eastern US where, on average, they make up 25, 22, and 53%,

respectively. This trend makes sense given there are more cities,

greater population density, and more power plants in the Eastern

US. In the Western US, where urban agglomerations are further

apart from one another and downwind of fewer anthropogenic

sources, combined municipal and state contributions play a much

greater role of 78% compared to 47% in the EasternUS.WesternUS

states are generally larger in land area than eastern US states, which

also leads to greater state contributions. By grouping cities into

smaller regional clusters, e.g., Boston, New York City, Philadelphia,

and Washington, DC or Austin, Houston, and New Orleans, we

find that for cities in these regional clusters, contributions from

emissions outside of the states along with the combined municipal

and state contributions are relatively similar. The emission sectors

that drive differences across these regions are discussed in detail at

the end of this section.

The focus of the prior two paragraphs has been on the

factors driving the regional breakdown of PM2.5- and O3-related

premature death contributions; turning our attention to the

regional breakdown of NO2-related asthma cases, the importance

of these factors is even greater. The four smallest cities (Boston,

Portland, New Orleans, and Austin) have a municipal contribution

to NO2-related asthma cases of 36% compared to the four largest

cities (New York City, Houston, Chicago, and Los Angeles) with a

municipal contribution of 70%. Similarly, regionality is important

in determining the domain contribution: in the western US the

domain contribution was, on average, 5% compared to the eastern

US where it was, on average 24%. The clearest difference between

the regional breakdown of NO2-related asthma cases compared to

PM2.5- and O3-related premature deaths is the greater influence of

sources near the city. As discussed previously, NO2 has a much

shorter atmospheric lifetime than PM2.5 and O3 so municipal

emissions will have an enhanced impact on NO2-related asthma

cases compared to PM2.5- and O3-related premature deaths.

Another key characteristic that influences variability in the

regional contributions to urban air pollution-related health impacts

is the sectoral profiles of the emissions that most affect each city.

We present the relative contributions from each sector regardless

of location in Table 3; additionally, we present the relative sectoral

contributions from the three spatial areas discussed in Figure 3 and

Supplementary Tables S1.3–S1.5.We note that amajority of “other”

emissions are attributable to the “surface” sector which includes

a number of distinct sectors as discussed in our previous study

(Nawaz et al., 2021) including non-EGU combustion, commercial

cooking, gas stations, non-point industrial processing, solvents,

waste disposal, and non-plume EGU and industrial emissions.

County-level contributions of emissions from all sectors to PM2.5-

and O3-related premature deaths and new asthma cases are

available in the supporting information. In these county-level

contributions we include lower and upper bound estimates from

the health impact calculation.
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FIGURE 3

Regional contributions to air pollution-related health impacts in (A) the eastern and (B) the western US. We consider separate breakdowns for PM2.5-

and O3-related premature deaths (left) and NO2-related new asthma cases (right) for each city. In red are municipal contributions; in green are

contributions from the state the city is in, broken down by county; and in blue are contributions from the rest of North America broken down by

state. We consider the top five county and state contributions; all other contributions for each category are labeled as “other.” Contributions <2% are

not labeled. The term ROD refers to “rest-of-domain” and includes all emissions outside of the US, Mexico, and Canada, including shipping emissions

within the nested US GEOS-Chem domain.

Considering the results presented in Table 3, we compare the

sectoral breakdowns of cities with the four largest municipal

contributions of air pollution-related premature death (i.e., Los

Angeles, Phoenix, Miami, and Portland) to the cities with the

four smallest contributions (i.e., Austin, Boston, New Orleans,

Philadelphia). Cities with more municipal contributions in general

have large contributions from residential emissions (1.71 times

cities with fewer municipal contributions), on-road vehicles (1.26),

and non-road vehicles (1.18), but smaller contributions from power

plants (0.21), agriculture (0.29), and industry (0.42). Emissions

of primary carbonaceous aerosols associated with the residential

sector persist for a much shorter time (Lund et al., 2018) than

the precursors of secondary pollution. Subsequently, cities with

proportionally more residential emissions should have a greater

municipal contribution to their pollution. Emissions from on-

road vehicles have been shown to have large per-mile impacts in

urban areas (Choma et al., 2020, 2021) and both on-road and

non-road vehicle emissions make up a large fraction of urban
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TABLE 3 Normalized sectoral contributions to PM2.5- and O3-related premature deaths (D) and NO2-related asthma cases (C) by the largest contributing

sectors from emissions across the entire domain for all study cities.

City On-road
vehicles

Non-road
vehicles

Power
plants

Industry Agriculture Residential Other

D C D C D C D C D C D C D C

AUS 0.21 0.46 0.12 0.11 0.05 0.09 0.08 0.13 0.08 0.00 0.03 0.00 0.42 0.21

BOS 0.22 0.43 0.13 0.13 0.02 0.03 0.04 0.07 0.04 0.00 0.11 0.01 0.43 0.34

CHI 0.25 0.41 0.16 0.15 0.06 0.08 0.08 0.09 0.07 0.00 0.06 0.00 0.32 0.26

HOU 0.22 0.47 0.11 0.11 0.05 0.08 0.12 0.12 0.05 0.00 0.03 0.00 0.42 0.22

LOS 0.33 0.55 0.14 0.11 0.00 0.00 0.05 0.05 0.02 0.00 0.02 0.00 0.45 0.28

MIA 0.27 0.46 0.19 0.12 0.03 0.06 0.04 0.02 0.01 0.00 0.02 0.00 0.44 0.34

NOL 0.16 0.20 0.11 0.05 0.07 0.13 0.15 0.14 0.04 0.00 0.02 0.00 0.46 0.47

NYC 0.24 0.38 0.15 0.14 0.03 0.05 0.04 0.05 0.07 0.00 0.07 0.00 0.39 0.37

PHL 0.25 0.47 0.13 0.10 0.05 0.07 0.06 0.09 0.08 0.00 0.08 0.00 0.35 0.26

PHX 0.30 0.63 0.21 0.19 0.01 0.01 0.02 0.01 0.01 0.00 0.06 0.00 0.40 0.15

POR 0.16 0.52 0.09 0.13 0.00 0.01 0.03 0.05 0.03 0.00 0.31 0.01 0.38 0.28

SJO 0.26 0.50 0.11 0.11 0.01 0.01 0.06 0.05 0.03 0.00 0.09 0.00 0.45 0.32

STL 0.22 0.62 0.08 0.12 0.00 0.02 0.02 0.03 0.06 0.00 0.25 0.01 0.35 0.21

WAS 0.28 0.50 0.14 0.14 0.05 0.09 0.05 0.05 0.08 0.00 0.07 0.00 0.34 0.21

The largest contributing sector besides “Other” is bolded for each city for both deaths and cases.

emissions of air pollutant precursors like NOx and CO (Gately

et al., 2017). Emission sectors associated with the longer-lived

secondary components of PM2.5 and with O3 generally have

more influence on cities with small municipal contributions; for

example, emissions of SO2 and NOx from power plants, NH3 from

agriculture, and VOCs from industry contribute proportionally

more to urban air pollution-related health impacts in cities with

smaller municipal contributions.

Considering the results from Supplementary Tables S1.3–S1.5,

we can characterize the relative influence of different sectors

associated with different regional contributions. On-road vehicle

emissions are an important contributor to urban air pollution-

related premature deaths, regardless of where they are emitted;

but they are especially important when emitted inside an urban

boundary. On average, on-road vehicle emissions from the

surrounding state and domain contribute to air pollution-related

premature deaths proportionally less, 0.86 times and 0.71 times,

respectively, than the municipal contribution of on-road emissions.

For NO2-related asthma cases, state and municipal contributions

made up a similar percentage; however, the contribution of on-road

vehicle emissions from outside of the state was proportionally 0.60

times that of municipal on-road vehicle emissions contributions.

On-road vehicle emissions of NOx from more distant locations

have less influence on urban NO2-related asthma cases than

other sectors. Another sector which becomes proportionally less

influential outside of state boundaries is the residential sector;

municipal residential emissions make up around 10% of local

contributions while only contributing 5% of contributions outside

of the state.

When comparing sectoral contributions by region, a few sectors

contribute a larger proportion of the outside-of-state contributions

than themunicipal contributions: albeit, only minorly. Considering

premature deaths, outside-of-state contributions from power

plants, industry, and agriculture were 3, 6, and 5%, respectively

compared to 2, 5, and 1% from within cities. This also is true for

NO2-related asthma cases where outside of state contributions were

9 and 8% for power plants and industrial emissions compared to

municipal contributions where these emissions made up 4 and 5%.

Emissions from “other” sectors were also higher in out-of-state

contributions at 47 and 45% compared to 41 and 27%; as discussed

in our previous work (Nawaz et al., 2021), this other sector includes

surface level emissions from power plants which could explain

part of the proportionally larger contribution from other emissions

outside of state.

3.4. Assessing the health benefits of
emission reduction policies as a function of
distance of implementation

Many actions intended to reduce urban air pollution are

developed and implemented at the municipal level (Slovic et al.,

2016). When developing pollution mitigation policies, local policy-

makers must gauge the relative efficacy of their actions when

conducted in isolation vs. in collaboration with the surrounding

region. As presented in the previous section, several characteristics

influence the efficacy of isolated municipal action to target air

pollution-related health impacts; these include the pollutant of

interest, city size, geographic location, and the sectoral sources

of emissions. The framework presented in this section considers

these city-specific characteristics and estimates the accrued health
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benefits, in the form of deaths and asthma cases avoided, that

could be achieved from increasing areas implementing emission

reduction policies (Table 2). In Table 4, we present the health

benefits in 2040 that could be achieved by reducing transportation

NOx emissions via exclusive municipal implementations of the

four proposed policies in Table 1 relative to 2011 values, from the

EPA TEAM assessment; we apply the same percentage emission

reductions used in Austin to all 14 study cities for emissions of

primary PM2.5, NOx, and VOCs.

Of all scenarios considered, scenario four, a vehicles miles

traveled (VMT) fee, results in the most health benefits and

also corresponds to the greatest emission reductions. The

implementation of this scenario would lead to 70 deaths

and 1,900 asthma cases avoided in 2040 across all 14 study

cities from municipal action alone. In smaller cities that have

proportionally smaller municipal contributions (Austin, Boston,

and New Orleans), isolated municipal action results in negligible

health impact avoidances of under one premature death and

under ten new asthma cases per city. A majority of the avoided

premature deaths and new asthma cases occur in the two most

populous cities, Los Angeles and New York City, which both have

substantial municipal contributions to their air pollution-related

health impacts (Figure 3). While in some cities the health benefits

of municipal implementation of this VMT fee are substantial (i.e.,

Los Angeles and New York City), in others very few health benefits

are achieved through exclusive municipal action (i.e., Austin and

New Orleans).

We estimate the additional health benefits that these cities

would realize from cooperative regional action by applying the

proposed emission reduction percentages (Table 1) to areas of

increasing size for each city (Figure 4) considering only the most

effective emission reduction scenario, the vehicle miles traveled fee.

The adjoint framework developed in this and our past work (Nawaz

et al., 2021) requires several initial chemical transport model

simulations and calculations of adjoint sensitivities for each city.

These adjoint sensitivities can then be applied to many different

emission scenarios, like the aforementioned areas of increasing size,

to rapidly assess the impact on pollution-related health impacts

from these different emission reductions without a need to perform

additional simulations. With these results, we can compare the

efficacy of local action relative to cooperative regional action using

health impacts avoided to characterize effectiveness and identify the

distances at which 50% and 75% of the total health benefits are

achieved. Overall, we estimate that implementation of the vehicle

miles traveled fee across the entire nested US domain, as opposed

to just the municipal implementation in Table 4, would avoid 168

premature deaths and 2,771 new asthma cases across the 14 cities.

By removing the municipal contributions from these totals, we

estimate that the health benefits associated with non-municipal

action were 1.4 times and 0.5 times that of municipal action for

premature deaths and asthma cases avoided, respectively.

Across all cities, a smaller area of implementation is needed to

accrue a majority of NO2-related asthma cases avoided compared

to PM2.5- and O3-related premature deaths. This is indicated

by the sharper rise and earlier convergence of the asthma

cumulative distribution functions compared to the premature

death cumulative distribution functions (Figure 4). In general,

cities in the western US (e.g., Los Angeles) accrue much more of

their potential benefits from a smaller area of action than cities

in the eastern US (e.g., New York City). In these cumulative

distribution plots, we identify the distances at which 50 and

75% of benefits are achieved with square and asterisk markers,

respectively. We note that smaller cities that are more dependent

on regional action (Austin, Boston, and New Orleans) tend to

require substantially greater regional cooperation to achieve these

percentages of their potential health benefits compared to cities

dominated more by municipal contributions like Los Angeles,

Phoenix, and New York City.

In the center of Figure 4, we present a map of the 14 study cities

along with the areas of implementation in which 75% of potential

premature deaths, in magenta, and 75% of potential asthma cases,

in blue, would be avoided. One of the most notable results in this

figure is the distinct differences of the 75% regions for eastern and

western US cities. In the eastern US, higher population density and

a greater number of large cities subsequently mean that these cities

would require greater cooperative action to reap the majority of

benefits associated with the proposed vehicle miles traveled fee.

There are two notable regions among the study cities that would

require congruent action fromneighboring cities in the same region

to achieve 75% of potential health impacts. First, in the south-

easternUS, Austin, Houston, andNewOrleans would all depend on

cooperative action to avoid 75% of premature deaths; additionally,

Austin would require action from Houston to avoid 75% of new

asthma cases; Austin and Houston are located in the same state

and thus may face less roadblocks in fostering regional cooperation

than other groups of cities. The second region includes the four

study cities in the Northeast: Boston, New York City, Philadelphia,

and Washington, DC. For each of these cities to avoid 75% of

premature deaths they would require two of their neighboring cities

to adopt the same proposed action and for each of these cities to

avoid 75% of new asthma cases, outside of Washington, DC, they

would require one of their neighboring study cities to implement

the proposed action.

In general, the area of implementation needed to avoid 75% of

asthma cases is much smaller than the area needed to avoid 75%

of premature deaths; owing to this, exclusive municipal actions

may have more success in targeting reductions in NO2-related

asthma cases than premature deaths. By comparing the sizes of

these areas of implementation we characterize how capable cities

are in curbing their NO2-related health impacts compared to health

impacts associated with the longer-lived PM2.5 and O3. In some

cities, cooperation with only their own state agency is needed to

achieve the 75% reduction, while in other cities, five or more state

agencies need to cooperate together in order to achieve the same

number of benefits within the city. Local action in New Orleans

would be many times more effective in reducing NO2-related

asthma cases than PM2.5- and O3-related premature deaths; in this

city, the area in which 75% of NO2-related benefits are achieved is

smaller than the area in which 50% of premature death benefits are

achieved. Seattle is the exact opposite, the area of implementation

needed to achieve 75% of the NO2-related asthma cases avoided is

nearly identical in size to the area needed to achieve 75% of the

PM2.5- and O3-related premature deaths avoided. Ultimately, the

ability of a city to address its air pollution-related health burden is
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TABLE 4 Health benefits and emission reductions associated with four proposed emission reduction scenarios (see Table 1) for all 14 study cities if only

each city implemented the policy.

Scenario PM2.5- and O3-related
premature deaths avoided

NO2-related new asthma
cases avoided

Reduction in emissions of
transportation NOx compared to

2011 (Mg yr−1)

1 2 3 4 1 2 3 4 1 2 3 4

City

AUS 0 0 0 0 0 0 0 2 0.6 2.5 6.4 27.0

BOS 0 0 0 1 0 1 2 10 1.1 4.6 11.7 49.2

CHI 0 0 1 5 3 14 35 146 5.9 25.6 65.5 275.9

HOU 0 0 0 4 2 7 18 75 4.4 18.9 48.5 204.3

LOS 1 2 7 29 16 68 174 731 8.7 37.8 96.8 407.6

MIA 0 1 1 6 1 2 6 23 4.4 19.0 48.6 204.8

NOL 0 0 0 0 0 0 1 2 0.5 2.0 5.2 21.8

NYC 0 1 3 11 13 55 140 588 8.0 34.8 89.4 376.2

PHL 0 0 0 2 1 4 11 45 2.6 11.1 28.5 120.1

PHX 0 0 1 6 3 12 29 124 3.5 15.0 38.4 161.8

POR 0 0 0 1 1 2 5 21 1.7 7.2 18.5 78.0

SJO 0 0 1 2 1 4 11 47 2.2 9.7 24.8 104.2

STL 0 0 0 1 1 4 11 47 3.7 16.2 41.5 174.9

WAS 0 0 0 2 1 4 10 40 2.3 10.1 25.9 109.2

TOTAL 1 6 16 69 41 177 452 1,902 49.5 214.5 549.9 2,315.0

highly variable, dependent primarily on the geographic location of

a city and the target pollutant.

4. Discussion and conclusions

We apply the source apportionment approach from our

previous study (Nawaz et al., 2021) to 14 US cities in 2011 to

characterize the regional contributions to air pollution-related

health impacts and to assess the efficacy of emission mitigations

applied to different areas of implementation. First, we characterize

the sources of air pollution-related health impacts by region and

sector. Second, we leverage our adjoint sensitivities to assess

the health benefits associated with a vehicle-miles-traveled fee

policy considering the additional benefits achieved from extra-

municipal action. We estimate that exposure to PM2.5, O3, and

NO2 across the 70.2 million individuals living in these 14 study

cities contributed to 24,380 premature deaths, 3,350 premature

deaths, and 126,600 asthma cases, respectively in 2011. Across all

cities, about 70% of these premature deaths were attributable to

pollution of anthropogenic origin. We find that there is substantial

variability in the fraction of anthropogenic health impacts that is

attributable to municipal emissions. About 5% in Austin to 56%

in Los Angeles and Phoenix of premature deaths and between

18% in Austin and 82% in Los Angeles of new asthma cases

are attributable to municipal emissions exclusively. Beyond this

municipal contribution, many cities have large fractions of their

air pollution-related health impacts attributable to emissions in

nearby counties or states. While this variability is attributable to

a combination of multiple factors, we find that city size, location

with respect to sources, and sectoral sources are all among the most

influential factors. When considering the impact of the emission

reductions associated with the proposed vehicle miles traveled

fee, we find that cities have greater control of their NO2-related

health impacts than PM2.5- and O3-related premature deaths.

Additionally, we find that regional cooperation is needed to achieve

greater health benefits for cities in the eastern US than cities in the

western US as previously evidenced by other assessments (Farrell

and Keating, 2002; Day et al., 2019).

The results and conclusions of this study are subject to

uncertainties from a number of different components of our

analysis; while we briefly discuss key sources of uncertainty here,

detailed analyses of uncertainties are discussed in our previous

works (Nawaz et al., 2021, 2023). In our forward model and

adjoint simulations, we do not include fugitive dust emissions;

this likely leads to an underestimate of local contributions as

this would be an additional source of primary PM2.5 that

would most likely impact assessments in Western US cities.

When performing our source apportionment and emission impact

analysis, we combine adjoint sensitivities calculated at the 0.5◦

× 0.667◦ with emissions at the 0.1◦ × 0.1◦ resolution; the

coarseness of the adjoint sensitivities means we fail to capture

fine-scale peaks and valleys in sensitivities; this is a limitation

of our approach that particularly affects NO2 which has sharp

gradients at neighborhood scales within these large grid cells.While

the pollutant concentration products we use for our exposures
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FIGURE 4

Cumulative PM2.5- and O3-related premature deaths (black) and NO2-related new asthma cases (red) avoided in 2040 from a proposed vehicle miles

traveled fee. On the cumulative distribution plots, the distance at which 50% (square) and 75% (asterisk) are marked for both premature deaths

(magenta) and new asthma cases (blue). On the map, the distances at which 75% of premature deaths (magenta) and 75% of new asthma cases (blue)

are indicated.

generally agree well with observations when considering bias and

correlation, there are discrepancies which could lead to under

or overestimates of pollution exposures in cities. These under

or overestimates of pollution exposures would carry over to the

health impact analysis as well. Lastly, we found in our previous

work (Nawaz et al., 2021) that the health impact assessment

is the largest source of uncertainty in our analysis due to the

inherent uncertainty in the epidemiological studies that support the

health impact calculation methods. In Supplementary material 2,

3, we present the lower and upper bounds health impacts of the

county-level contributions.

With these limitations in mind, the results of our work

have implications for policy-making and future urban source

apportionment studies. To better characterize urban air pollution

and its associated health impacts, it is beneficial for source

apportionment studies and policies derived from them to consider

the influence of sources directly outside of the city and its

surrounding area; in some cities a majority of pollutants can

be contributed from emissions originating outside of both the

city and state. There is not a consistent fraction of pollution

attributable to municipal emissions; the extent to which urban

emissions contribute to urban pollution depends on a number

of factors including size, population, location, and dominant

regional sectors. Policies and actions exclusively targeting urban

emissions are likely more effective in reducing NO2-related

health impacts than PM2.5- and O3-related health impacts due

to the shorter atmospheric lifetime of NO2. While regional

cooperation in reducing air pollution should always be encouraged

regardless of the location of a city, it is useful especially

for cities in the eastern US for larger regions to cooperate
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to reduce the health burden from air pollutant exposures,

primarily the premature deaths associated with exposure to PM2.5

and O3.
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